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Abstract: Effect of thermal radiation on a steady two-dimensional free convection laminar boundary layer flow 

of a viscous incompressible optically thick fluid over a vertical wavy cone has been investigated. Using 

appropriate transformations, the basic governing equations are transformed into non-dimensional boundary-

layer equations. These equations are then solved numerically by using Mathematica technique. The effect of the 

radiation parameter on velocity, temperature, skin friction and local Nusselt number has been discussed with 

graphical representation.  
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I.       Introduction 

     Convection problems associated with irregular surfaces have received less attention than the cases 

with regular surfaces. Surfaces are sometimes roughened to disturb the flow and alter the rate of heat transfer on 

such surfaces. Thus, it is clear that convection problems associated with wavy surfaces occur frequently in 
practice. 

   Many articles have been published [1-12] dealing the problem of natural convection over a vertical 

wavy cone, frustum of a wavy cone and wavy vertical surface.  

     Convective heat transfer with thermal radiation is great importance in processes involving high 

temperatures such as in gas turbines, nuclear power plants, and thermal energy storage among others. The 

thermal radiation of gray fluid which is emitting and absorbing in a nonscattering medium has been examined 

by Hossain et al. [13&14] , Raptis et al. [15] , and Cortell [16-19]. 

  In this article, the free convection boundary layer flow over a vertical wavy cone including thermal 

radiation effect has been investigated. 

 

II.       Mathematical formulation 

            The boundary layer analysis outlined below allows the shape of the wavy surface, )ˆ(ˆ x  to be arbitrary, 

but our detailed numerical work will assume that the surface exhibits sinusoidal deformations. Thus the wavy 

surface of the cone is described by 

 

 )/ˆsin(ˆ)ˆ(ˆˆ lxaxy                                                                                                 (1) 

 

where l  is the fundamental wavelength associated with wavy surface and â  is the amplitude of the surface 

waves. 
The physical model of the problem and the two dimensional coordinate system are shown in Figure 1, 

where   is the half angle of the flat surface of the cone and )ˆ(ˆ xr is the local radius of the flat surface of the 

cone which is defined by 

 

)sin(ˆˆ  xr                                                                                                                  (2) 

 



Effect of thermal radiation on free convection boundary layer flow over a vertical wavy cone 

www.iosrjournals.org                                                             73 | Page 

 
Fig. 1: Physical model and coordinates system 

 

The conservation equations for the flow characterized with steady, laminar and two-dimensional boundary 

layer; under the usual Boussinesq approximation, the continuity, momentum and energy equations can be 

written as: 
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where ( yx ˆ,ˆ ) are the dimensional coordinates in the vertical and horizontal directions, )ˆ,ˆ( vu  are the velocity 

components  parallel to ( yx ˆ,ˆ ), g  is the acceleration due to gravity, p̂  is the pressure of the fluid,   is the 

density,   is the kinematic viscosity,   is the coefficient of volume expansion, T  is the temperature of the 

fluid, T is the ambient temperature, k is the thermal conductivity of the fluid, pC is the specific heat at 

constant pressure and rq  is the radiative heat flux in the ŷ direction. 

  The boundary conditions are given by 

 





 yasTTu

xyyTTvu ww

ˆ,0ˆ

)ˆ(ˆat,0ˆ,0ˆ 
                                                                    (7)   

where wT  is the surface temperature 

         Using the Rosseland approximation for radiation [15], radiative heat flux is simplified as   
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where 
* and 

*  are the Stefan-Boltzmann constant and the Rosseland coefficient.  

  We assume that the temperature differences within the flow are such that the term 
4T   may be expressed as a 

linear function of temperature. Hence, expanding  
4T  in a Taylor series about T  and neglecting higher-order 

terms we get 

.34 434

  TTTT                                                                             (9) 

Using equations (8) and (9), the energy equation (6) becomes  
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     Now introduce the following non-dimensional variables 
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where   is the dimensionless temperature,   is the dynamic viscosity and Gr is the Grashof number. 

Substituting the transformations given in (11) into (3)-(6) and ignoring terms of small order in Gr  we obtain 

the following boundary layer equations: 
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where
*3

3/16  kTNR   is the radiation parameter and 
k

C p
Pr is the Prandtl number. 

