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Abstract: Everybody is in the state of constant vibration, since vibration is the cause of the entire universe. 

Consequent upon this, a body under the influence of attractive force that is central in character may also vibrate 

up and down about its own equilibrium axis as it undergoes a central-force motion. The up and down vertical 

oscillation would cause the body to have another independent generalized coordinates in addition to the one of 
rotational coordinates in the elliptical plane.  In this work, we examine the mechanics of a central-force motion 

when the effect of vertical oscillation is added. The differential orbit equation of the path taken by the body 

varies maximally from those of the usual central- force field. The path velocity of the body converges to the 

critical speed in the absence of the tangential oscillating phase. 

Keywords: Elliptical plane, upper and lower radial orbital oscillating angles, upper and lower vertical 
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I Introduction 
 A central force is a conservative force. It is a force directed always toward or away from a fixed center

O  and whose magnitude is a function only of the distance from O [1]. In spherical coordinates, with O as 

origin, a central force is given by rrfF ˆ)( . Physically, such a force represents an attraction if  0)( rf  

and repulsion if  0)( rf  , from a fixed point located at the origin 0r . 

Examples of attractive central forces are the gravitational force acting on a planet due to the sun. Nuclear forces 
binding electrons to an atom undoubtedly have a central character. The force between a proton or an alpha 

particle and another nucleus is a repulsive central force. 

The relevance of the Central - force motion in the macroscopic and microscopic frames warrants a detailed 

study of the theoretical mechanics associated with it. 

So far, researchers have only considered central - force motion, as motion only in the translational and rotational 

plane with coordinates ),( r , for example, see Keplerian orbits [2, 3]. However, the theoretical knowledge 

advanced by these researchers in line with this type of motion is scientifically restricted as several possibilities 
are equally applicable. 

There exist four standard formulations of classical mechanics: (i) Isaac Newton’s formulation – Newtonian 

mechanics (ii) Lagrange’s formulation – Lagrangian mechanics (iii) Hamilton’s formulation – Hamiltonian 

mechanics (iv) De Alambert’s formulation – De Alambertian mechanics. All these formulations are utilized in 

the theory of mechanics where applicable. 

Some of the conditions satisfied by a body undergoing a Central - force motion is as follows: (i) the motion of 

the body can be translational and rotational in the elliptical plane with polar coordinates ),( r , (ii) the body can 

be rotating and revolving about its own axis in the elliptical plane ),( r , (iii) the body can be translating and 

rotating in the elliptical plane ),( r , at the same time, oscillating up and down about its own axis (iv) the body 

can be translating and rotating in the elliptical plane ),( r , at the same time, oscillating up and down but not 

below its axis of rotation (v) the combination of any of these conditions form another class of a Central - force 

motion. 

In order to make the mechanics of a Central - force motion sufficiently meaningful, we have in this work 

extended the theory which has only been that of translational and rotational in the elliptical plane with polar 

coordinates ),( r , by including vertical spin oscillation. 

Under this circumstance, we shall be contending with a total of 6 - generalized coordinates or degrees of 

freedom; 2 from the translational and rotational motion in the elliptical plane ),( r , 2 from the orbital spin 

oscillations ),(  and 2 from the tangential spin oscillations ),(  . Consequently, these parameters form the 

basis of our classical theory of 6-dimensional motion. 
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 The number of independent ways in which a mechanical system can move without violating any 

constraints which may be imposed is called the number of degrees of freedom of the system. The number of 

degrees of freedom is the number of quantities which must be specified in order to determine the velocities of all 
particles in the system for any motion which does not violate the constraints [4]. 

There is a single source producing the force that depends only on distance in the theory of central-force motion 

and the force law is symmetric [5]. If this is the case, then, there can be no torques present in the system as there 

would have to be a preferred axis about which the torques acts. 

In this work, we are solving the problem of oscillating central force motion in a resistive non-symmetric system. 

That is, the upward displacement is not equal to the downward displacement in the tangential spin oscillating 

phase. Consequently, the radii distances from the central point are not equal. This however, causes torques 

thereby making the system under study non-spherically symmetric. 

