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Abstract: The energetic and ground state structures of the elemental metals combined with density- functional 

theory and the local density approximation now able not only the computation of the cohesive energy of the 

elemental metals but also the particular symmetry of the ground-state lattice Previously it has been shown that a 

model based on the electron gas explains the trends in the cohesive energies of the elemental metals. In this 

paper we show that a simple extension of this uniform electron gas model also explains the trends in the elastic 

constants of the simple and transition metals and binary alloys at different concentration 
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I. Introduction 

The last two decades have seen a great advance in our ability to compute the energetic and ground – 

state structures of the elemental metals. The digital computer combined with density- functional theory and the 

local density approximation now able not only the computation of the cohesive energy of the elemental metals, 

but also the very small differences in energies that determine the particular symmetry of the ground state lattice. 

Our ability to compute such detailed properties continues to expand rapidly and is paying great dividends. 

However, as remarked by Wigner and Seitz in their famous quote concerning a great calculating machine. "It 

would be preferable instead to have a vivid picture of the behavior of the wave functions. A simple description 

of the essence of the factors which determine cohesion and an understanding of the origins of variation in 

properties from metal to metal." It is the purpose of this paper to contribute to the qualitative picture envisioned 

in the quote. Previously it has been shown that a model based on the electron gas explains the trends in the 

cohesive energies of the elemental metals. In this paper we show that a simple extension of this uniform electron 

gas model also explains the trends in the elastic constants of the simple and transition metals. 

 

FORMULISM: 

The Jellium model of the electron gas has long been used to understand the qualitative trends in the 

plasma ion and electron hole excitation spectra of elemental metals. The calculated spectra agree semi 

quantitatively with experiment for simple metals. And are qualitatively useful for the transition metals. One is 

used to thinking that the excitations of quantum systems are harder to predict than ground-state properties. From 

this point of view. It is surprising that the Jellium model has not provided a similarly simple explanation for the 

trends in the ground state energetic of the elemental metals. For non-uniform systems the background density 

varies with position and the new potential gives rise to force. The total external electron potential Vext (r) is 

given explicitly by 

   Vext (r) = (r) + V0b (г)/. (1) 

Where (r) is the usual electrostatic potential. The strength of the ad hoc interaction V0 is uniquely fixed by the 

condition of zero forces for the uniform state and is given in terms of the energy of bulk Jellium and  is the 

uniform equilibrium electron density. 
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The theory of ideal metals can be understood by starting with an electron gas that has a uniform 

electron and background density . The zero- force condition is achieved by introducing an additional ad hoc 

electron – ion potential. Which at a point r is proportional to the background density at that point. The strength 

of the additional potential is determined by the zero-force condition. And is given by 

   V0 = ( ejell / ). (2) 

Here ejell is the energy per electron in uniform Jellium of density . 

  The Born- Oppenheimer approximation yields the following many- body Hamiltonian for the 

unmodified theory of ideal metals: 

H  = – 
2 /2m  

i i

2
 + e²/2   


ji

332

ji 'rrdd2/err/1 [b(r')/r – r']  

 – e²   rd3
[b (г)/ri – rj] +V0i [b (ri)/] (3) 

  A density function for the energy can also be used to describe the theory of ideal metals in the 

Born – Oppenheimer approximation. Formally. 

  E[b.b] = Ts[e] +   ]'r–r/)'r()r([rd'rd 33
 

   + Exe[e] + Eei [e . [b] (4) 

Here,  = e – b denotes the net charge. Exc denotes the exchange – correlation energy, while Ts denotes the 

kinetic energy of non-interacting electrons. The second term on right hand side denotes the classical 

electrostatics energy. Finally, the last term on the right hand side models electron-ion interactions beyond the 

classical electrostatic interaction. It is expressed, for the unmodified ideal metal as 

   Eei [e.b] = V0/  rd3
b (r) e(r). (5) 

We modify the theory of ideal metals by introducing the following. More general form for the electron ion 

interaction. 

   Eei [e.b]  rd3
 e(r) [V0 {b(r) /} {1 – ½2 {e (r) – )2}] (6) 

Here  is an ad hoc parameter that is chosen once to give agreement with experiment for all metals. 

