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Abstract: This paper describes the use of Generalized Regression Neural Network (GRNN) in the identification 

of various skeletons of monoterpenoid compounds from their 13C NMR chemical shift data. Towards this end, 
13C NMR chemical shift data of skeletons of 328 compounds belonging to various classes of monoterpenoids 

were used as input for the network.  To generate the output data for the network, each compound belonging to a 

skeletal class was assigned a code of 1while every other possible skeleton types were given codes of 0. These 

data were used to train the network at varying spread constant values. After training, the network was simulated 

using 113 test compounds. At a spread constant of 15, the network had between 99.98 and 100% recognition of 

Myrcane skeleton, 100% recognition of the Santoline skeleton and 87.63 - 100% recognition of the Menthane 

skeleton. The network, however, could not identify successfully the Bornane and Pinane skeletons. To correct 

this anomaly, the training data for these classes of compounds were increased and the data re-trained. The 

results obtained improved considerably with between 68.25% and 99.95% recognition of the Bornane skeleton 
and 83.86% to 100% recognition of the Pinane skeleton. GRNN could be a powerful complimentary tool in the 

elucidation of structures of monoterpenoids. 
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I. Introduction 
Structural determination of natural products usually requires vast experience in spectral analysis. The 

fundamental stage in the process of structural elucidation is the determination of the compound carbon skeleton 

as this forms the basic unit to which the substance belongs. However, this is often difficult owing to high 

structure variety and diversity encountered in natural products chemistry.  Studies in structural elucidation of 

monoterpenoids are of importance because this class of naturally occurring compounds possesses important 
pharmacological activities [1]. The advent of Computer Assisted Structural Elucidation (CASE) methods has 

simplified the process of interpretation of complex organic compounds, especially in the field of natural 

products. A high-quality reference library containing both structures and complete spectra or substructures and 

subspectra being representative of the types of compounds encountered in the laboratory, is an invaluable 

component for a CASE system [2, 3]. The premise implicit in the spectrum interpretation is that if the spectrum 

of the unknown and a reference library spectrum have a subspectrum in common, then the corresponding 

reference substructure is also present in the unknown. The components generated by spectra interpretation are 

fed into the structure generator, which will exhaustively generate all possible structures from these components. 

Examples of structure generators include MOLGEN, GENIUS and COCON. Their applications are described 

elsewhere [4]. Procedures that utilize 13C NMR for skeleton identification have been previously developed and 

utilized with excellent results [5, 6, 7, 8].  
Rufino et al [9] applied Artificial Neural Networks in the identification of skeletons of Aporphine 

alkaloids from 13C NMR data asserted that ANNs because of their parallel nature can speed up the process of 

structural elucidation. ANNs have been applied to the prediction of biological activity of natural products or 

congeneric compounds [10, 11], the identification, distribution and recognition of patterns of chemical shifts 

from 1H-NMR spectra [12,13] and identification of chemical classes through 13C-NMR spectra [14]. ANNs are 

computational models derived from a simplified concept of the brain, in which a number of nodes, called 

neurons, are interconnected in a network-like structure [15]. Fig.1 shows a single neuron model. 
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Figure 1: Single Neuron Model 

 

Neural networks are nonlinear processes that perform learning and classification. Artificial neural 

networks consist of a large number of interconnected processing elements known as neurons that act as 

microprocessors. Each neuron accepts a weighted set of inputs and responds with an output.  In general, neural 

networks are adjusted/ trained to reach, from a particular input, a specific target output until the network output 

matches the target. Hence the neural network can learn the system. The learning ability of a neural network 

depends on its architecture and applied algorithmic method during the training. A neural network is usually 

divided into three parts: the input layer, the hidden layer and the output layer. The information contained in the 
input layer is mapped to the output layers through the hidden layers.  

In the present work, we show that Generalized Regression Neural Networks (GRNNs), one of the 

architectures of Artificial Neural networks can identify the skeletons of unknown monoterpenoid compounds  

among different  (monoterpenoid) skeletons-Myrcane and Santoline (alicyclic monoterpenoids), Menthane 

(monocyclic monoterpenoids), Thujane, Bornane, Isocamphane and Fenchane (bicyclic monoterpenoids), and 

Pinane (a tricyclic monoterpenoid). Generalized Regression Neural Networks consists of four layers: input 

layer, pattern layer, summation layer and output layer as shown in Fig. 2. The theory of Generalized Regression 

Neural Networks has been described elsewhere [16]. 

