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Abstract:  

In this article, the authors have discussed the Alice and Bob experimental set-up for the quantum teleportation, 

giving a detailed step-by step mathematical explanation of each unit. Quantum teleportation of a qubit requires 

the creation of an entangled quantum state between the sender’s (Alice) and the receiver’s (Bob) shared quantum 

state/s. At the end of this experiment, actual measurements of the Alice’s share of quantum information are to be 

taken and shared with Bob via a classical communication channel. The teleportation is expected to open up a 

whole new regime of quantum communication, data encryption to be one of its applications.  
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I. Introduction  
In 1935, the “EPR paradox” (Bell 1964; Feynman 1971; Watson 2022) put a question mark on the 

Heisenberg’s uncertainty principle yielding a hypothetical misconception when the information regarding the 

entangled quantum particles can be transferred over two different locations through a quantum channel at a speed 

greater than the velocity of light. The Bell-test-experiment also revealed that any quantum information cannot be 

teleported without incorporating a classical communication channel between the sender and the receiver. Hence 

resolving the EPR paradox that the teleportation can happen at a velocity greater than the velocity of light leading 

to acquiring more quantum information than is permissible as per the Heisenberg’s principle. In this paper, the 

authors have made an attempt to explore the quantum teleportation starting from developing an understanding of 

the idea of teleportation using a simple model.  

 

II. Quantum Circuit for Teleportation  

 
Let’s begin with an understanding of the problem in hand. A qubit |A𝑇⟩ is to be teleported from some 

source to some destination (see Figure 1). Let’s name the source as Alice and the destination as Bob. Before 

teleporting the qubit |A𝑇⟩, Alice and Bob generate an “EPR pair” (Bell 1964) (also called “Bell state” (Watson 

2022), explained below) by utilizing their one qubit each (|A𝑒⟩ and |B𝑒⟩). The qubit |A𝑒⟩ is maintained by Alice 

and the qubit |B𝑒⟩ is maintained by Bob wherever the two are residing in the universe. Before proceeding further, 

the authors would like to emphasize that a knowledge of linear algebra is a prerequisite to understand the 

mathematics involved in quantum computing (Aitken 2017; Lipschutz and Lipson 2009; Nielsen and Chuang 

2010).   

 

An EPR pair is a maximally entangled qubit pair which cannot be written as a linear combination of its 

subsystem states. The density matrix of an entangled system has finite off-diagonal terms signifying coherence. 

Figure 2 shows the quantum circuit to generate the EPR pairs or the Bell states. For different values of the input 

pair of qubits |Ae , Be⟩ = |00⟩, |01⟩, |10⟩, and |11⟩, the corresponding Bell states |βAe,Be⟩ obtained at the output in 

Figure 2 are  |β00⟩  =  
(|00⟩+|11⟩)

√2
 , |β01⟩  =  

(|01⟩+|10⟩)

√2
 , |β10⟩  =  

(|00⟩ −|11⟩)

√2
 , and  |β11⟩  =  

(|01⟩−|10⟩)

√2
 respectively.    

 

Continuing with understanding the Figure 1, let the Bell state generated by Alice and Bob in the past be 

 |β00⟩. Alice’s task is to now teleport another qubit  |A𝑇⟩ to Bob at some point of time in future. Alice is not aware 

of the value of this third qubit |A𝑇⟩ nor can she make any measurement to determine the same because she does 

not have any copy of |A𝑇⟩ due to no-cloning theorem of the quantum states. The qubit |A𝑇⟩ can be a pure state or 
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a superposition state which has infinite possible values. The information qubit |A𝑇⟩ is made to interact with Alice 

share of entangled qubit |A𝑒⟩ as shown in Figure 1. The quantum states at various stages in Figure 1 are elaborated 

below: 
|𝐴𝑇⟩ = |𝛹⟩ = 𝛼|0⟩ + 𝛾|1⟩   (1) 

Where 𝛼 and 𝛾 are complex numbers such that |𝛼|2 and |𝛾|2 are the probabilities of |𝐴𝑇⟩ being in state |0⟩ and 
|1⟩ respectively. 

