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Identification of Skeleton of Monoterpenoids from *CNMR Data
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Abstract: This paper describes the use of Generalized Regression Neural Network (GRNN) in the identification
of various skeletons of monoterpenoid compounds from their **C NMR chemical shift data. Towards this end,
3C NMR chemical shift data of skeletons of 328 compounds belonging to various classes of monoterpenoids
were used as input for the network. To generate the output data for the network, each compound belonging to a
skeletal class was assigned a code of 1while every other possible skeleton types were given codes of 0. These
data were used to train the network at varying spread constant values. After training, the network was simulated
using 113 test compounds. At a spread constant of 15, the network had between 99.98 and 100% recognition of
Myrcane skeleton, 100% recognition of the Santoline skeleton and 87.63 - 100% recognition of the Menthane
skeleton. The network, however, could not identify successfully the Bornane and Pinane skeletons. To correct
this anomaly, the training data for these classes of compounds were increased and the data re-trained. The
results obtained improved considerably with between 68.25% and 99.95% recognition of the Bornane skeleton
and 83.86% to 100% recognition of the Pinane skeleton. GRNN could be a powerful complimentary tool in the
elucidation of structures of monoterpenoids.

Keywords: *C NMR, GRNN, Monoterpenoid, Simulation, Skeleton.

I.  Introduction

Structural determination of natural products usually requires vast experience in spectral analysis. The
fundamental stage in the process of structural elucidation is the determination of the compound carbon skeleton
as this forms the basic unit to which the substance belongs. However, this is often difficult owing to high
structure variety and diversity encountered in natural products chemistry. Studies in structural elucidation of
monoterpenoids are of importance because this class of naturally occurring compounds possesses important
pharmacological activities [1]. The advent of Computer Assisted Structural Elucidation (CASE) methods has
simplified the process of interpretation of complex organic compounds, especially in the field of natural
products. A high-quality reference library containing both structures and complete spectra or substructures and
subspectra being representative of the types of compounds encountered in the laboratory, is an invaluable
component for a CASE system [2, 3]. The premise implicit in the spectrum interpretation is that if the spectrum
of the unknown and a reference library spectrum have a subspectrum in common, then the corresponding
reference substructure is also present in the unknown. The components generated by spectra interpretation are
fed into the structure generator, which will exhaustively generate all possible structures from these components.
Examples of structure generators include MOLGEN, GENIUS and COCON. Their applications are described
elsewhere [4]. Procedures that utilize *C NMR for skeleton identification have been previously developed and
utilized with excellent results [5, 6, 7, 8].

Rufino et al [9] applied Artificial Neural Networks in the identification of skeletons of Aporphine
alkaloids from *C NMR data asserted that ANNs because of their parallel nature can speed up the process of
structural elucidation. ANNs have been applied to the prediction of biological activity of natural products or
congeneric compounds [10, 11], the identification, distribution and recognition of patterns of chemical shifts
from *H-NMR spectra [12,13] and identification of chemical classes through *C-NMR spectra [14]. ANNs are
computational models derived from a simplified concept of the brain, in which a number of nodes, called
neurons, are interconnected in a network-like structure [15]. Fig.1 shows a single neuron model.
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Figure 1: Single Neuron Model

Neural networks are nonlinear processes that perform learning and classification. Artificial neural
networks consist of a large number of interconnected processing elements known as neurons that act as
microprocessors. Each neuron accepts a weighted set of inputs and responds with an output. In general, neural
networks are adjusted/ trained to reach, from a particular input, a specific target output until the network output
matches the target. Hence the neural network can learn the system. The learning ability of a neural network
depends on its architecture and applied algorithmic method during the training. A neural network is usually
divided into three parts: the input layer, the hidden layer and the output layer. The information contained in the
input layer is mapped to the output layers through the hidden layers.