Meanwhile, I hereby request the permission of the reader to excuse the lack of intensive references to the current 

literature. I don’t know of other current authors who have studied these questions before now. I believe this is 

the first time this study is under investigation. 
This paper is outlined as follows. Section 1, illustrates the basic concept of the work under study.  The 

mathematical theory is presented in section 2. While in section 3, we present the analytical discussion of the 

results obtained. The conclusion of this work is shown in section 4 and this is immediately followed by 

appendix and list of references. 

 

II. Research methodology 
 The analytical geometry of the work is first figuratively represented. This provides the pictorial 

understanding of the work under investigation and the possibility of specifying the required generalized 

coordinates. Thereafter, simple rule of trigonometry is used to define the vector quantities which we need for the 
evaluation of the physical quantities. Finally, differential techniques in combination with the theory of classical 

mechanics are utilized in the discussion of the problem of the modified theory of central-force motion. 

 

III. Mathematical theory 
2.1 Evaluation of the velocity and acceleration 

 We have elaborately shown in (A. 6) in the appendix that the position vector r


 of a body whose 

motion is translational and rotational in a plane polar orbit as well as oscillating about a given equilibrium 

position in a central-force motion is given by the equation 
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    ˆcot2tan2ˆtan2 222  rrrrrrr  (2.5) 

where the symbols appearing in (2.1) - (2.5) have been clearly defined in the appendix. 

 However, let us disengage the acceleration equation in (2.5) with the view that the 5th and the 8th terms 
have the elements of angular momentum as a constant of the motion and the radial orbital oscillating phases. 

Thus 
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      ˆcot2tan2ˆtanˆ2 222  rrrrrrr  (2.6) 

Equation (2.6) is now the required new acceleration equation which governs the motion of a body undergoing a 

central-force motion when the effect of drag oscillating force is added. 

 

2.2 Evaluation of the central - force field 
 In classical mechanics, a central force is a force whose magnitude only depends on the distance r , of 

the body from the origin and is directed along the line joining them [5]. Thus, from the analytical geometry of 

the central-force motion shown in fig. A. 1, in the appendix, permits us to write in terms of vector algebra 

amrfrfrrfrrfrF   ˆ)(ˆ)(ˆ)()ˆ,ˆ;ˆ()()( (2.7) 

where F is a vector valued force function, f is a scalar valued force function, r is the position vector, r  is 

its length, and rrr /ˆ  , is the corresponding unit vector. 

We can convert (2.6) to force by simply multiplying it by the mass m of the body and equate the resulting 

expression to (2.7). Note that we are utilizing the radial orbital oscillating phase in (2.6), which is acting in the 

directions of ̂ and̂  in our calculation. Once this is done, we obtain the following sets of canonical equations 

of motion. 
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  02    rrm (2.9) 

  02    rrm (2.10) 

  02    rrm                          (2.11) 

  02    rrm (2.12) 

  02    rrm (2.13) 

Equation (2.8) is the required new central-force field which we have developed in this study. It is 4-dimensional 

and it governs the central-force motion of a body when the effect of drag oscillating force is added. In this 

equation, 
2r is the centripetal acceleration arising from the  direction and r2  is often referred to as the 

Coriolis acceleration. 

The sets of canonical equation (2.9) - (2.13) determines the angular momentum which are the constants of the 

motion in the directions of increasing coordinates,  ,, ,  and  . 