 

 
Figure 2: General Structure of GRNN 

 

Compared to other ANN models such as the backpropagation neural network model, the GRNN needs 

only a fraction of the training samples a backpropagation neural network would need. Therefore it has the 

advantage that it is able to converge to the underlying function of the data with only few training samples 

available [17]. Furthermore, since the task of determining the best values for the several network parameters is 

difficult and often involves some trial and error methods, GRNN models require only one parameter (the spread 

constant) to be adjusted experimentally. This makes GRNN a very useful tool to perform predictions and 

comparisons of system performance in practice. Previous works relating the predictive capability of GRNN to 
backpropagation neural network and other nonlinear regression techniques highlighted the advantages of GRNN 

to include excellent approximation ability, fast training time, and exceptional stability during the prediction 

stage [18,19]. 
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II. Materials And Methods 
For identification purposes and for structural elucidation of new compounds, it is necessary to have 

access to extensive list of their structural data. In the present study, we made use of structural (skeletal) 13C data 

of compounds reviewed and published by [20]. This information can be extracted from data of monoterpenoids 

published in literature by isolating 13C values of the skeletal (carbon) from those of the substituents. ANNs work 

through learning method, their training must, therefore, be done with the use of detailed and correct data to avoid 

an erroneous learning process. A total of 441 compounds were employed in this study. Of these, 113 were 

reserved for use as test cases (these were not used in training the neural network). These included 33 Mrycane, 3 

Santoline, 38 Menthane, 5 Thujane, 12 Bornane, 3 isocampahane, 15 Pinane and 4 Fenchane monoterpenoid 

compounds. ANNs learn through examples and the test compounds are selected based on the representativeness 

of their skeletons among data used for training. The skeletons of the compounds and the numbering of the carbon 

atoms are shown in Fig. 3.  

                            
           Myrcane Skeleton           Thujane Skeleton           Isocamphane Skeleton                  Bornane Skeleton 

 

                                             
                     Santoline Skeleton                                 Pinane Skeleton                   Fenchane Skeleton 

Figure 3: Skeletons of Monoterpenoid compounds used 

 

Three Excel worksheets containing coded information on the input and target data for the training and 
test compounds were prepared. On the first row of the first sheet, the compounds were assigned codes 1-328. In 

the first column of the same sheet, the positions of each carbon atoms on the skeleton (as shown in Figure 3) 

were coded as 1-10.  The 13C chemical shift data for each Carbon at each of the 10 positions was recorded for 

each compound. These represent the input data subsequently used in training of the net. Another excel sheet in 

the format just described was prepared except that it contained 13C chemical shift data for the test compounds 

(coded 1-113). The 13C chemical shift data for skeletons of the test compounds are presented in Table 1. The 

target data were prepared on the third excel sheet. The compounds were assigned codes 1-328 as previously 

described. In the first column of the excel sheet, the eight different skeletons were listed vertically. Each 

compound is identified as belonging to a particular skeleton by assigning it a code 1 or 0.  A compound 

belonging to a particular skeleton type is assigned a code of 1 while all the other compounds are assigned 0 for 

that skeleton type.  
 

Table 1: 
13

C NMR Chemical Shift data for test compounds 
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Table 1 (continues): 
13

C NMR Chemical Shift data for test compounds 

 
 

Table 1 (continues): 
13

C NMR Chemical Shift data for test compounds 
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Table 1 (continues): 
13

C NMR Chemical Shift data for test compounds 

 
 

Table 1 (continues): 
13

C NMR Chemical Shift data for test compounds 

 

 

 
 

 

 

 

 

 

 

 

After the construction of the worksheets, the data were transferred into the Neural Network toolbox of 

MATLAB 7.8.0. From the command window, the „nntool‟ command was used to designate the imported data 

appropriately as „input‟ or „target‟. The Generalized Regression Neural Network architecture was selected for 

training of the skeleton-identification system at spread constants of 0.5, 1, 2.5, 5, 7.5, 9, 10, 12, 15, 17.5, 20, 25, 
30, 50 and 100. The effectiveness of training at each value of spread constant was assessed by simulation with 

the test data (not previously used for training and therefore unknown to the network). The aim was to ascertain 

whether the neural network would be able to identify correctly the skeleton type to which each test compound 

belong.  The Generalized Neural Network (GRNN) at a spread constant of 15.0 was chosen as the baseline for 

results presentation as all classes of compounds give reasonably good results at this value.  

