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Abstract: A density functional theory codes FHI-aims is used to investigate the material properties of AlAs bulk 

crystalline structures. The code has several input parameters or variables some of which should be optimized. 

In the FHI-aims code we study different phases of AlAs crystalline structure and the ground state cohesive 

properties of the most stable structure of AlAs was computed within GGA and LDA of the density-functional 

theory. The results of computations  shows that the ground state equilibrium properties of and AlAs such as 

Lattice constants, cohesive energies and Bulk modulus are in agreement with experimentally found values 

within reasonable percentage errors. 

Keywords:  bcc, bcc, bulk modulus, cohesive energy,  crystalline structure, DFT, fcc, ground state, lattice-

constant, simple cubic, and total energy. 

 

I. Introduction 
Total Energy calculation and molecular dynamic simulation employing density-functional theory 

represent a reliable tool in condensed matter physics, material science, and physical chemistry. A large variety 

of applications such as in molecules, bulk materials and  surfaces have proven the power of these methods in 

analyzing as well as predicting non-equilibrium and equilibrium properties. 

Density-functional theory (DFT) is one of the most popular and successful quantum mechanical 

approaches to matter. It is nowadays routinely applied for computations of ground state properties of molecules 

and solids such as the binding energy of molecules and the band structure of solids in physics.  

This is a computational material science research work in which the ground state properties of  AlAs crystals 

were investigated using DFT based code FHI-aims as a tool. The equilibrium cohesive properties of AlAs 

crystal were calculated using FHI-aims code.  

The program FHI-aims uses DFT as a main production technique to determine electronic and structural 
properties of molecular or solid condensed matter in its ground state within the local or semi-local 

approximations[1]. FHI-aims code works on a Linux based operating system in which a FORTRAN-95 or later 

compiler was installed. A compiled version of lapack libraries and a library providing optimized linier algebra 

subroutines(BLAS) must also be installed. When the above requirements were made, the FHI-aims executable 

binary file could then be build. Execution of FHI-aims program requires two input files control.in and 

geometry.in. The input file contains all the information related to atomic structure and runtime-specific for a 

given calculation. 

This research work was initiated due to the importance of AlAs in the modern technology. Some of the noble 

importance of AlAs are: 

AlAs is a group III/V binary compound semiconductor. AlAs is a compound of aluminum and arsenic. The 

crystals of AlAs is technologically important and among the most studied compounds semiconductor material. It 
is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave 

integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows[2. 3](Streetman 

and Banerjee, 2006; Madelung and Landolt-Börnstein, 1982). 

Some electronic properties of aluminum arsenide are superior to those of silicon. AlAs has a higher saturated 

electron velocity and higher electron mobility, allowing its transistors to function at frequencies in excess of 

250 GHz. Unlike silicon junctions, AlAs devices are relatively insensitive to heat owing to its wider band-gap. 

Also, AlAs devices tend to have less noise than silicon devices, especially at high frequencies. This is as a result 

of higher carrier mobility and lower resistive device parasitics due to radiation. These properties recommend 

AlAs circuitry in mobile phones, satellite communications, microwave point-to-point links and higher frequency 

radar systems. It is used in the manufacture of Gunn diodes for generation of microwaves. 

AlAs have indirect bandgap and so is very poor at emitting light. Nonetheless, recent advances may make 

silicon and AlAs LEDs and lasers possible. 
As a wide direct band gap material with resulting resistance to radiation damage, AlAs is an excellent 

material for space electronics and optical windows in high power applications. Combined with the high 

dielectric constant, this property makes AlAs very good electrical substrate and unlike Si provides natural 

isolation between devices and circuits. This has made those materials ideal for microwave and millimeter wave 
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integrated circuits(MMICs), where active and essential passive components can readily be produced on a single 

slice of AlAs. 

With increasing demand for material with wider applications in science and technology and that AlAs 
crystal is found to be good candidate, there is a need to further study this materials from different perspective.   

The structural and ground state cohesive properties of this material are studied using FHI-aims codes. 