In the present work, we show that Generalized Regression Neural Networks (GRNNs), one of the
architectures of Artificial Neural networks can identify the skeletons of unknown monoterpenoid compounds
among different (monoterpenoid) skeletons-Myrcane and Santoline (alicyclic monoterpenoids), Menthane
(monocyclic monoterpenoids), Thujane, Bornane, Isocamphane and Fenchane (bicyclic monoterpenoids), and
Pinane (a tricyclic monoterpenoid). Generalized Regression Neural Networks consists of four layers: input
layer, pattern layer, summation layer and output layer as shown in Fig. 2. The theory of Generalized Regression
Neural Networks has been described elsewhere [16].
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Figure 2: General Structure of GRNN

Compared to other ANN models such as the backpropagation neural network model, the GRNN needs
only a fraction of the training samples a backpropagation neural network would need. Therefore it has the
advantage that it is able to converge to the underlying function of the data with only few training samples
available [17]. Furthermore, since the task of determining the best values for the several network parameters is
difficult and often involves some trial and error methods, GRNN models require only one parameter (the spread
constant) to be adjusted experimentally. This makes GRNN a very useful tool to perform predictions and
comparisons of system performance in practice. Previous works relating the predictive capability of GRNN to
backpropagation neural network and other nonlinear regression techniques highlighted the advantages of GRNN
to include excellent approximation ability, fast training time, and exceptional stability during the prediction
stage [18,19].

DOI: 10.9790/5736-08121119 www.iosrjournals.org 12 |Page



Identification of Skeleton of Monoterpenoids from **C NMR Data Using GRNN

Il.  Materials And Methods

For identification purposes and for structural elucidation of new compounds, it is necessary to have
access to extensive list of their structural data. In the present study, we made use of structural (skeletal) *C data
of compounds reviewed and published by [20]. This information can be extracted from data of monoterpenoids
published in literature by isolating **C values of the skeletal (carbon) from those of the substituents. ANNs work
through learning method, their training must, therefore, be done with the use of detailed and correct data to avoid
an erroneous learning process. A total of 441 compounds were employed in this study. Of these, 113 were
reserved for use as test cases (these were not used in training the neural network). These included 33 Mrycane, 3
Santoline, 38 Menthane, 5 Thujane, 12 Bornane, 3 isocampahane, 15 Pinane and 4 Fenchane monoterpenoid
compounds. ANNSs learn through examples and the test compounds are selected based on the representativeness
of their skeletons among data used for training. The skeletons of the compounds and the numbering of the carbon
atoms are shown in Fig. 3.

10 10
] 10 10 1
6 2
*/\/L/ ‘ @ ’
4 [ . 5 3
L T "
s [N 9 4
Myrcane Skeleton Thujane Skeleton Isocamphane Skeleton Bornane Skeleton
10
10
2
1 3 6
8
5 4 “9
Santoline Skeleton Pinane Skeleton Fenchane Skeleton

Figure 3: Skeletons of Monoterpenoid compounds used

Three Excel worksheets containing coded information on the input and target data for the training and
test compounds were prepared. On the first row of the first sheet, the compounds were assigned codes 1-328. In
the first column of the same sheet, the positions of each carbon atoms on the skeleton (as shown in Figure 3)
were coded as 1-10. The **C chemical shift data for each Carbon at each of the 10 positions was recorded for
each compound. These represent the input data subsequently used in training of the net. Another excel sheet in
the format just described was prepared except that it contained **C chemical shift data for the test compounds
(coded 1-113). The *C chemical shift data for skeletons of the test compounds are presented in Table 1. The
target data were prepared on the third excel sheet. The compounds were assigned codes 1-328 as previously
described. In the first column of the excel sheet, the eight different skeletons were listed vertically. Each
compound is identified as belonging to a particular skeleton by assigning it a code 1 or 0. A compound
belonging to a particular skeleton type is assigned a code of 1 while all the other compounds are assigned 0 for
that skeleton type.