   The corresponding boundary conditions to be satisfied are: 
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Equation (13) indicates that the pressure gradient along the y-direction is of )( 4/1GrO , which implies that 

lowest order pressure gradient along x -direction can be determined from the inviscid flow solution. However, 

this pressure gradient is zero, since there is no externally induced free stream. On the other hand, equation (14) 

shows that ypGr  /4/1
is of )1(O and is determined by the left-hand side of this equation. Thus, the 

elimination of 
y
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If we introduce the non similar variables: 
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where   is the pseudo- similarity variable, ),( yxf  is dimensionless stream function and   is the stream 

function which is defined according to yu  / and  xv  / .  Equations (15) and (17) are now 

transformed to 
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The boundary conditions (16) now take the form  

                                                                    (21)
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Here the primes denote the differentiation with respect to .   The equations (19) and (20) subjected to the 

boundary conditions (21) are solved by using Mathematica program. 

 The quantities of physical interest are shearing stress and rate of heat transfer in terms of the skin friction 

coefficient fC  and the Nusselt number Nu , respectively and can be written as  
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surface of the cone.  

      Using the transformation (9) and (16), then fC and Nu take the following form: 
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III.  Results and discussion 
     The set of non-linear partial differential equations (19) and (20) satisfying the boundary conditions (21) have 

been solved numerically using the Mathematica method for several values of the involved parameters, namely 

Prandtl number Pr , radiation parameter RN , wavy surface amplitude parameter a  and cone half angle 

parameter . 
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  The effects of vary Prandtl Pr number and radiation parameter RN , on the dimensionless velocity profiles 

)(/ f  and temperature profiles )(  are shown in Figures 2-5. Figures 2&3 show the effects of vary Prandtl 

number Pr  on the dimensionless velocity and dimensionless temperature against   for wavy surface amplitude 

parameter 2.0a  and cone half angle parameter
030 , radiation parameter 2RN  and the 

dimensionless distance 1x . It can be observed from these figures, the velocity and temperature profiles are 

decreases for increasing values of Prandtl number Pr . In figures 4&5 represent the influence of the radiation 

parameter RN , on the velocity and temperature profiles in the boundary layer for 2.0a , 72.0Pr   

and
030 , while 1x . These figures display the effect of radiation parameter, RN  on both the velocity 

and temperature profiles in the boundary layer regime. As radiation parameter, RN  increases, both velocity and 

temperature increase within the boundary layer regime. In figure 4, for all values of RN , there exists a local 

maximum of the velocity within the boundary layer. As radiation parameter, RN  increases, the maximum 

values of velocity increases. In Figs. 6and 7 found the skin friction coefficient 4

1
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C f and the rate of heat 
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x
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Nu  for different values of Prandtl number Pr for 2.0a , 2RN  

and
030 , while 1x . The influence of the parameters RN  and a for different values of Prandtl number 

Pr, the decreasing skin friction coefficient becomes slower in the downstream region along x direction. On the 

other hand, increasing the values of Prandtl number Pr the temperature gradient as well as the rate of heat 

transfers consequently increases. In Figs. 8 & 9, represent the influence of the radiation parameter, RN  on the 

local skin friction coefficient 4

1

)(
x

Gr
C f  and the rate of heat transfer 4

1

)( 

x

Gr
Nu for 2.0a , 72.0Pr   

and
030 , while 1x . From Figure 8, for increasing RN , the skin friction coefficient 

4

1

)(
x

Gr
C f increases. Increasing values of RN  leads to increasing the velocity of the fluid (see figure 4) within 

boundary layer. For enhanced velocity, the velocity gradient of the fluid increases. From figure 9 Increasing 

values of RN  leads to an decrease in the heat absorption intensity of the fluid, consequently the local rate of 

heat transfer decrease. 

 

IV.Conclusions 
         In this paper, the problem of steady laminar free convection flow about a vertical wavy cone in the 

presence of radiation effect is studied. From the present investigations, we may conclude the following: 

1. The velocity and temperature distribution decreases with increasing the values of Pr  and increases with 

increasing the values of RN . 

2. For increasing values of the Prandtl number Pr , the skin fiction coefficient decreases but local Nusselt 

number increases. 

3. An increasing in the values of radiation parameter RN  leads to increases in the value of the skin friction 

coefficient while the local heat transfer decrease. 
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