The diamond lattice structure is very common in semiconductor materials, such as Si and Ge. AlAs, GaAs and 

GaP has a zincblende lattice structure which is similar to the diamond lattice structure. The diamond and 

zincblende structures are similar except that in diamond structure there is only one type of atom(see Fig.1a.) 

whereas in zincblende there are two types of atoms. In the AlAs unit cell there are four Al-atoms and the rest are 

As-atoms(see Fig.1.b.). 

 Calculation of the bulk ground state properties, such as lattice constants, bulk modulus, cohesive 

energy, and atomic positions, play an important role in the physics of condensed matter [4. 5]Jappor, 2011; 

Wachowicz and Kiejna, 2001]. Bulk calculations help us to understand, characterize, and predict mechanical 

properties of materials in surroundings, under extreme conditions[6] (Hashim et al, 2007). 
The cohesive energy of crystalline solid structure is defined as the energy that must be added to the crystal to 

separate its components into neutral free atoms at rest at infinite separation, with the same electronic 

configuration[7] (Fuchs et at, 2002). The term lattice energy is used in discussion of ionic crystals and is defined 

as the energy that must be added to the crystal to separate its component ions into free ions at rest at infinite 

separation[2] (Streetman and Banerjee, 2006 ). 

(a)     (b)  

Fig 1. Unit cell structure of (a) Diamond cubic cell and (b)  zincblende (AlAs) lattice. Al atoms are shown small, 

As atoms shown large, and the gray-dashed lines show the unit cell. 

 

1.2 Density Functional Theory 
Density Functional Theory (DFT) is a quantum mechanical technique used in Physics and chemistry to 

investigate the structural and electronic properties of many body systems. DFT has proved to be highly 

successful in describing structural and electronic properties in a vast class of materials, ranging from atoms and 

molecules to simple crystals and complex extended systems (including gasses and liquids). Furthermore DFT is 

computationally very simple. For these reasons DFT has become a common tool in first-principles calculations 

aimed at describing – or even predicting – properties of molecular and condensed matter systems[8, 9, 

10](Giannozzi, 2005; Fiohais et al, 2003; Parr and Yang, 1989). 

Traditional methods in electronic structure theory, in particular Hartree-Fock theory and its 

descendents are based on the complicated many-electron wavefunction. The main objective of density 

functional theory is to replace the many-body electronic wavefunction with the electronic density as the basis 

quantity. Whereas the many-body wave function is dependent on 3N variables, three special variables for each 
of the N electrons, the density is only a function of three variables and is a simpler quantity to deal with both 

conceptually and practically. 

Consider a system of N interacting (spinless) electrons under an external potential V (r) (usually the 

Coulomb potential of the nuclei). If the system has a nondegenerate ground state, it is obvious that there is only 

one ground-state charge density n(r) that corresponds to a given V(r). In 1964 Hohenberg and Kohn 

demonstrated the opposite, far less obvious result: there is only one external potential V(r) that yields a given 

ground-state charge density n(r). The demonstration is very simple and uses a reductio ad absurdum argument. 

For many-electron Hamiltonian H = T +U +V , with ground state Wavefunction, . T is the kinetic energy, U 
the electron-electron interaction, V the external potential. The charge density n(r) as defined by Hohenberg and 

Kohn in 1964 is 

                (1) 

Considering a different Hamiltonian H` = T` + U` + V` (V and V` do not differ simply by a constant: V – V` 

≠const.), with ground state wavefunction  . Assuming that the ground state charge densities are the same: 
n[V ] = n`[V`]. Then the following inequality holds:   
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          (2) 

That is 

           (3) 

The inequality is strict because  and ‟  are different, being eigenstates of different Hamiltonians. By 
reversing the primed and unprimed quantities, one obtains an absurd result. This demonstrates that no two 

different potentials can have the same charge density. 
The first Hohenberg and Kohn (HK) theorem demonstrate the existence of a one-to-one mapping 

between the ground state electron density and the ground state wavefunction of a many-perticle system. The 

second Hohenberg and Kohn theorem demonstrate that the ground state density minimizes the total electronic 

energy of the system. Originally HK theorems held for the ground state in the absence of magnetic field, 

although they have since been generalized. 

