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Abstract 
Conditions under which a density gradient of wave energy can lead to particle trapping in a plasma, have been 

discussed. It has been shown that such trapping can give rise to a new series of side band instabilities with a 

frequency separation proportional to the wave field amplitude in contrast to the usual side band instabilities due 

to phase trapping (where the frequency gap is proportional to E ) 
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I. Introduction 
The nonlinear effects of plasma are extremely diverse and it is important to access the various types of 

effects in a plasma wherever the collective fields act on the individual particles. One of the important problem is 

the nonlinear trapping of the particles by waves.  

The effect of phase trapping of resonant particles leads to nonlinear saturation in damping of waves 

[1,2].The excitation of side band instabilities is due to coherent oscillations of these particles [3]. Effect of such 

particles trapped in an electromagnetic wave is responsible for a series of resonances for an electrostatic wave 

[4]. Similar resonances are possible for a whistler wave by the particles trapped in an electrostatic wave 

[5].However, phase trapping of particles may not be possible if the waves are incoherent and also in the 

presence of wave turbulence. 

On the other hand, the density gradient of RF field has been used to increase the confinement of hot 

plasma in a mirror machine [6].Following the similar argument we have shown here that even in the absence of 

phase trapping, the particles can be trapped due to the density gradient of the wave energy under different 

conditions. The general expression for the bounce frequency is obtained. 

 

II. Mathematical model 
Let us consider the motion of an electron in a plasma containing high frequency electric field in equilibrium. 

This equilibrium electric field may be due to an externally applied pump as for example in laser produced 

plasmas or due to the presence of turbulence. Westart with magnetic field free plasma, for simplicity, and effect 

of presence of magnetic field will be discussed thereafter. The equation for motion of an electron is 

   
2

2

i t kxd x
m eE x e

dt

 
  [1] 

where m and e  denote mass and charge of electron, x is its position co-ordinate at time t ,  and k  are the 

frequency and wave number of the oscillating field. The variation of wave amplitude is supposed to be weak 

compared to the fast oscillations, so that  E x can be expanded in terms of Taylor series around 0x as 
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It is easy to show that the averaged orbit of electron is described by 
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where the amplitude  E x has been assumed almost constant in the process of averaging over the 

fastoscillations. The zero order  0E  velocity of the particle is assumed to be zero. Without any loss 

ofgenerality  can be put as a Doppler shifted frequency to account the initial translatory motions. 

The force on the right hand side of equation [2]is well known ponderomotive force and is in the direction of 

negative gradient of  
2

E x . This force is responsible for driving the particle out of the region of high field 

energy density [7-9]. However, in general, the situation may be different as discussed later in this manuscript. 

Using the definition of energy density[10] 
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,  

we can write equation [3] as  
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and 
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where  ,D k  is the dielectric constant of the medium. 

We immediately notice that equation [4] is nothing but description of motion of a particle of mass  and charge

 , where the wave energy density W plays the role of effective potential. Evidently for a positive effective 

charge, the particle is accelerated towards the decreasing field energy density W and decelerated towards 

increasing W . Under proper conditions some of the particles can get trapped inside a potential well. Similarly 

for a negative charge, some particles will be trapped on the potential hill. The explicit form of the energy 

conservation law 
2

1

2

dx
W

dt
  
 

  
 

[6] 

(  is a constant of motion and represents the total particle energy), shows it more clearly. The condition for the 

trapping turns out to be W W     . 

 In a turbulent plasma are can expect effective wells and hills of wave energy. The wells can be the 

regions inside cavitons [11], envelope holes [12] and intermediate regions of series of solitons. The region of 

confined hot plasma by RF field in reference [6] is also an example of such a well. The hills are the envelope 

soliton like structures. Trapped particles with a finite kinetic energy will start oscillating back and forth and can 

give rise to a series of resonances. We illustrate this point in the following manner: Consider a particle with 

positive charge. Such a particle can be trapped in the bottom of the potential well  W x . To the lowest order, 

we write  
2

2
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2
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(where 0W is the depth of the well at 0x  , is a constant and 

represents the characteristic width of the well). Now equation [4] takes the form of a harmonic oscillator given 

by 
2
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02
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dt
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which has a solution 
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and 0x , 0v are the constants of integration of equation [7].The bounce frequency of the trapped particle is 

2

0
B

W



 [9] 

Thus we see that the particle oscillates back and forth about its mean position inside the potential well. The 

bounce frequency of these oscillations is proportional to the square root of field energy density  
2

0W E x

in contrast to the case of  phase trapping where it is proportion to the square root of the wave amplitude. The 

average trajectory of the particle is defined in laboratory frame by 

   0 0 Bx t x v t A Sin t     [10] 

3. Distribution 

Let us now consider the propagation of a small amplitude test wave in a warm plasma with initial distribution 0f

, and the particle orbits given by equation [10]. The Vlasov equation gives the change in the particle distribution 

as  

     0,

t
i t qx t fe

f E q e dt
m v

  
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 [11] 

Using equation [11] and the Poisson equation . 4E e fdv    , one can arrive at a self consistent dispersion 

relation 
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where dv refers to velocity integration 0, 1, 2,.....N    and  ,NJ q A are Bessel functions of the first 

kind,  ,q  represents the test wave and 0n the plasma density, p
 is the plasma frequency.In obtaining 

equation[10], a large time average is taken and phase mixing is accounted. 