Table 1: *C NMR Chemical Shift data for test compounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C-1 1148 1155 1148 1113 1139 1141 1109 114 1122 109.9 1100 1247 1438 1303 1081
Cc2 1436 1426 1426 1471 1441 1436 1472 144 1484 1458 1453 1443 1373 1376 1353
c3 575 6390 644 753 250 604 221 256 770 817 218 2018 1225 1265 1376
C-4 434 427 430 327 315 341 332 26.7 303 304 307 il9 1340 1190 1351
C5 362 62.7 63.0 ill 316 850 750 297 306 368 362 336 695 68.6 69.0
C6 13908 1426 1308 130.1 1388 1386 1422 T84 733 829 853 80.0 713 716 719
Cc-7 12435 1253 1246 1270 1201 1231 11935 1383 146.1 1436 1421 1412 1395 1393 12835
Cs 307 303 404 62.1 387 60.6 61.1 1173 1113 1111 1111 116.0 116.3 1164 1103
co 183 16.8 177 176 162 181 178 162 179 178 180 176 1863 635 191
Cl0 126 1135 118 417 415 18.1 234 470 280 26.6 26.1 238 246 25.1 283
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Table 1 (continues): *C NMR Chemical Shift data for test compounds

16 17 18 19 0 11 12 3 4 15 16 27 13 19 30
C-1 108.0 1323 131.8 121.7 115.6 130.2 170.3 170.3 160.5 257 253 195.1 257 257 242
C-2 1353 137.0 136.0 140.7 141.8 120.5 1284 1284 128.7 1313 1316 153.6 130.6 1311 1333
C-3 138.6 124.0 123.5 133.6 137.0 110.8 1443 1442 1443 1243 124.0 139.6 125.0 124.3 122.5
C4 330 1234 1241 126.6 1249 151.8 211 271 271 256 256 263 256 255 256
C5 6.0 60.4 604 60.1 45.8 412 316 310 36.8 310 36.9 352 374 312 333
C-6 713 71.6 716 72.2 728 12.6 30.7 303 30.3 27.8 27.7 27.7 203 206 64.6
Cc-7 1279 139.5 1393 1373 1448 1442 36.9 40.6 315 51.0 51.0 30.7 39.7 357 64.3
C38 110.0 116.5 116.5 110.5 112.0 112.0 68.9 61.0 68.5 203.8 202.8 202.0 60.2 62.9 1988
Cc9 19.3 36.7 §2.4 43.9 13.6 0.8 12.3 124 124 19.8 17.6 19.6 17.6 17.6 17.6
C-10 233 25.1 251 28.0 2713 274 19.8 19.3 19.7 17.6 19.6 9.1 19.6 19.5 222
Table 1 (continues): *C NMR Chemical Shift data for test compounds
Kl 3 kK] H 33 3 37 [ 38 | 3 [ 40 a1 I # 5
C1 [ 257 [ 133 678 [ 261 | 210 [210 | 75 745 |01 | 7 707 [ 708 | 717 | 733 | 62
C2 [ 15310 | 1350 [ 137, 1382 [ 1358 | I3L1 | 640 | 363 | 430 [ 401 [ 443 | 481 | 623 | 396 | 34
C3 [ 1251 | 1264 | 1261 | 1222 | 1258 | 1200 | 586 | 526 | 705 | 2151 | 5735 | 565 | 364 | 362 | 346
€4 | 18 | 48 743 [ 512 | 492 [ 492 | 433 | 435 | 406 | 518 [ 413 | 410 | 340 | 345 | &88
C5 [414 [ 403 404 [ 1374 | 1393 | 1301 [ 168 |16 [ 213 | 183 | 238 [ 153 | 221 | 218 | 346
C6 | 23 [ 303 301 1158 | 1145 | 1148 | 310 | 258 | 300 [ 304 [207 [ 310 |3L1 |23 | 3
C7 [ 344 | 344 342 152 | 686 | 608 | 267 | 260 | 268 | 263 | 267 | 267 | 251 | 231 | 267
C3 |34 613 678 | 843 | 1468 | 14635 | 751 | 148 | 134 | 75 74 [ 42 [741 [ 4 716
C3 [ 176 |26 14 256 | 1105 | 1108 | 283 | 284 | 304 [ 260 [306 [ 292 | 288 | 288 | 237
CI0 | 763 | 233 222 |2 | 138 141 |20 283 | 307 | 306 | 305 | 284 | 284 | 283 [ 357
Table 1 (continues): *C NMR Chemical Shift data for test compounds
18 17 13 ] 50 SN 53 IS 56 [ 57 [ 58 [5 [60
CI | 718 | 707 | 690 [ 728 | 123 733 [ 713 |43 | 154 |20 740 [ 772 | 754 [ 683 | 733
2 [ 276 | 515 | 516 [ 427 [ 433 ENES 373 [ 367 | 501 385 | 026 | 370 [ 832 | 826
C3 | 222 | 221 | 224 [352 | 348 858 | 552 | 348 | 334 [ 012 549 | 303 | 360 | 350 | 318
Cd4 | 330 | 282 |202 [423 [ 416 | 425 (402 [4235 [352 | 4938 423 [ 362 [ 336 | 412 [413
C5 | 222 |22 |26 [ 368 [ 291 152 | 506 | 285 336 | 216 362 | 211 | 360 | 245 | 244
C6 | 276 | 517 | 317 [ 600 | 604 | 311 [437 |383 | 580 | 236 572 | 284 | 370 | 368 | 331
C7 | 516 | 272 |21 | 244 | 243 | 45 | 258 | 243 | 230 | 361 43 [ 220 [ 231 | 327 | 288
CB | 744 [ 761 | 757 | 46 | 747 747 [ 748 [ 743 | 743 | 4@ 743 | 743 | 745 [ 836 | 824
C9 | 285 | 504 | 687 [303 [ 288 | 280 [300 [203 [281 [321 200 [ 281 [ 284 | 227 [ 234
C-I0| 285 | 244 |235 [300 [283 [278 [207 [278 [277 |31@ 207 [278 [284 [ 300 [303