A straightforward consequence of the first Hohenberg and Kohn theorem is that the ground state energy E is 

also uniquely determined by the ground-state charge density. In mathematical terms E is a functional, E[n(r)]. 

We can write 

            (4) 

where F[n(r)]  is a universal functional of the charge density n(r) (and not of V(r)). For this functional a 

variational principle holds: the ground-state energy is minimized by the ground-state charge density. In this way, 

DFT exactly reduces the N-body problem to the determination of a 3-dimensional function n(r) which 

minimizes a functional E[n(r)]. Unfortunately this is of little use as F[n(r)] is not known. 

In 1965, Kohn and Sham (KS) reformulated the problem in a more familiar form and opened the way to 

practical applications of DFT[11, 12, 13](Burke and Friends, 2008; Martin, 2004; Kratzer et al, 1999). The 

system of interacting electrons is mapped on to an auxiliary system of non-interacting electrons having the same 

ground state charge density n(r). For a system of non-interacting electrons the ground-state charge density is 

representable as a sum over one-electron orbitals (the KS orbitals) (r) [12,14] (Martin, 2004; Da Silva et al, 

2006): 

                                  (5) 

where i runs from 1 to N/2 by assuming double occupancy of all states, and the KS orbitals are the solutions of 

the SchrÖdinger equation  

     (6) 

The existence of a unique potential VKS(r) having n(r) as its ground state charge density is a consequence of the 

Hohenberg and Kohn theorem, which holds irrespective of the form of the electron-electron interaction U. 

The problem is now to determine VKS(r) for a given n(r). This problem is solved by considering the variational  

property of the energy. For an arbitrary variation of the ψi(r), the variation of E must vanish. This translates 

into the condition that the functional derivative with respect to the ψi of the constrained functional. 

                       ,     (7) 

      where  the Lagrange multipliers,  must vanish[15, 16](Scheffler, 2001; Taura, 2009): 

                   (8) 

It is convenient to rewrite the energy functional as follows: 

              (9) 

The first term is the kinetic energy of non-interacting electrons. The second term (called the Hartree energy) 

contains the electrostatic interactions between clouds of charge. The third term, called the exchange-correlation 

energy, contains all the remaining terms. The logic behind such procedure is to subtract out easily computable 

terms which account for a large fraction of the total energy. Finally 

     (10) 

where VH  is introduced as the Hartree potential,  and an exchange-correlation potential, VXC. 

 

2.2 Local Density And Generalized Gradient Approximations 

 A great variety of different approximations to VXC have been developed. Those approximations are (i) 

Local Density Approximation, LDA, (ii) Generalized Gradient Approximation, GGA and (iii) Hybrid 

Approximation. For many years the local density approximation (LDA) has been used [13, 17, 18] (Kratzer et 
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al, 1999; Qing-Miao et al, 2007; Juarez et al, 2008). In the LDA the exchange correlation energy density at a 

point in space is taken to be that of the homogeneous electron gas with the local electron density, . Thus 

the total exchange correlation energy functional is approximated as, 

                (11) 

from which the potential is obtained as, 

                      (12) 

For many years properties such as structure, vibrational frequencies, elastic moduli and phase stability are 

described very reliably for many systems. However, in computing energy differences between rather different 

structures the LDA can have significant errors[14](Da Silva  et al, 2006). For instance, the binding energy of 

many systems is overestimated and energy barriers in diffusion or chemical reactions may be too small or 

absent. Currently, effective potentials that depend both on the local density and the magnitude of its local 

gradient called, generalised gradient functionals are widely used [19](Ceder and Marzari, 2005). The GGA 

approach in its various forms goes some way to correcting the problems seen in LDA calculations. 

Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For 

example a crystal of sodium chloride is more stable than a collection of free Na and Cl atoms. This implies that 

the Na and Cl atoms attract each other, i.e. there exist an attractive interatomic force, which holds the atoms 

together[20](Hans-eric, 2012). This also implies that the energy of the crystal is lower than the energy of the 
free atoms. The amount of energy which is required to pull the crystal apart into a set of free atoms is called the 

cohesive energy of the crystal. 

                 Cohesive energy = energy of free atoms – crystal energy    (13) 

Magnitude of the cohesive energy varies for different solids from 1 to 10 eV/atom, except inert gases in which 

the cohesive energy is of the order of 0.1eV/atom [21](Kittel, 1996). The cohesive energy controls the melting 

temperature . 

Calculation of the bulk ground state properties, such as lattice constants, bulk modulus, cohesive energy, and 

atomic positions, play an important role in the physics of condensed matter[5] [Wachowicz and Kiejna, 2001], 

bulk calculations help us to understand, characterize, and predict mechanical properties of materials in 

surroundings, under extreme conditions. 

 

II. Methodology 
2.0    FHI-aims Code 

FHI-aims(“Fritz Haber Institute ab-initio molecular simulations”) is a computer program package for 

computational materials science based on quantum-mechanical first principles. The main production method is 

density functional theory (DFT) to compute the total energy and derived quantities of molecular or solid 

condensed matter in its electronic ground state. In addition, FHI-aims allows to describe electronic single-

quasiparticle excitations in molecules using defferent self-energy formalisms, and wave-function based 

molecular total energy calculation based on Hartree-Fock and many-body perturbation theory (Blum et al, 

2009). 

The focus here is on density-functional theory (DFT) in the local and semi-local (generalized gradient) 
approximations, but an extension to hybrid functionals, Hartree–Fock theory, and MP2/GW electron self-

energies for total energies and excited states is possible within the same underlying algorithms. An all-

electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and 

cluster geometries on equal footing, including relaxation and ab initio molecular dynamics[22] (Havu et al 

2009). The construction of transferable, hierarchical basis sets is demonstrated, allowing the calculation to range 

from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Together 

with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-

communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized 

handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time 

and memory) up to massively parallel computer systems with thousands of CPUs [22][(Havu et al 2009) 

To compute the ground state cohesive properties of AlAs crystal structure, we first calculate the ground state 
total energies of the most stable structure of AlAs as a function of its lattice constants. The energies are then 

converted to the cohesive energies as a function of its molecular volumes using the equations[6,23] (Hashim et 

al 2007 and Wieferin et al. 2011) 

    (6) 

The equilibrium quantities such as the lattice constant a0, the cohesive energy Ecoh, molecular volume, V0, the 

bulk modulus B0 and its derivative with respect to pressure B’0  can be obtained by use a thermodynamically 
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motivated and more accurate fitting function, the Birch-Murnaghan equation of states[23] (Wieferin et al 2011) 

given by 

    (7) 

 

2.1  General Computational  Requirement 
All calculations were carried out using fhi-aims code upgrade 5 (released on 17th July, 2011; version 

071711_5). It only works on any Linux based operating system. Computations can only be carried out after 

building an executable binary file. Since the fhi-aims package is distributed in a source code form,  

a.   A working Linux-based operating system (Ubuntu 11.10 in this case) 

b.   A working FORTRAN 95 (or later) compiler. In this case we use x86 type computer and therefore 

intel's ifort compiler (specifically Composerxe 2011.6.233) was installed for this work.   

c.   A compiled version of lapack library, and a library providing optimized linier algebra subroutines 

(BLAS). Standard libraries such as Intel's mkl or IBM's essl provide both lapack and BLAS support. 

Intel's composerxe 2011.6.233 comes with mkl. 

All necessary adjustment were made for building the executable binary file for running the code and the 
executable program was successfully build. 

FHI-aims requires two input files: (1). control.in:- which contains all runtime-specific informations and  (2). 

geometry.in:- which contains information directly related to the atomic structure for a given calculation. The 

two input files must be places in the same directly from where the FHI-aims binary file is invoked at the 

terminal. 