Solution for the energy can be obtained from the energy – density function by following the procedure of Kohn 

and Sham. The self- consistent equations with an effective potential Is therefore given as 

   Eeff (r) = Exc / e + Eei [e . b] / e (7) 

Density – functional theory can also be used to compute the response of the electron gas to a perturbation. The 

screened potential density linear response function can be obtained in the random- phase approximation Shore et 

al.  

  sc(q)   0(q)/[1–(8/q2 + 2Exc/e
2 | +2 Ee/2 Ee/e

2 | )0(q) (8) 

 

Here 0 is the Lindhard function. The functional derivative of the exchange – correlation energy can be 

evaluated in the local-density approximation, as 

   [2Exc/e] |  = d2/de
2 {eexce)} |  (9) 

Here, exc denotes the exchange- correlation energy of Jellium per unit volume. The functional derivative for the 

electron – ion interaction can be evaluated from (4.6) 

   2Ee–i / e |  = V0b / d
2 / de

2
 {e[1 – 1/22 (e – )2 ] (10) 

If the transition metal is compressed, the rigid positive backgrounds of the various Wigner-Seitz cells overlap 

and the background becomes inhomogeneous, the Wigner-Seitz cell centered about the origin of coordinates and 

define the characteristic function as 

   (r) = 1    r    Wigner-Seitz cell 

and 

   (r) = 0     r    Wigner-Seitz cell (11) 

In the following. We will consider background densities that can be formed as 

   b(r) = Ri  (r – Ri) (12) 

Where Ri denotes the set of vectors. 
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Now the change in energy to second order E(2) is obtained by comparing three states. Which is 

   Eeq () = N [ejell () + V0] (13) 

Where N is the total number of electrons. 

The extraction of elastic constants is straightforward once the energy changes have been calculated. The change 

in energy is related to the strain epsilon ij and the elastic constants Cijkl . via  

   E = ½ Cijkl ij kl (14) 

We computed the energy changes for the fcc and bcc cubic metals using following strains: 
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 (15) 

The axes of strain tensor are aligned with the set of [100] direction of the cubic crystal. These strains over 

determine C11 . C12 and C44. 

 

Vartsos. 1980; had derived an expression for bulk modulus of mixed systems in terms of those of constituent 

ionic compounds. Their molar volumes, and their molecular fractions. This is given by 

  B = [{1+ (V2/V1 – 1)} / {1 + (B1V1 / B2V1 – 1)}] B1 (16) 

In this expression  is the molecular fraction of compound 1 having bulk modulus and molar volume B1 and V1, 

respectively, B2 and V2 are the bulk modulus and the molar volume of compound 2, respectively. B is the bulk 

modulus of the mixed system. This expression yields very satisfactory results. Moreover from the above 

expression we get the values for bulk modulii such. Not the three independent elastic constants C11 . C12 and C44. 

Which are sometimes necessary to enable one to predict the values of Young’s modulus. Poisson's ratio, etc. in 

different directions. 

 The aim of this work Is to derive expression to predict the values of C11 . C12 and C44 for mixed systems 

when those for constituent ionic compounds and their molecular fractions are known. 

 Giri and Mitra. 1985; have derived an expression for Debye temperatures rs(pq) of mixed system rs(pq) 

in terms of those r and s of ionic compounds r and s having molecular fractions p and q respectively, which is 

 

   Mrs(pq)2
rs(pq) = pMr 2

r + q Ms 2
s (17) 

 Here Mrs(pq) = pMr + qMs . Mr and Ms are the molecular weights of the mixed system, compound r, 

and compound s, respectively. They have shown that the above equation is valid for number of mixed system at 

all proportions. For the cubic lattices the nearest neighbor central constant f1 is related to Debye temperature  

through the relation. Shirly, 1975; 

   f1 = Y M2 (18) 

Where. 

   Y = C K2 A / 9  2; 

A is the atomic mass unit, M the mass, C is a constant depending on the lattice type having value 2.515 for f. c. c 

lattices. 