Table 1 (continues): **C NMR Chemical Shift data for test compounds

61 62 63 64 65 66 67 68 69 T0 71 71 T3 T4 75
C-1 68.0 654 | 1358 | 1336 133.3 133.7 162.8 134.1 133.1 1329 | 1333 139.1 136.1 1404 | 232
C-2 838 800 | 12235 | 1186 120.9 120.3 1232 148.0 126.4 1270 [ 1258 127.3 1233 123.0 1813
C-3 333 360 | 242 343 210 263 2026 | 693 286 28.7 26.6 76.3 69.8 66.0 1214
CH 410 | 4501 | 40 717 430 427 763 52.7 308 300 443 40.8 41 46.7 2078
C-5 243 18.1 [ 417 311 240 240 30.0 38.7 238 233 234 26.1 242 17.5 40,0
C-6 333 343 | 390 272 311 310 323 1983 | 263 262 26.6 68.3 308 313 26.2
Cc-7 3.0 335 | 222 233 233 223 233 15.0 136 1.6 135 211 228 232 383
C-§ 33.0 305 [ 283 36.9 722 347 30.1 748 321 321 1235 304 748 124 192
co 230 [ 242 | 218 17.0 272 233 162 24.0 12.3 19.9 213 203 241 28.1 19.3
c-10 30.1 308 | 183 16.9 26.0 233 16.5 30.0 19.5 19.6 263 17.0 30.1 201 61.7

Table 1 (continues): **C NMR Chemical Shift data for test compounds

76 7 T8 79 80 81 82 83 84 85 86 87 88 89 o0
C-1 252 | 291 284 28.9 46.7 47 447 4438 476 46.7 | 411 47.1 48.2 505 | 305
-1 136 | 1713 1322 136.3 79.8 94 139 148 86.1 83.5 | 869 83.9 52.0 83.0 2.3
C-3 226 | 1240 76.1 147 76 76.7 68.1 69.8 342 2.3 | 807 306 [ 430 342 | 342
C4 2038 | 208.1 339 37.2 51.8 481 31 483 2.7 486 | 310 48.3 32.0 335 | 335
[ 397 [ 400 3.1 373 243 234 13.8 18.3 26.1 245 [ 186 13.3 33.0 B0 [ 70
C-6 262 | 263 324 32.3 33.6 32 | 264 | 263 26.1 238 | 350 33.7 270 402 | 402
c-7 373 38.0 158.6 20,0 482 451 | 488 484 30.8 402 | 304 483 404 482 | 482
C-8 19.0 19.3 19.5 19.6 216 199 13.6 13.3 20.1 18.7 | 202 19.3 17.0 203 | 207
[ 196 | 202 19.5 19.6 1 205 | 204 10.1 216 197 | 213 19.8 172 216 | 215
C-10 | s20 18.7 109.7 106.3 11.6 104 14.8 13.4 13.6 23 | 120 10.7 143 13. 13.
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Table 1 (continues): *C NMR Chemical Shift data for test compounds

