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Abstract 
This project explores whether pulsars — rapidly rotating neutron stars with intense magnetic fields — can 

accelerate particles to ultra-high-energy cosmic ray (UHECR) levels, defined as energies greater than 10^18 eV 

using Goldreich- Julian Potential Model. By modeling the electric potential generated by spinning magnetized 

neutron stars and calculating the maximum energy for protons and iron nuclei, we tried to identify which types of 

pulsars are viable UHECR sources. To compare the simulated pulsar acceleration values with observed Ultra-

High-Energy Cosmic Ray (UHECR) data, we  look at typical UHECR energy ranges detected by  the Pierre Auger 

Observatory The analysis suggests that none are capable of producing cosmic rays near this threshold, even if if 

heavy nuclei are accelerated. Even extreme pulsars modeled in this study fall short of the UHECR threshold,  

Heavier elements (like iron) reach higher energies due to higher charge (Z), but still not enough to account for 

the >10¹⁸ eV events.   Pulsars might contribute to lower-energy cosmic rays. UHECRs likely originate from 

extragalactic sources, such as active galactic nuclei (AGN), gamma-ray bursts (GRBs), or interactions involving 

supermassive black holes. 
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I. Introduction 
Cosmic rays are high-energy particles (mostly protons and atomic nuclei) that travel through space and strike 

Earth’s atmosphere. Their origins are typically divided into three categories:[1]-[5],[26],[27] 

• Galactic Cosmic Rays (GCRs): Believed to come from supernova remnants (SNRs) in our Milky Way 

galaxy. Shock waves from supernova explosions accelerate particles to near-light speeds (diffusive shock 

acceleration).[6,7],[28] 

• Extragalactic Cosmic Rays: Likely from active galactic nuclei (AGN), quasars, and other high-energy 

phenomena beyond the Milky Way.[8] 

• Solar Cosmic Rays: Emitted by the Sun, especially during solar flares and coronal mass ejections. These 

are lower in energy than GCRs or extragalactic rays.[9]-[12],[29] 

Ultra-high-energy cosmic rays (UHECRs) are a mystery — they have energies above 1018 eV and their sources 

are still debated[13]-[17] 

 

Ultra-high-energy cosmic rays (UHECRs)  

Ultra-high-energy cosmic rays (UHECRs) are subatomic particles from outer space that reach Earth with 

energies exceeding 10¹⁸ electronvolts (eV)—millions of times more energetic than the particles produced in 

human-made particle accelerators like the Large Hadron Collider. Their exact sources remain unknown. However, 

theories suggest they may come from extreme astrophysical environments such as active galactic nuclei (AGN), 

[18]-[20]gamma-ray bursts (GRBs), or magnetars. UHECRs are primarily protons and atomic nuclei (such as 

helium, carbon, or iron), not photons or electrons. They are incredibly rare—about one particle per square 

kilometer per century. Ground-based observatories like the Pierre Auger Observatory and the Telescope Array 

detect them by observing the particle showers they produce when hitting Earth’s atmosphere.[21] Their high 

energy makes them hard to trace back to their sources because they are deflected by intergalactic magnetic fields. 

Also, interactions with cosmic microwave background radiation limit how far they can travel (known as the GZK 

cutoff).[22]-[24] UHECRs are important in both astrophysics and particle physics. They help scientists probe: 

• The most energetic processes in the universe. 

• The structure and strength of cosmic magnetic fields. 

• Fundamental physics at energy scales beyond those accessible on Earth. 
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Pulsars  

Pulsars are highly magnetized, rotating neutron stars that emit beams of electromagnetic radiation from 

their magnetic poles. As these stars spin, their radiation beams sweep across space—much like the beam from a 

lighthouse—creating regular pulses of light that can be detected by radio telescopes on Earth.   Pulsars form from 

the collapsed core of a massive star after it explodes in a supernova. What remains is a dense neutron star, only 

about 10–15 km wide but with a mass greater than that of the Sun. Pulsars can rotate incredibly fast—up to 

hundreds of times per second—due to conservation of angular momentum during collapse. They possess 

extremely strong magnetic fields, trillions of times stronger than Earth’s.[25] 

 

Can Pulsars Power Ultra-High-Energy Cosmic Rays? 

Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the universe, 

reaching energies beyond 10^18 eV. Their astrophysical origins remain uncertain. Pulsars, which are neutron stars 

with extreme magnetic fields and rapid spin, are considered potential sources due to their capacity to generate 

large electric potentials. This research investigates whether pulsars can feasibly accelerate particles to UHECR 

energies, using theoretical modeling and simulations. 

 

Background 

Pulsars emit strong electromagnetic radiation and can induce significant electric potentials due to their rotation 

and magnetic fields. The Goldreich-Julian model estimates the potential as: 

 

 
 

where B is the magnetic field strength, R is the stellar radius, Ω is the angular frequency, and c is the speed of 

light. The maximum particle energy is then E_max = ZeΦ. Previous studies have shown that under certain 

conditions, pulsars may accelerate particles to near-UHECR levels, especially heavy nuclei such as iron. 

 

II. Methodology 
Using the Goldreich-Julian potential model, we calculate the maximum particle energy for a sample of 

four pulsars. We consider protons (Z=1) and iron nuclei (Z=26). Simulations are performed using Python, with 

values for B and P taken from well-known pulsars or modeled estimates. Pulsar parameters include magnetic field 

strength (B), spin period (P), and neutron star radius (assumed to be 10 km). To compare the simulated pulsar 

acceleration values with observed Ultra-High-Energy Cosmic Ray (UHECR) data, we  look at typical UHECR 

energy ranges detected by  the Pierre Auger Observatory 
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III. Results 
The estimated maximum particle energies calculated using the model for selected pulsars are shown below: 

Pulsar Proton Energy (eV) Iron Nucleus Energy (eV) 

Crab 7.65e+07 2.00e+09 

Vela 9.41e+06 2.45e+08 

Young Pulsar 2.19e+09 5.70e+10 

Millisecond Pulsar 5.48e+07 1.43e+09 

 

 
Figure(1) : Maximum cosmic ray energy from Pulsar acceleration. 

 

Only young, rapidly spinning pulsars with strong magnetic fields produce conditions where iron nuclei can 

approach or  UHECR thresholds. Standard pulsars like Crab and Vela fall short for both protons and iron 

nuclei.(figure.1) 

To compare the simulated pulsar acceleration values with observed Ultra-High-Energy Cosmic Ray (UHECR) 

data, we  look at typical UHECR energy ranges detected by  the Pierre Auger Observatory . 

 

Simulated Pulsar Energies 
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Observed Pulsar Energies (Pierre Auger Observatory) 

 
 

IV. Discussion 
Standard pulsars (Crab, Vela) produce iron nuclei with energies up to ~10⁹ eV (1 GeV), far below the 

observed UHECR range (≥10¹⁸ eV). The young, extreme pulsar model in your simulation accelerates iron nuclei 

to ~5.7 × 10¹⁰ eV, still 7–8 orders of magnitude lower than the most energetic UHECRs observed (~10²⁰ eV). 

Even in optimistic scenarios, our model does not reach UHECR energies. 

 

V. Conclusion 
Even extreme pulsars modeled in this study fall short of the UHECR threshold,  Heavier elements (like 

iron) reach higher energies due to higher charge (Z), but still not enough to account for the >10¹⁸ eV events.   

Pulsars might contribute to lower-energy cosmic rays. UHECRs likely originate from extragalactic sources, such 

as active galactic nuclei (AGN), gamma-ray bursts (GRBs), or interactions involving supermassive black holes. 
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