 

2.2 Constructions of the Input Files and Running the FHI-aims Code 
Our first step towards studying periodic systems with FHI-aims is to construct periodic geometries in 

the FHI-aims geometry input format (geometry.in). Next, we set basic parameters in control.in for periodic 

calculations. Finally, we compare total energies of different AlAs bulk geometries. 

A geometry.in files for the AlAs bcc and zinc-blende structures were constructed using the experimental lattice 

constants a of 5.3 Å for bcc and 5.6 Å for zincblende. 
In setting up the geometry.in file of a periodic structure in FHI-aims all three lattice vectors as well as the 

atomic positions in the unit cell must be specified. The lattice vectors are specified by the keyword 

lattice_vector. For example, bcc AlAs with a lattice constant  a in  Å is defined as 

lattice_vector   -a/2 a/2 a/2 

lattice_vector   a/2     -a/2 a/2 

lattice_vector   a/2 a/2      -a/2 

atom 0.0 0.0 0.0   Al 

atom a/4 a/4 a/4   As 

 Similarly zinc-blende AlAs with a lattice constant a in Å is defined as 

lattice_vector   -0.0 a/2 a/2 

lattice_vector   a/2      0.0 a/2 
lattice_vector   a/2 a/2      0.0 

atom 0.0 0.0 0.0   Al 

atom a/4 a/4 a/4   As 

 

A control.in input files for AlAs was created with the following settings. 

# Physical settings 

xc   pw - lda 

spin  none 

relativistic atomic_zora scalar 

# SCF settings 

charge_mix_param   0.2 

n_max_pulay         8 
sc_accuracy_eev  1E-2 

sc_accuracy_etot  1E-5 

sc_accuracy_rho  1E-4 

sc_iter_limit   40 

# k - grid settings 

k_grid   3  3  3  (to be adjusted) 
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Additionally, the default “light” species settings for Al and As as supplied with the code: 

species_defaults/light/31_Al_default and species_defaults/light/33_As_default. 

A bash script named run.sh was created to calculate total energies of the different phases of AlAs as a function 
of lattice constant a. For this, seven different values of a in steps 0.1 Å around the lattice constants given above 

was used for each structure. 

Note that the grid factors refer to the reciprocal lattice vectors corresponding to the real-space lattice vectors in 

geometry.in. If there are inequivalent lattice vectors, their order in geometry.in determines the ordering of 

reciprocal lattice vectors in the code. 

The total energy per atom of each structure was plotted as a function of the lattice constant using origin. From 

the plot the most stable structure was determined. 

 

2.3 Energy Convergence Tests 
Here we will explicitly check total energy convergence for zincblende AlAs with respect to the k-grid 

and to the basis set. One directory was dedicate for every series of these calculations. 

 

2.3.1 k-grid convergence test 
The total energies for  zinc-blende AlAs was calculated as a function of the lattice constant for k-grids 

of 8×8×8,  10x10x10, 12×12×12, and 16×16×16. The same computational settings and the same lattice 

constants as in the previous calculations of section 2.1 was used. A graph of all the total energies and another 

with the computational times drawn against lattice constant were plotted . The results of  3×3×3 from previous 

runs was added. From the plots the k-grid for which the AlAs zinc-blende is most stable with minimal energy 

was found. 

 

2.3.2 Convergence With Basis Set Size 
The total energies for zincblende AlAs as a function of the lattice constant for the minimal and the tier1 

basis sets were calculated. The same lattice constants and computational settings as in 2.2 together with the 
10×10×10 k-grid were used.  Again, one plot with the total energies and another with the computational times 

were drawn. The results for the minimal+spd basis set were obtained from the k-point convergence test above 

and added to the results. The basis size settings was changed by looking  into the species-dependent settings 

within control.in. There, there exist a line starting with “# "First tier" - ...”. Each line after this defines a basis 

function which is added to the minimal basis. Right now, there is one additional function for each valence 

function (s and p) as well as a d function to allow the atoms to polarize. This is what we call minimal+spd in the 

context of this work. In quantum chemistry and in particular the Gaussian community, this type of basis set is 

often called “double zeta (ζ) plus polarisation” (DZP). Again from the plot the basis set for which the AlAs 

zincblende structure gives the minimal energy and minimal convergence time was determined. 