91 (7] 93 94 95 96 97 98 99 100 101 102 103 104 105
C-1 8.4 351 406 | 411 472 419 43.8 48.0 473 473 477 497 433 39.1 434
C-2 2171 833 36.3 32.3 1444 147 131.1 1433 145.3 150.1 1504 170.1 147.3 147.0 147.3
Cc-3 402 432 397 | 402 116.1 119.6 117.6 118.9 113.5 115.3 113.3 121.1 117.5 118.6 117.0
C-4 48.3 30.6 482 | 483 313 133 69.6 103 19.0 19.0 138 2039 | 316 0.6 30.8
C-5 30.8 239 23% | 238 408 482 47.1 410 437 459 444 16 410 36.3 41.0
C-6 387 233 283 | 294 38.0 39.0 46.0 46.1 46.0 46.0 46.2 340 379 434 38.0
C-7 46.7 358 358 36.0 313 353 284 286 280 201 254 40.8 311 316 31.2
C-8 20.6 234 280 | 280 264 21.0 203 266 20.3 20.3 26.3 26.6 262 16.1 211
Cc-9 20.7 233 237 [ 239 20.8 226 26.3 204 26.6 26.6 203 220 211 69.0 26.2
C-10 [ g3 30.8 634 | 63.0 230 226 64.2 226 223 227 2238 233 63.6 65.7 63.8

Table 1 (continues): *C NMR Chemical Shift data for test compounds

106 107 108 109 110 111 112 113
C-1 434 38.2 434 67.9 53.9 53.5 60.4 52.5
C-2 1478 | 1516 | 1478 | 138.7 | 222.1 221.6 2216 | 2184

C-3 1170 | 1475 | 1170 | 1184 | 47.2 45.3 47.1 54.6
C-4 80.8 31.3 31.6 33 45.3 50.3 44.6 41
C-5 41.0 40.7 41.0 62.6 25 77.8 36 24.8

C-6 38.0 37.6 38.0 30.1 31.8 41.8 76.7 32
C-7 31.2 33.0 31.2 2058 | 416 38.1 38.5 414
C-8 21.1 25.7 21.1 27.3 23.3 23.8 23.8 49
C-9 26.2 20.9 26.2 14.7 21.7 215 21.6 18.2
C-10 | 65.8 191.0 | 65.8 23 14.6 14.6 12 14.4

After the construction of the worksheets, the data were transferred into the Neural Network toolbox of
MATLAB 7.8.0. From the command window, the ‘nntool” command was used to designate the imported data
appropriately as ‘input’ or ‘target’. The Generalized Regression Neural Network architecture was selected for
training of the skeleton-identification system at spread constants of 0.5, 1, 2.5, 5, 7.5, 9, 10, 12, 15, 17.5, 20, 25,
30, 50 and 100. The effectiveness of training at each value of spread constant was assessed by simulation with
the test data (not previously used for training and therefore unknown to the network). The aim was to ascertain
whether the neural network would be able to identify correctly the skeleton type to which each test compound
belong. The Generalized Neural Network (GRNN) at a spread constant of 15.0 was chosen as the baseline for
results presentation as all classes of compounds give reasonably good results at this value.

