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Abstract:  A theory of current oscillations in low-dimensional electronic structures has been constructed. The 

frequencies of increasing waves are determined. The values of electric and magnetic fields are found at which 

energy is emitted. It is shown that the injection significantly affects to this effect. The frequency of the current 

oscillation and the value of the external electric current at which these oscillations arise, significantly depend 

on the sample size. The increment of the excited waves is determined. At current oscillations in the circuit, an 

inductive resistance takes places, and the real part of the impedance oscillates with a certain period. 
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I. Introduction 

The theory of quasi-neutral current oscillations in semiconductors with deep traps in the presence of 

external electric and strong magnetic fields was constructed in [1-4]. Current oscillations in semiconductors with 

two types of charge carriers, taking into account the relaxation of charge carriers, were considered in [5, 6].  

Many works are devoted to the theory of instability in conducting media (see the review [7]). However, in most 

of these studies, the effect of the size sample on unstable current oscillations has not been investigated. This 

paper is devoted to the theory of current oscillations in low-dimensional conducting media in external electric 

and magnetic fields. It is shown that with a change of the size sample , the frequency of the occurring current 

oscillations   significantly changes, and the value of the external electric field, at which current oscillations 

appear, depends on the size sample. 

 

II. Internal instability in low-dimensional conducting media 
 The current density in conducting media with one type of charge carrier in the presence of external 

electric and magnetic fields equal to [5]: 
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    (1)  

where: ,,0 enHhH  


 n  is the electron concentration; 21,,  are the ohmic mobilities,  Hall 

mobilities, focusing mobility of charge carriers, 21,, DDD  are the corresponding diffusion coefficients. The 

equation (1) must be solved together with the Poisson equation: 

    
'4





divE

        (2) 

Taking into account that jjj 


0 ; EEE 


0 ;   0  and  0EE


 , 0  ,  

0jj


   from formula (1) and (2) we are obtained:  

 

   

  

















212

0

0

2200

201012

0

0
1010

102

0

0

000000

DhDD
E

EE
E

EhE
E

EE
hE

hE
E

EE
EEj














                       

(3) 



Internal and External Instability in Low-Dimensional Conducting Medias 

DOI: 10.9790/4861-1101020812                                 www.iosrjournals.org                                            9 | Page 

     

Ediv 





4                   

here 
000 E


  , 
021 E


  , 
2

0

2
E


  , 

2

0

1
1 2

E


  , 

2

0

2

2 2
E


  .  

Equation (3) is written by components, directing the electric field E along the x  axis ( i


  is the unit vector): 
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Since we are investigating current oscillations along the x axis, then  0 zy jj . 

Representing the values of the electric field in the following form ,)( )(
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equation to determine
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here  200021101 )1(),1(   . Solving together equations (6) and (7), one can 

determine yE  and zE , which have form. 
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To determine the x component of the electric field xE  , it is necessary to solve the continuity equation for the 

current density, which has the form: 
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together with Poisson’s equation (2). From (9) and (2) we have an equation for determining xE  
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In deriving equation (10), we defined ky,kx, в следующем виде: 
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Substituting zy EandE   from (8) into equation (10) we get:  
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Solving equation (12) determines the variable part of the electric field inside the medium with dimensions (11). 

When the oscillations of the electric field, charge density and current density occur only inside the medium, the 

wave vector is a real value, and the frequency of oscillation is a complex quantity, i.e. 

                                                               100 ,  ikk 
    

                                      (13) 

From the solution of equation (12), taking into account 0 zy jj  and (13), we easily obtain: 

        

   





























yx

yx

kkD

kkD

2

12

220100

2
1

4
11

2

1










                       (14) 

      

   
























 1

2

2

0

2220001
2

1
11

2

1







y

x

n

k

H

c

      

          (15) 

When formulas (14) and (15) are obtained, the electric field is given by expression: 
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From (15) it can be seen that for  21,  and  equal to 
2

1
  when the electric field is determined by 

formula (16) the excited wave inside  the medium with frequency 0   (14) , is growed. For the 

meanings 21,  and  equal to 
2

3
   the wave with frequency 0   (14) is damped. It should be noted that 

if  the values of the 21 ,,   coefficients    are determined by first value   this is corresponded of  the charge 

carriers scattering  by acoustic phonons. If the 21,  and  are determined by second values  takes place the 

scattering by the optical  phonons and on lattice defects. If the Einstein relation holds, then from (16) we obtain 

for the value of the magnetic field the formulas 
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here n   is the charge carriers concentration, S   is the sound velocity. 

 It is easy to verify that cH 0 . 

 

 

III. External instability in low-dimensional conducting medias 
For external instability the following relation takes place 

                                       0  ,  xx kikk  0                                                 (18) 

The solution of equation (14) determines xE
 
and therefore the sample impedance 
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To determine xE , we must take into account the injection of charge carriers at the sample contacts. The 

concentration of charge carriers varies in the sample due to the input and output of charge carriers at the 

contacts. Thus, the oscillatory part of the current changes due to the injection, i.e. 
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wheге   is the injection  coefficient, n - is the  variable  part of charge carrier  consentration, J   -is the 

variable current in the circuit. 

The solution of the equation (14) in the following form shall be found  
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The wave vectors 1k  and 2k  are determined from differential equation (14). 

The constants 1C  and 2C  are need to be determined from the boundary conditions for an electric field. 
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At obtaining formula (22), we used the inequality  
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 From the Poisson equation we get 
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The boundary conditions for the second equation in (24) have the form:  
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Using the expression for the electric field (21) in formulas (24) for constant 21andCC  we obtain:  
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Substituting (26) into (21) and used obtained expressions in the formula (19) after integration we get:
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From the expression (27) it is seen that when 10 xLk  the formula (27) have the following form:  
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. From equations (28) we get: 
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 At all negative values of 2sin   , the  relation (30) is satisfied. From (27) it can be seen that ZRe   oscillates 

with argument  2 , and  ZIm   is  received the positive value therefore a capacitance resistance must be 

added to the circuit. 

At receive the formula (27), we determined  the frequencies the current oscillations which have the following 

form
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IV. Conclusion 
In this paper are shown that in low-dimensional conducting media in external electric and 

perpendicular to it magnetic fields the high-frequency rising wave is excited. The transverse and longitudinal 

dimensions    at which energy is emitted of are determined. The values of the electric and strong magnetic fields 

are found at which the radiation of energy takes place. The frequencies of the excited wave are calculated. When 

a current begins to oscillate in a circuit, inductive resistance arises, and the real part of the impedance oscillates 

with a certain period. The injection at the contacts of the medium enhances the rising of the wave. A conductive 

medium with the specified dimensions can be a source of radiation energy.  
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