 For initial distribution 0f which is sum of large number of relatively cold particles and a bunch of 

streaming energetic and resonant particles, it can be shown that the perturbation is supported by the former and 

obeys the dispersion relation 

  2 2 2 2, 3 0p TD q q v     [13] 

where T
v is the thermal velocity of the moderately cold plasma electrons. Here the contribution of energetic 

particles to the real part of dispersion is assumed to be negligible. 

Using Landau prescription for the velocity integration of equation [12] around the singular points i.e., 

0 B
qv N  the growth rate  , of the test wave can be obtained,  
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where ,
B

r

N
v

q


  and n is the density of streaming energetic electrons. 

The growth rate  clearly shows that the test wave experiences resonances at frequencies which are separated 

by BN . This situation is similar to the case of particles which are phase trapped. The trapped particles oscillate 

with frequency B
 and any wave that Doppler shifts to this frequency can resonate with them. Depending upon 

the particle population, wave grows or decays. Therefore, we expect, in the presence of a large amplitude 

turbulence, a beam of energetic particles may trigger electrostatic fluctuations at the side band frequencies 

separated by BN . 

Let us now turn to a magnetoplasma where the field  E x of the turbulence is normal to the ambient magnetic 

field. The equation of motion [4] is still valid but with a modified effective charge  as  
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[15]  

where  0
c

eB

mc
  is the cyclotron frequency of the particles and c is the velocity of light. For

2 2

c
  , the 

charge   remains positive and the above mentioned analysis still goes through. But different situation arises for
2 2

c
  . The sign of   now inverted. Actually even for

2 2

c
  ,  can assume a negative sign if the 

background turbulence is due to negative energy waves (in that case  21
, 0D k 

 

 
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). The direction 

of ponderomotive force term is then inverted and the particle are pushed out of the potential well and will be 

confined around the peak of the potential hill. So that we should write  
2 2

0 1
2

x
W x W

 
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( 0W is now 

the height of the hill), and it is easy to show that the particle trajectory can be defined in the same way as earlier 

with the new definition of equation [15]. In fact, it has been shown self-consistently in the case of whistlers that 

the plasma particles indeed tend to be confined in high energy density regions of the turbulence. The growth and 

dispersion of a test wave can be obtained in the same way and following the procedure of reference [5]. It is 

important to note that the direction of the ponderomotive force is independent of the sign of the electric charge, 

therefore, both electrons and ions tend to be trapped in the same region for high frequency turbulence 

 p
  .However, for low frequency turbulence 

2 2 2

ci ce
    ( ,ce ci  electron and ion 

gyrofrequencies), electrons and ions feel the force in opposite direction. The difference, however, is not due to 

the sign of the charge but due to the different charge to mass ratio. 

Thus whole picture of trapping process due to wave turbulence becomes very simple when the wave energy W

and the effective charge eff
 are appropriately known. The bounce frequency of trapped particle defined in 

equation [9] can be easily written in the explicitly form as  
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where appropriate sign is chosen in such a way that the bounce frequency is real. D
 is the Debye length. 0n T is 

the thermal energy density of the plasma .From equation [16], it is easy to obtain the bounce frequency for any 

mode by choosing proper  ,D k   and the energy density gradient. In case of electrostatic waves in the 

absence of magnetic field, the bounce frequency will be  
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And for high frequency electromagnetic wave turbulence, the corresponding frequency is 
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In case of magnetoplasma containing whistler turbulence  ci ce    , the bounce frequency is given by 
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III. Conclusion 

In conclusion, by appropriate choice and the sign of the potential  W x , one can study the effect of 

trapping which may lead to growth of waves at side band frequencies, with frequencies gaps proportional to 

square root of turbulent energy density. Due to this, there may be selective amplification of the waves which 

may look like spikes in the wave noise spectrum. The coherent harmonic generation of the waves is possible 

even from a turbulent plasma. 
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The trapping discussed in this paper is different from the phase trapping that we come across quite often in the 

literature. The phase trapping is possible in case of waves which are essentially monochromatic or where auto 

correlation time is greater than cross correlation. In that case, the frequency of trapped oscillation is
eEk

m
 (k

is wave number) which is proportional to the square root of the amplitude of the wave. The regions of trapping 

also depends upon the sign of the charge. 

Whereas the trapping discussed here, is independent of the phases of the waves. For electromagnetic waves

 p
  , the phase trapping is not possible even when the waves are coherent, but the density gradient 

trapping is possible. The trapping frequency [equation 9] is proportional to square root of the energy density. 

The regions of trapping do not depend upon the electric charge of the particleand the particles of opposite 

charge can be trapped in the same region. However, the parameter [defined in equation 15] plays the role of 

effective charge and can distinguish the regions of trapping depending upon its sign. 

The results obtained in our paper are quite general but the effect of anharmonicity should be taken into account 

if the realistic wave energy density W differs appreciably from

2 2

0 1
2

x
W W

 
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 
. 

Finally, we would like to say, that the effect of the turbulence discussed here, plays an important role in the 

study of detailed dynamics of plasma.  
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