When it was observed that for the network could not identify with high accuracy compounds having 

the Thujane, Bornane, Isocamphane, Pinane and Fenchane skeletons, the training data was increased. This was 

done by adding to the original training set randomly selected compounds from the previously used set of test 

compounds. The randomly selected compounds were from the classes of compounds whose skeletons were not 

correctly predicted. This reduced the total number of test compounds to 93 comprising of 33 compounds with 

the Myrcane skeleton, 3 with the Santoline skeleton, 38 compounds with the Menthane skeleton, 3 compounds 
with the Thujane skeleton, 5 compounds with the Bornane skeleton, 3 with Isocamphane skeleton, 5 with Pinane 

skeleton and 3 with the Fenchane skeleton. This procedure was carried out to ascertain whether the observed 

inaccuracies were due to insufficient training data. Graphs of observed errors in individual prediction against 

spread constant values for randomly selected compound(s) from each skeleton class are plotted to give an 

insight into the range of spread constant values where the best results may be obtained.   For Bornane, Pinane 

and Fenchane, results obtained after re-training of the system were used. For these set of compounds, the GRNN 

was trained at spread constants of between 1 and 25. This is because from the previously trained data set 

(comprising of 113 compounds), it has been observed that least errors were obtained within this range. 

 

III. Results And Discussion 
The results obtained after training of the neural network and simulating with the original set of 113 test 

data using GRNN are presented in Table 2. The probability that a compound belongs to a particular skeletal type 

is expressed as percentages. (When a value of 1 is returned by the network for a particular skeletal type, there is 

100% certainty that the unknown compound possess that skeleton while a value of 0 indicates a null 

probability). If correctly predicted, compounds 1-33 should be Myrcane; 34-36 Santoline; 37-74 Menthane; 75-

79 Thujane; 80-91 Bornane; 92-94 Isocamphane; 95-109 Pinane; and 110- 113 Fenchane. The results showed 

that out of the 33 Myracane compounds used as test data, the network had 99.98% - 100% recognition rate of 30 

compounds. A recognition rate of 71.7% and 78.58% was observed for compounds 28 and 29 (with 28.23% and 

21.41% probability respectively that these compounds had Thujane skeleton). Compound 31 was wrongly 

predicted as Thujane skeleton (99.92%). The network had 100% recognition rate for the 3 compounds belonging 

to the Santoline skeleton and 87.63 - 100% recognition for compounds belong to the class of Menthane 
monoterpenoids. Of the 5 compounds with Thujane skeleton tested, 2 were erroneously predicted to have Pinane 

 106 107 108 109 110 111 112 113 

C-1 43.4 38.2 43.4 67.9 53.9 53.5 60.4 52.5 

C-2 147.8 151.6 147.8 138.7 222.1 221.6 221.6 218.4 

C-3 117.0 147.5 117.0 118.4 47.2 45.3 47.1 54.6 

C-4 80.8 31.3 31.6 33 45.3 50.3 44.6 41 

C-5 41.0 40.7 41.0 62.6 25 77.8 36 24.8 

C-6 38.0 37.6 38.0 30.1 31.8 41.8 76.7 32 

C-7 31.2 33.0 31.2 205.8 41.6 38.1 38.5 41.4 

C-8 21.1 25.7 21.1 27.3 23.3 23.8 23.8 49 

C-9 26.2 20.9 26.2 14.7 21.7 21.5 21.6 18.2 

C-10 65.8 191.0 65.8 23 14.6 14.6 12 14.4 
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skeleton. For compounds 80-88 (all belonging to the Bornane series), the network could not identify the 

compounds as belonging to any specific skeleton as the probabilities were almost evenly distributed between 

Menthane, Bornane, Pinane and Fenchane skeleton types. The network could only identify 2 of the 4 
Isocamphane compounds at 85.99% and 86.47% and wrongly predicted most of the compounds belonging to the 

Pinane class as Thujane (with lesser probabilities as Myrcane). Also, only 2 of the 4 Fenchane compounds were 

recognized at 61.28% and 76.74%. 