|β00⟩  =  
(|00⟩+|11⟩)

√2
    (2) 

|𝛹0⟩ = |𝐴𝑇⟩ ⊗ |β00⟩ = (𝛼|0⟩ + 𝛾|1⟩ ) ⊗
(|00⟩+|11⟩)

√2
   (3) 

|𝛹0⟩ =
1

√2
(𝛼|0⟩ ⊗ (|00⟩ + |11⟩) + 𝛾|1⟩ ⊗ (|00⟩ + |11⟩)) (4) 

After the CNOT Gate, the target qubit (which is Alice qubit |A𝑒⟩ in the entangled qubit in the EPR pair or the Bell 

state |βAe,Be⟩) gets inverted whenever the control bit |A𝑇⟩ is |1⟩, i.e.,  

|𝛹1⟩ =
1

√2
(

𝛼|0⟩ ⊗ (|00⟩ + |11⟩) + 𝛾|1⟩ ⊗ (|10⟩ + |01⟩)

↑                                           ↑            ↑           ↑  
  𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0       𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1      |A𝑒

̅̅ ̅⟩       |A𝑒
̅̅ ̅⟩

)    (5) 

After the Hadamard Gate, the information qubit |A𝑇⟩= 𝛼|0⟩ + 𝛾|1⟩  which is now a substate of the quantum state 

|𝛹1⟩, gets modified to  𝛼|0⟩  →  
𝛼

√2
(|0⟩ + |1⟩) and 𝛾|1⟩ =

𝛾

√2
(|0⟩ − |1⟩) . Hence, |𝛹2⟩ becomes: 

|𝛹2⟩ =
1

√2
(

𝛼

√2
(|0⟩ + |1⟩) ⊗ (|00⟩ + |11⟩) +

𝛾

√2
(|0⟩ − |1⟩) ⊗ (|10⟩ + |01⟩))  (6) 

Simplifying Eqn. (6): 

|𝛹2⟩ =
1

2
[𝛼(|000⟩ + |011⟩ + |100⟩ + |111⟩) + 𝛾(|010⟩ − |110⟩ + |001⟩ − |101⟩)]  (7) 

In all the three-qubit states in Eqn. (7), the first qubit corresponds to |A𝑇⟩, the second qubit corresponds to |A𝑒⟩ , 
and the third qubit corresponds to |B𝑒⟩. The linear algebra allows the complex constants 𝛼 and 𝛾 to be shifted to 

any of the three qubits. Hence Eqn. (7) can be rewritten as: 

|𝛹2⟩ =
1

2
[|00⟩𝛼|0⟩ + |01⟩𝛼|1⟩ + |10⟩𝛼|0⟩ + |11⟩𝛼|1⟩ + |01⟩𝛾|0⟩ − |11⟩𝛾|0⟩ + |00⟩𝛾|1⟩ − |10⟩𝛾|1⟩]  (8) 

Eqn. (8) can be re-adjusted by grouping the terms as per first two qubits which belong to Alice: 

|𝛹2⟩ =
1

2
[|00⟩ (𝛼|0⟩ + 𝛾|1⟩) + |01⟩ (𝛼|1⟩ + 𝛾|0⟩) + |10⟩ (𝛼|0⟩ − 𝛾|1⟩) + |11⟩ (𝛼|1⟩ − 𝛾|0⟩)]  (9) 

Eqn. (9) has four terms: each term has first two qubits belonging to Alice, followed by Bob’s qubit which 

is now in a superposition state. Table 1 details the bifurcation of each of the four terms. At this point in Figure 1, 

there are two measurement devices M1 and M2 which detect the two qubits belonging to Alice, i.e., |𝐴𝑇⟩ and |𝐴𝑒⟩ 
respectively. The double lines indicate classical wires which take this information to Bob. When |𝑀1𝑀2⟩ = |00⟩, 
which is the first term in Eqn. (9), Bob receives (𝛼|0⟩ + 𝛾|1⟩) which is the original qubit that Alice had to teleport 

to Bob. The classical information |𝑀1𝑀2⟩ = |00⟩ communicated to Bob conveys that he has received the 

teleported qubit in its original form. When Bob receives the classical information that measurements on Alice 

qubits has yielded |𝑀1𝑀2⟩ = |01⟩ , then teleported qubit received by Bob is (𝛼|1⟩ + 𝛾|0⟩) which is not the 

original qubit that Alice had to teleport to Bob. The classical information |𝑀1𝑀2⟩ = |01⟩ tells Bob to apply an X-