When it was observed that for the network could not identify with high accuracy compounds having
the Thujane, Bornane, Isocamphane, Pinane and Fenchane skeletons, the training data was increased. This was
done by adding to the original training set randomly selected compounds from the previously used set of test
compounds. The randomly selected compounds were from the classes of compounds whose skeletons were not
correctly predicted. This reduced the total number of test compounds to 93 comprising of 33 compounds with
the Myrcane skeleton, 3 with the Santoline skeleton, 38 compounds with the Menthane skeleton, 3 compounds
with the Thujane skeleton, 5 compounds with the Bornane skeleton, 3 with Isocamphane skeleton, 5 with Pinane
skeleton and 3 with the Fenchane skeleton. This procedure was carried out to ascertain whether the observed
inaccuracies were due to insufficient training data. Graphs of observed errors in individual prediction against
spread constant values for randomly selected compound(s) from each skeleton class are plotted to give an
insight into the range of spread constant values where the best results may be obtained. For Bornane, Pinane
and Fenchane, results obtained after re-training of the system were used. For these set of compounds, the GRNN
was trained at spread constants of between 1 and 25. This is because from the previously trained data set
(comprising of 113 compounds), it has been observed that least errors were obtained within this range.

I1l.  Results And Discussion

The results obtained after training of the neural network and simulating with the original set of 113 test
data using GRNN are presented in Table 2. The probability that a compound belongs to a particular skeletal type
is expressed as percentages. (When a value of 1 is returned by the network for a particular skeletal type, there is
100% certainty that the unknown compound possess that skeleton while a value of 0 indicates a null
probability). If correctly predicted, compounds 1-33 should be Myrcane; 34-36 Santoline; 37-74 Menthane; 75-
79 Thujane; 80-91 Bornane; 92-94 Isocamphane; 95-109 Pinane; and 110- 113 Fenchane. The results showed
that out of the 33 Myracane compounds used as test data, the network had 99.98% - 100% recognition rate of 30
compounds. A recognition rate of 71.7% and 78.58% was observed for compounds 28 and 29 (with 28.23% and
21.41% probability respectively that these compounds had Thujane skeleton). Compound 31 was wrongly
predicted as Thujane skeleton (99.92%). The network had 100% recognition rate for the 3 compounds belonging
to the Santoline skeleton and 87.63 - 100% recognition for compounds belong to the class of Menthane
monoterpenoids. Of the 5 compounds with Thujane skeleton tested, 2 were erroneously predicted to have Pinane
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skeleton. For compounds 80-88 (all belonging to the Bornane series), the network could not identify the
compounds as belonging to any specific skeleton as the probabilities were almost evenly distributed between
Menthane, Bornane, Pinane and Fenchane skeleton types. The network could only identify 2 of the 4
Isocamphane compounds at 85.99% and 86.47% and wrongly predicted most of the compounds belonging to the
Pinane class as Thujane (with lesser probabilities as Myrcane). Also, only 2 of the 4 Fenchane compounds were
recognized at 61.28% and 76.74%.

Table 2: Probability of the Test Compound To Belong to the Skeletons Researched (o =15 )

Tested Tested compounds (%

Skeletons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Myrcane 100 | 100 | 100 | 100 100 | 100 100 100 | 100 | 100 100 100 | O 100 | 100
Santoline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Menthane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Thujane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bornane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Isocamphane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pinane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Fenchane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 (continues): Probability of the Test Compound To Belong to the Skeletons Researched(o=15 )

Tested Tested compounds (%)

Skeletons 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Myrcane 100 | 100 | 100 | 100 | 100 | 100 | 99.98 | 99.99 | 99.98 | 100 | 100 | 100 | 71.70 | 78.58 | 100
Santoline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Menthane 0 0 0 0 0 0 0.02 0.01 0.02 0 0 0 0 0 0
Thujane 0 0 0 0 0 0 0 0 0 0 0 0 2823 | 2141 | O
Bornane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Isocamphane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pinane 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0.01 0
Fenchane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched(c=15)

Tested Tested compounds (%)

Skeletons 31 12 33 KX} 35 36 37 38 39 40 11 42 43 44 45
Myrcane 0 100 | 100 0 0 1] 0.01 0.03 0.01 1] 0.12 0.06 0.12 0.12 0.30
Santoline 0 1] 1] 100 | 100 100 1] 0 0 1] 0 1] 1] 0 0
Menthane 0 0 ] 0 0 1] 2999 3987 | %080 28.71 9088 | 9994 | 99.88 9988 | 9933
Thujane 2902 [0 1] 0 0 ] 0 0 0 1] 0 0 ] 0 0
Bornane 1] 1] ] 1] 1] ] ] 1] 1] ] 0 0 0 0 0
Isocamphane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pinane 0.08 1] 1] 1] 1] ] 1] 1] 1] 0.29 1] 1] ] 1] 0.13
Fenchane 0 0 0 ] 0 0 0 0 ] 0 0 0 0 0 0