 

2.4 Phase Stability and Cohesive Properties 
After finding “converged” computational settings, we now revisit the phase stability of bulk AlAs. 

Note that in practice convergence must be achieved first in order to avoid false conclusions. We will now 

compute the basic cohesive properties and study the pressure dependence of phase stability. 

 

2.4.1    Recalculation of E(a) curves 
The total energies of bcc AlAs as a function of lattice constant a are calculated. The settings from 

section 2.3 (k-grid of 10×10×10, minimal+spd basis) and the same lattice constants as in section 2.1 were used. 

The results obtained and that of zincblende AlAs obtained in section 2.3 were plotted as in section 2.2 and the 

plots were analyzed to arcertain the most stable phase of AlAs crystall. 

 

2.4.2 Calculations of Cohesive energies and atomic volumes 
The total energy of a free atom for AlAs unit cell zincblende is calculated as follows: For the single 

atom energy, special care has to be taken. First, the free atom is of course spin polarized and we use “spin 

collinear” instead of “spin none” as well as properly initialize the magnetization with “default_initial_moment 

hund”. Second, we use a more converged basis. In particular, we use all basis functions up to  “tier 3”, the 

cutting potential was increase to “cut_pot 8. 3. 1.”, and basis dependent confining potentials was turned off 

with “basis_dep_cutoff  0'' 

The cohesive energy (Ecoh ) of a crystal is the energy per atom needed to separate it into its constituent atoms. 

Ecoh is defined as 

          (6)  
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where Ebulk is the bulk total energy per unit cell and N the number of atoms in the unit cell. Eatom is the energy of 

the isolated atom calculated above. 

In order to compare the pressure dependence of phase stabilities we need to express the lattice constant behavior 
of all phases on equal footing. One possibility to do so is to express the lattice constant in terms of the volume 

per atom. This atomic volume can be calculated quite easily from the lattice constant a. The simple cubic 

(super-)cell has the volume Vsc = a3. This number has to be divided by the number of atoms Nsc in this cell Vatom 

= a3/Nsc. Note that there are two, and eight atoms in the simple cubic supercell in the case of the bcc, and the 

zincblende structure, respectively. 

A file energy.dat containing the lattice constants and total energies per atom was converted to a file cohesive.dat 

containing atomic volumes Vatom and (negative) cohesive energies −Ecoh by the use of the script convert-coh.awk 

which is provided in the code. 

 

2.4.3 Calculation of cohesive properties at equilibrium. 
An important equilibrium quantity we can calculate from our data is the equilibrium lattice constant a0. 

In principle, this can be done with a quadratic ansatz for E(a) or E(V ). Here we use a thermodynamically 

motivated and more accurate fitting function, the Birch-Murnaghan equation of states[22]. The energy per atom 

(E = −Ecoh) is expressed as a function of the atomic volume (V = Vatom) as in equation (7).  

The cohesive energy data for the zincblende phase of AlAs calculated above was fitted to the Birch-Murnaghan 

equation of states using the program murn.py. The lattice constant a, the bulk modulus B0, and the cohesive 

energy per atom Ecoh at equilibrium are determined. The calculated cohesive properties in this work are 

compared with the experimental values and those determined in other theoretical works. 

 

2.5  Convergence Test and Calculations of Cohesive Properties Using fine-tuned Lattice constants. 
From the plots of section 2.2 the lattice constant that give the minimum total energy was determined 

for both bcc and zincblende AlAs crystal structure up to four decimal places of accuracy. The same was 

repeated for the k-grids of 8x8x8, 10x10x10, 12x12x12 and 16x16x16  of zincblende structure. The FHI-aims 
was run to calculate the total energies for, seven different values of a in steps 0.0001 Å around the lattice 

constants found above for each structure. The resultant k-grid was used to carried out the basis convergence test 

as in section 2.2. The result obtained for the basis convergence was used to calculate the cohesive properties 

such as V0, the equilibrium molecular volume,  E0,  the molecular energy, the equilibrium lattice constant a0, the 

bulk modulus, B0 and B’0 derivative with respect to pressure of bulk modulus as in section 2.3.2. 