  If f1
rs(pq) . f1

r . f1
s are the nearest neighbor central force constants for the mixed system, for 

compound r, and compound s. We may therefore write 

   f1
rs(pq) = Y Mrs(pq)2

rs(pq) (19) 

   f1
r = Y Mrr

2 (20) 

   f1
s = Y Mss

2 (21) 

   f1
rs(pq) = P f1

r + qf1
s (22) 

Similarly. 

   f2
rs(pq) = pf2

r + q f2
s (23) 

   f2
rs(pq) = pf3

r + q f3
s (24) 

So we get three equations for three types of force constants for mixed systems in terms for these constituent 

ionic compounds. 
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 According to Niu and Shimizu, force constants f1 . f2 and f3 are related to elastic constants C11 . C12 and 

C44 for f.c.c lattice through these three equations. They are 

   f1 + 3 f3 = a C44 . (25) 

   f1 + 4 f2 – f3 = a (C11 – C44) (26) 

   2(f1 + f3) = a (C12 + C44) (27) 

Here a is the lattice constant. For mixed system it can be expressed as  

   ars(pq) C44
rs(pq) = f1

rs(pq) + 3 f3
rs(pq) (28) 

   ars(pq) C44
rs(pq) = p f1

r + q f1
s + 3p f3

r + 3qf3
s 

    = p( f1 + 3 f3
r) + 3q( f1

s + 3qf3
s) (29) 

Finally. 

   ars(pq) C44
rs(pq) = p ar C44

r – q as C44
s (30) 

C44
r and C44

s are the values of C44 for ionic compounds r and s having lattice constants ar and as respectively. 

C44
rs(pq) is that of the mixed system. ars(pq) is the lattice constant of the mixed system with similar calculation for 

C11 and C12 we get 

   ars(pq) C11
rs(pq)  parC11

r – qasC11
s (31) 

   ars(pq) C12
rs(pq)  parC12

r – qasC12
s (32) 

  

Thus we can derive C11, C12 and C44 for mixed systems. If the constituent ionic compounds along with their 

lattice constants are known. These parameters of the reference binary alloys are not easily available. So we have 

used Vegard’s law. Once by knowing the value of C11, C12 and C44 the value of B can be calculated as  

   B = (1/3) (C11 + 2C12)  

 In the present work we have calculated the values of C11, C12 and C44 for the reference alloys Na-K; K-

Cl; K-Br system at different concentration, which are tabulated in the table 1-3. 

 

TABLES-1 

ELASTIC CONSTANTS OF Na-K AT EQUI-CONCENTRATION 

q/2Kf values of elastic constants (1010N/m2) Values of bulk Modulii B (1010N/m2) 

C11 C12 C44 Calc. (Present) Calc. (1.) 

0.00 3.962 0.687 0.607 1.782 1.766 

0.50 3.822 0.657 0.581 1.716 1.692 

1.00 3.702 0.632 0.554 1.654 1.631 

1.50 3.578 0.612 0.531 1.596 1.593 

2.00 3.432 0.601 0.522 1.573 1.542 

 

TABLES – 2 

ELASTIC CONSTANTS OF K-CI AT EQUI-CONCENTRATION 

q/2Kf values of elastic constants (1010N/m2) Values of bulk Modulii B (1010N/m2) 

C11 C12 C44 Calc. (Present) Calc. (1.) 

0.00 14.201 6.354 7.234 8.890  

0.50 13.365 6.001 6.935 8.732  

1.00 12.234 5.932 6.003 8.695  

1.50 11.759 5.634 5.443 8.235  

2.00 11.663 5.320 5.213 8.125  

 

TABLES -3 

ELASTIC CONSTANTS OF K-Br AT EQUI-CONCENTRATION 

q/2Kf values of elastic constants (1010N/m2) Values of bulk Modulii B (1010N/m2) 

C11 C12 C44 Calc. (Present) Calc. (1.) 

0.00 18.885 9.334 6.373 4.321  

0.50 17.732 9.363 6.125 4.221  

1.00 17.321 9.321 5.987 4.132  

1.50 16.421 9.233 5.635 4.110  

2.00 15.321 9.121 5.334 4.009  
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II. Conclusion 

It has been shown that a model based on electron gas explains the trends in the cohesive energies of 

elemental metals . The simple extension of uniform electron gas model explains the trends in the elastic 

constants of the simple and transition metals. By this methods the various elastic constants of some metals have 

been calculated which agrees well with the data available in literatures within the range of experimental errors. 

This validates the efficiency and importance of the methods.  
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