 

Table 2: Probability of the Test Compound To Belong to the Skeletons Researched (σ =15 ) 
Tested 

Skeletons 

 Tested compounds (%) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Myrcane 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 

Santoline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Menthane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thujane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bornane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isocamphane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fenchane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 2 (continues): Probability of the Test Compound To Belong to the Skeletons Researched(σ=15 ) 
Tested 

Skeletons 

 Tested compounds (%) 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Myrcane 100 100 100 100 100 100 99.98 99.99 99.98 100 100 100 71.70 78.58 100 

Santoline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Menthane 0 0 0 0 0 0 0.02 0.01 0.02 0 0 0 0 0 0 

Thujane 0 0 0 0 0 0 0 0 0 0 0 0 28.23 21.41 0 

Bornane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Isocamphane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinane 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.01 0 

Fenchane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched(σ=15 ) 

 
 

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (σ=15 ) 
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Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched(σ=15 ) 

 
 

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (σ=15 ) 

 
 

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (σ=15 ) 
Tested 

Skeleton 

Tested Compounds (%) 

106 107 108 109 110 111 112 113 

Myrcane 58.98 0 0 16.14 0 0 0 0 

Santoline 0 0 0 0 0 0 0 0 

Menthane 0 0 0 0 0 0 0 0 

Thujane 40.54 0 96.52 0 0 0 0 0 

Bornane 0 0 0 0 87.86 38.72 23.26 85.80 

Isocamphane 0 0 0 0 0 0 0 0 

Pinane 0.50 1 3.47 83.86 0 0 0 0 

Fenchane 0 0 0 0 12.14 61.28 76.74 14.20 

 

To ascertain whether the inadequacies observed especially  in results involving Thujane, Bornane, 

Isocampahne, Pinane and Fenchane compounds were due to insufficient training data, the number of the training 

data were increased as previously described. After training and simulating with the 93 compounds whose 13C 

NMR values are used as the test data, at the baseline spread constant value of 15, the Bornane skeletons are now 

recognized at 68.25%, 70.82%, 99.10%, 99.95% and 99.95% for the 5 test compounds used. The network also 

had between 83.86 and 100% recognition of the 5 compounds with Pinane skeleton used for the test.  No 

significant improvement was obtained for Isocamphane, Thujane and Fenchane skeletons. This is expected since 
out of a total of 20 compounds added to the original training set (of 328 compounds), 7, 10, 2, 1and 0 belong to 

the Bornane, Pinane, Thujane, Fenchane and Isocamphane classes respectively. Fewer numbers of compounds 

from the Thujane, Fenchane and Isocamphane classes were used for the re-training because only 5, 4 and 3 

respectively from these classes were present in the original set of test data. The predictive ability of GRNN 

might have been affected by the size of the learning database. In a previous work, Ferreira et al (1998) showed 

that the expert system SISTEMAT  could only predict the pinane skeleton types with only 0.714 accuracy, 

implying that other skeletons also appear but with low statistical significance. In their pioneering work, Rufino 

et al (2005) showed that ANN methods give fast and accurate results for identification of skeletons and for 

assigning unknown compounds among distinct fingerprints (skeletons) of aporphine alkaloids. The computation 

method is much faster than the utilization of traditional methods for skeleton prediction as the time-consuming 

sequential search (especially for large spectra library) and matching procedures (sequential comparison of an 

unknown target spectrum with the set of library spectra) employed by the conventional databases is avoided. 
This makes neural networks ideal for selecting results for structure generators or checking the entries of a 

database. If a large number of skeletons have to be predicted or a fast and easy check of a structure is necessary, 

this approach is advantageous. Moreover, the large amount of the disk space for saving the database or long 

time for loading data from external computers will no longer be necessary. 

From Fig 4 (below), it could be observed that the spread constant ranges over which excellent 

prediction results were obtained seems to be specific for each skeleton class. Best prediction of the Myrcane 

skeleton, was within spread constant range of 10 – 30; and for Menthane skeleton best results were obtained 

between 5 and 30.  
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Figure 4: Graphs of observed errors in individual prediction against spread constant values 

 

Though available test data are few, one can cautiously infer that the best predictions appears to be 

obtained within the spread constant range of 1 - 20 for Bornane skeleton, 7.5 -20 for Santoline skeleton and 5-20 
for Pinane skeleton. Within these broad ranges of values, errors in prediction were zero in most cases. The 

variation of the generalized error with change in spread constant is an important parameter to access the efficacy 

of any GRNN. A network that gives a constant error for a broad range of spread constant is considered better 

since designers can choose from a wide range of spread constant values for their network.  
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IV. Conclusion 
From this study, it could be seen that the predictions obtained using GRNN are in good agreement with 

the actual skeletons of the compounds tested. The network was tested with compounds belonging to diverse 

skeleton types and good results were obtained in almost all the cases. The quality of predictions of the network, 

however, depends on the availability of sufficiently diverse training data (covering adequately all the classes of 

monoterpenoid compounds) for the network. GRNN, could therefore be a powerful complimentary tool in 

structural elucidation of monoterpenoids.  
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