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (6=15)

Tested Tested compounds (%)

Skeletons 46 47 48 49 =0 £l 52 53 54 55 56 &7 8 0 60
Myrcane 12.35 0.63 0.19 1.77 0.90 0 2.61 0.97 2.76 ] 2.08 0 230 0 0
Santoline (] ] ] 0 0 0 0 0 1] 0 0 (] (] 0
Menthane 37.63 09.34 09.81 98.20 90.09 00,98 07.296 09.03 07.22 100 | 97.90 100 | 97.48 100 100
Thujane (] ] ] 0 0 0 0 0 0 1] 0 0 (] (] 0
Bornane 0 0 0 0 0 0 0 0 0 ] 0 0 0 0 0
Isocamphane 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pinane ] 0 0 0.03 0.01 0.02 0.1 0 0.02 0 0.02 0 0.02 ] 0
Fenchane o ] ] 0 0 0 0 0 ] 0 0 o o 0

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (6=15)

Tested Tested compounds (%)

Skeletons 61 62 83 64 [H 66 67 68 69 T0 71 71 T3 T4 75
Myrcane 0 0 0 0.03 0 0 0 0 5.82 546 0.66 0 0.02 0 0
Santoline 0 0 0 0 0 0 0 0 (] (] 0 0 (] 0 0
Menthane 100 100 [ 10 [ 8997 100 100 100 100 24.18 9454 0934 100 99.08 100 0
Thujane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 09.84
Bornane 0 0 0 0 0 0 0 0 (] (] 0 0 0 0 0
Isocamphane 0 0 0 0 0 0 0 0 (] (] 0 0 (] 0 0
Pinane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16
Fenchane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched(c=15)

Tested Tested compounds (%)

Skeletons 76 77 78 79 30 81 32 33 34 85 36 87 38 39 90
Myrcane 0 0 0 0 0 (] 1] 1] 1] 0 0 0 0 0 0
Santoline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Menthane 0 0 0 0 023 2541 13.30 16.71 3154 33.04 31.28 34.13 0.81 0 0
Thujane 90.78 00.96 0.20 031 0.05 0.09 0.05 8.63 0.026 00.06 0.02 0.05 0 0 0
Bornane 0 0 0 0 35.02 34.52 32.76 30.08 2032 | 2421 26.23 27.13 60.17 00.96 90.95
Isocamphane 0 0 0.08 0.02 9.03 837 15.93 14.79 8.73 874 173 713 12.84 0 0
Pinane 0.22 0.04 99.72 %047 16.73 17.81 329 466 26.33 247 1523 16.65 0.13 0.02 0.02
Fenchane 0 0 0 0 16.26 13.81 14.66 13.69 12.96 11.48 19.49 14.39 17.05 0.02 0.02

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (6=15)

Tested Tested compounds (%)

Skeletons 91 4] 93 94 [ 96 a7 [ [ 100 101 102 103 104 105
Myrcane 0 ] 0 0 0.02 63.19 701 | 2749 | 2360 | 2332 37.68 0.13 0.03 0 38.93
Santoline 0 ] 1] 0 0 0 ] ] ] ] ] ] 1] 1] 1]
Menth 0 0.05 12.35 11.92 0 0 0 ] ] ] ] 0 0 0 0
Thujane 0 0.10 0 0 99.80 [ 3664 a2 1248 16.37 1643 62.30 60.19 97.05 96.36 | 40.54
Bornane 68.23 26.03 0.02 0 0 0 0 ] ] 0 0 0 0 0 0
Isocamphane 0 1273 9590 86.47 0 0 0 (1] (1] (1] (1] 0 0 0 0
Pinane 0 1.17 1.62 1.61 0.17 017 099 | 003 0.03 0.03 0.02 3960 | 292 364 0.50
Fenchane 31.73 2547 0.02 0 0 0 0 ] ] o o 0 0 0 0