Gate to the teleported qubit received by him, in order to retrieve the original teleported qubit. The third term in 

Eqn. (9) submits the classical information  |𝑀1𝑀2⟩ = |10⟩ to Bob. Bob now needs to apply a Z-Gate to extract 

the teleported information sent to him. And lastly, if |𝑀1𝑀2⟩ = |11⟩ then Bob has to apply an X-Gate followed 

by a Z-Gate to recover the teleported info. After taking the measurements, the quantum state is |𝛹3⟩ which is the 

same as |𝛹2⟩. Afterapplying correction matrices/Gates, the quantum state |𝛹4⟩ =  |𝛹⟩ = |𝐴𝑇⟩. Hence the 

teleportation mission is accomplished! 

 
Figure 1: Quantum Circuit showing three qubit system (three single lines), with upper two qubits (|A𝑇⟩ and 

|A𝑒⟩) correspond to Alice and the third (|B𝑒⟩) corresponds to Bob. The double lines show classical wires, the 

rectangular boxes represent Hadamard Gate (orange box), measurement instruments (M1 and M2 in blue boxes), 

Pauli’s X-Gate (green box), and the Pauli’s Z-Gate (yellow box). The purple circle represents the CNOT gate. 
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Figure 2: Quantum Circuit for generating Bell states consists of a Hadamard Gate (the orange box H) and a 

CNOT Gate (the purple circle with a plus sign inside it, signifying the XOR operation). The input qubits are 

|A𝑒⟩ and |B𝑒⟩ and the output state is a maximally entangled state |βAe,Be⟩. 

    
Table 1: Details of the four terms of Eqn. (9). Note that Matrix and Gate terms are used interchangeably. 

 
S. No. Term Alice qubits 

|𝑀1𝑀2⟩ 
Bob qubit How to extract the teleported qubit: 

Matrix/Gate to be applied on Bob qubit 

1. |00⟩ (𝛼|0⟩ + 𝛾|1⟩) |00⟩ (𝛼|0⟩ + 𝛾|1⟩) Apply [I] matrix; (I=identity matrix)  

2. |01⟩ (𝛼|1⟩ + 𝛾|0⟩) |01⟩ (𝛼|1⟩ + 𝛾|0⟩) Apply X-Gate/matrix  

3. |10⟩ (𝛼|0⟩ − 𝛾|1⟩) |10⟩ (𝛼|0⟩ − 𝛾|1⟩) Apply Z-Gate/matrix 

4. |11⟩ (𝛼|1⟩ − 𝛾|0⟩) |11⟩ (𝛼|1⟩ − 𝛾|0⟩) Apply X-Gate followed by X-Gate 

 

III. Discussion  

 
The authors have discussed the mathematics of quantum teleportation in detail with suitable diagrams 

giving emphasis on the tensor of the qubits. The step by step evolution of the three qubits has been portrayed very 

elegantly. The authors are working very diligently towards the hardware implementation of Figure 1 and shall 

publish the same in a separate paper. 

 

References  

 
[1].  Aitken, A.C.: Determinants and matrices. Read Books Ltd (2017) 
[2].  Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Phys. Fiz. 1, 195 (1964) 

[3].  Feynman, R.P.: Lectures on gravitation. Non-consecutive pag. (1971) 
[4].  Lipschutz, S., Lipson, M.L.: Linear algebra. (2009) 

[5].  Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge university press (2010) 

[6].  Watson, G.S.: Bell’s theorem refuted as EPR and locality prevail, (2022) 
 