 

2.3 Relationship between the radial velocity and the tangential oscillating angles 

In consideration of the vertical oscillating motion in the direction of   in (2.6), we have that for 0m  

  0cot2tan2 22    rrrr (2.14) 
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The discriminate of (2.16) is zero provided 

  cot2tan22   rr (2.17) 

  cot2tan   rr  (2.18) 

Similarly, by following the same algebraic procedure, we obtain the radialvelocity acting in the direction of the 

verticaloscillating motion  as 

  cot2tan   rr (2.19) 

Thus the radial velocity r  is directly proportional to the radius vector and to the square root of the vertical 

oscillating angles. Therefore, the radial velocity decreases as the vertical spin oscillating angles is increased. 
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2.4 Evaluation of the Differential orbit equation (DOE) for the central- force field 

 The motion of a body undergoing a central force motion would have to follow a defined trajectory as it 

orbits the central point (focus). Now, equation (2.9) can be compactly written as 
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Following the same method as that of (2.9) which leads to (2.20) and (2.21), we get respectively for the other 

equations (2.10) – (2.13), that 
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By utilizing (2.21), (2.23), (2.24) and (2.30) in the new central force field equation given by (2.8), we get 
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It is assumed in this study that P and Q are very small displacements from the equilibrium axis of rotation. As 

a result, we write hhh  21 ,and if we make the substitution ur /1 in (2.31), then 
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Equation (2.34) is the required differential orbit equation for oscillating central-force motion. It is called orbit 

equation since its solution is )(r . The equation is inhomogeneous and second order in . Certainly )(rf  or 

)/1( uf is theforce law of the orbit equation. 
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2.5 Evaluation of the magnitude of the velocity of the body at any point of its path 

 From the velocity equation given by (2.3) we obtain the magnitude of the velocity as 
222222222222   rrrrrrv    (2.35) 
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The equation of an ellipse referred to its focus is given by 
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Since the tangential oscillation is very small we assume in this study that the constants hhh  21 . 
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where lh 2
( l is the semi-latus rectum of the ellipse), a  is the major semi-axis. Of course, for a fixed 

major semi-axis, h determines the eccentricity.  So the magnitude of the velocity needs to increase by a factor 

2/4 rl in order to change the orbit as a result of the added tangential oscillating phase. 

Thus equation (2.49) is the required equation which describes the magnitude of the velocity of the body at any 

point of its path as it translates and oscillates elliptically. The first two terms in the parenthesis of (2.49) is 

referred to as the critical speed or the critical velocity while the third term is the perturbation. The perturbation 
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term is caused by the added effect of the tangential oscillating motion of the body. The magnitude of the path 

velocity of the body converges to the critical velocity in the absence of the tangential oscillating angles. 

 

IV. Discussion of results 
 The central force field is specified by four independent generalized coordinates. It has a tangential 

oscillating phase which is determined by the vertical oscillating angles. As the oscillating angles increases the 

force tends to be more negative and attractive. The first two terms in the parenthesis of (2.8) gives the exact 

radial force and the orbital angular force. The orbital angular force is acting perpendicularly to the direction of 

the radius. If, 0 rr  , then the path is a circle. 

 The differential orbit equation (DOE) given by (2.34) is second order and inhomogeneous in )(u .Of 

course, the force field that is responsible for the orbit equation is negative and hence highly attractive. This is 

expected of a motion that is central in character. The DOE has a tangential oscillating phase. The oscillating 

phase is determined by the vertical oscillating angles. In case, 0l then  is a constant, and the path is a 

straight line through the origin, that is, the path is homogeneous. 

The magnitude of the velocity of the body at any point of its path as shown (2.48) is quadratic in nature. Hence 

it would have a positive maximum and negative minimum value as a function of the radius. The positive value 

of v corresponds to the velocity in the upper plane of the ellipse, while the negative value corresponds to the 

velocity in the lower plane of the ellipse. The first two terms in 
2v  is referred to as the critical velocity while 

the last term is the perturbation. The magnitude of the velocity is strictly the value of the critical velocity as

r . Thus the magnitude of the velocity is maximum at the perihelion and minimum at the aphelion. 

 

V. Conclusion 
 In general, we have in this study solved the problem of the motion of a body in a plane polar coordinate 

system which is subject to a central attractive force which is known and, in addition, a drag oscillating force 

which acts tangentially. The oscillating energy oscE which determines how energy is conveyed up and down in 

the oscillating phase is relatively determined by the vertical spin oscillating angles. 