Table 2(continues): Probability of the Test Compound To Belong to the Skeletons Researched (6=15)

Tested Tested Compounds (%)

Skeleton 106 107 108 109 110 111 112 113
Myrcane 58.98 0 0 16.14 0 0 0 0
Santoline 0 0 0 0 0 0 0 0
Menthane 0 0 0 0 0 0 0 0
Thujane 40.54 0 96.52 0 0 0 0 0
Bornane 0 0 0 0 87.86 38.72 23.26 85.80
Isocamphane | 0 0 0 0 0 0 0 0
Pinane 0.50 1 3.47 83.86 0 0 0 0
Fenchane 0 0 0 0 12.14 61.28 76.74 14.20

To ascertain whether the inadequacies observed especially in results involving Thujane, Bornane,
Isocampahne, Pinane and Fenchane compounds were due to insufficient training data, the number of the training
data were increased as previously described. After training and simulating with the 93 compounds whose *C
NMR values are used as the test data, at the baseline spread constant value of 15, the Bornane skeletons are now
recognized at 68.25%, 70.82%, 99.10%, 99.95% and 99.95% for the 5 test compounds used. The network also
had between 83.86 and 100% recognition of the 5 compounds with Pinane skeleton used for the test. No
significant improvement was obtained for Isocamphane, Thujane and Fenchane skeletons. This is expected since
out of a total of 20 compounds added to the original training set (of 328 compounds), 7, 10, 2, 1and 0 belong to
the Bornane, Pinane, Thujane, Fenchane and Isocamphane classes respectively. Fewer numbers of compounds
from the Thujane, Fenchane and Isocamphane classes were used for the re-training because only 5, 4 and 3
respectively from these classes were present in the original set of test data. The predictive ability of GRNN
might have been affected by the size of the learning database. In a previous work, Ferreira et al (1998) showed
that the expert system SISTEMAT could only predict the pinane skeleton types with only 0.714 accuracy,
implying that other skeletons also appear but with low statistical significance. In their pioneering work, Rufino
et al (2005) showed that ANN methods give fast and accurate results for identification of skeletons and for
assigning unknown compounds among distinct fingerprints (skeletons) of aporphine alkaloids. The computation
method is much faster than the utilization of traditional methods for skeleton prediction as the time-consuming
sequential search (especially for large spectra library) and matching procedures (sequential comparison of an
unknown target spectrum with the set of library spectra) employed by the conventional databases is avoided.
This makes neural networks ideal for selecting results for structure generators or checking the entries of a
database. If a large number of skeletons have to be predicted or a fast and easy check of a structure is necessary,
this approach is advantageous. Moreover, the large amount of the disk space for saving the database or long
time for loading data from external computers will no longer be necessary.

From Fig 4 (below), it could be observed that the spread constant ranges over which excellent
prediction results were obtained seems to be specific for each skeleton class. Best prediction of the Myrcane
skeleton, was within spread constant range of 10 — 30; and for Menthane skeleton best results were obtained
between 5 and 30.
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Figure 4: Graphs of observed errors in individual prediction against spread constant values

Though available test data are few, one can cautiously infer that the best predictions appears to be
obtained within the spread constant range of 1 - 20 for Bornane skeleton, 7.5 -20 for Santoline skeleton and 5-20
for Pinane skeleton. Within these broad ranges of values, errors in prediction were zero in most cases. The
variation of the generalized error with change in spread constant is an important parameter to access the efficacy
of any GRNN. A network that gives a constant error for a broad range of spread constant is considered better
since designers can choose from a wide range of spread constant values for their network.
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IV.  Conclusion
From this study, it could be seen that the predictions obtained using GRNN are in good agreement with

the actual skeletons of the compounds tested. The network was tested with compounds belonging to diverse
skeleton types and good results were obtained in almost all the cases. The quality of predictions of the network,
however, depends on the availability of sufficiently diverse training data (covering adequately all the classes of
monoterpenoid compounds) for the network. GRNN, could therefore be a powerful complimentary tool in
structural elucidation of monoterpenoids.
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