The result of the total energy is appreciably different from the motion in a central force field without a drag 

oscillating force. The new force law now comprises of the radial and the tangential oscillating parts which 

reduces the strength of the attractive central force. The knowledge of this type of central force motion which we 
have developed in this work can be extended from plane polar coordinate system to that of spherical and 

cylindrical polar coordinate systems. 

 

Appendix 

 Let us consider the rotational motion of a body of mass m  about a fixed origin say, O , in an elliptical 

polar coordinate system. Suppose the body is also oscillating up and down about its equilibrium position as it 

translates rotationally round the fixed origin. The body thus possesses translational and rotational elliptical 

motion with polar coordinates ),( r and tangential spin oscillating motion described by the vertical 

displacement CBCDC  and repeatedly in the y -direction. The geometry of the analytical 

requirements is shown in fig. A. 1. 

 The reader should take note that the oscillation of the body is not entirely out of the elliptical orbit of 

rotation. Rather the displacement D and B  above and below C  is very small. The oscillation is still within the 

limits of the axis of rotation C . We have only decided to stretch D and B  above and below C considerably 

enough in order to reveal the geometrical concept required for the analytical calculation. 

There are six possible degrees of freedom or generalized coordinates exhibited by the motion body under this 

circumstance: (i) translational and rotational in the elliptical plane ),( r ,(ii) the plane of upward oscillations 

),(  and (iii) the plane of downward oscillations ),(  . 

 We shall compute separately the tangential spin oscillating motions in both oscillating frames and 

eventually combine the result with the orbital elliptical plane motion. In this study, we assume that the angular 

displacements in the tangential spin oscillating frames are not equal and so the system under study is not radially 

symmetric. Consequently, there is the existence of torque due to the non uniformity of the radii distances. 
Accordingly, we can now develop relationships between the various areas indicated on fig. A. 1, with the goal to 

find the formula for the area swept out by the elliptical plane polar motion, and the result obtained from this is 

then added to the tangential oscillating triangle sections COD ˆ and BOC ˆ respectively. 
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From fig. (A. 1), P and Q are very small upward and downward displacements from the equilibrium axis of 

rotation C , that is, regions in the upper and lowertriangular swept segments of the upper and lower elliptical 

plane. Our first task would be to connect all these oscillating spin angular degrees of freedom into an expression 

in terms of P and Q . 

 For clarity of purpose, let us define the various symbols which we may encounter in our calculations : 

(i) the elliptical radius  r  (ii) the plane of upward oscillations ),(  , that is subtended from the upper 

elliptical plane (iii) the plane of downward oscillations ),(  , that is subtended from the bottom or the lower 

part of the elliptical plane (iv) the elliptic orbital plane angle   (v) the  upper tangential oscillating spin angle 

  (vi) the  lower tangential oscillating spin angle   (vii) the upper and lower orbital spin oscillating angles   

and  . 

 
Fig. A.1. Represents the elliptical and oscillating motion of a body in a central-force field. The body is 

oscillating up and down about the axis of rotation C . Where  COD ˆ (frame I) and BOC ˆ (frame II) are the 

upper and lower projections of the tangential oscillating phases onto the plane of the ellipse, the lines DC  ( P ) 

and CB  ( Q ) are very small displacements from the axisC , we have only stretched them to make the geometry 

of the figure clear enough for the calculation. However,   is the upper radial orbital oscillating angle and   is 

the lower radial orbital oscillating angle. Note that both of them are projections of the tangential oscillating 

plane onto the orbital elliptic plane. 

In frame I : we obtain from COD ˆ  

ecrr cos1     ;    ecrrP cossinsin1  (A. 1) 

In frame II : we obtain from BOC ˆ  

ecrr cos2      ;      ecrrQ cossinsin2       (A.2) 

In the orbital plane of rotational and translational motion, the position vector r


of the body is given by 

irixr cos


(A.3) 

However, the combination of the rotational and translational motion, with the vertical spin oscillating frames 

(acting in the y -direction), we have 
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Also we know from the rule of differentiation that 
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Hence, in order to remove the factor of 2 which appears in (A. 22), we then introduce the factor of half. 
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