 

III. Results 
3.0 Introduction 

The output files of the computations were use to deduce the tables of lattice constants against the total 
energies and graphs were plotted to obtain the optimized parameters for AlAs structures within both LDA and 

GGA. The optimized parameters were then used to obtained the equilibrium ground state properties of AlAs 

crystalline structure.  

 

3.1 Graphical Representation of Data 
The following graphs summarize the output data obtained during the convergence test, and are used in 

obtaining the optimized values of the parameters investigated. 
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Fig.2. Plots of Total Energy (a) and Total time (b) against Lattice constant for  bcc and zincblende AlAs structure 

within LDA  XC- functional 
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Fig.3. Plots of Total Energy (a) and Total time (b) against Lattice constant for  bcc and zincblende AlAs structure 

within GGA    XC-functional 
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Fig .4.  Plots of (a) Energies and (b) total times against lattice-constants for various kgrids of AlAs zinc-blende 

structure within LDA. 
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Fig .5.  Plots of (a) Energies and (b) total times against lattice-constants for various kgrids of AlAs zincblende 

structure within GGA. 
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Fig.6. Plots of (a) total energies and (b) total time against lattice constant for three different basis of AlAs zincblade crystal  

within LDA. 
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Fig.7. Plots of (a) total energies versus lattice-constant and (b) cohesive energies versus molecular volumes of bcc  and 

zincblende structures of AlAs within LDA XC-functional 
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Fig.8. Plots of (a) total energies versus lattice-constants and (b) cohesive energies versus molecular volumes of bcc  

and zincblende structures of AlAs within GGA XC-functional. 
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3.2 Tabular Representation Results 

 

TABLE 1: List of Minimum Total Energy and Total Time Against Lattice Constant for Determination of 

the Most Stable Phase of AlAs Structure. 
Phase XC Lattice-constant 

(A
0
) 

Emin (eV) Total time (s) 

 

BCC 

LDA 5.3 - 68397.3297389759 156.213 

GGA 5.4 - 68506.2096932378 246.766 

 

ZINCBLEND 

LDA 5.7 - 68400.0447821083 290.259 

GGA 5.8 -68508.7410032641 556.509 

 

TABLE 2:  Cohesive Properties of AlAs Zincblend Crystal 
Property 

  

Present using GGA xc 

 

Present using LDA xc Experimental Others 

Lattice constant 

(A
o
) 

5.749542362 5.647908525  

 

5.662[24](Sayed et 

al, 1984)  

 

5.661[25](Powel, 2007) 

Cohesive energy 

(eV/atom) 

-5.0551700666 -5.93731365155 

 

-4.67[26](Verma, 

2010) 

-5.22[26] (Verma, 2010) 

 

Bulk modulus 

      B0 (GPa) 

66.340307  71.676059 

 

74.7[24] (Sayed et 

al, 1984) 

78.1[25] (Powel, 2007) 

B0' 3.3700769341 3.70687713385 - - 

 

IV. Discussion 
From Fig.2 and 3, it is clear that the zincblende phase of AlAs has much lower total energy than that of 

bcc phase. Thus zincblende phase is the most stable at ground state and is chosen to be the unit cell of interest in 
this work as in agreement with the experiment and other theoretical works.. 

From Fig.4a., it can be seen that, the total energy of AlAs computed for 3x3x3 within LDA gives an 

error of about 0.501 eV from the most accurate value given by 16x16x16 kgrid. The 8x8x8 kgrid calculations 

reduced the error to about 55 meV. The 10x10x10 kgrid drastically reduced the error to about 0.29 meV. 

Furthermore, the 12x12x12 k-grid converges within 0.05 meV. Similarly, from Fig.5a., the total energy of AlAs 

calculated for 3x3x3 kgrid within GGA converges within 0.41 eV of the most accurate calculation of 16x16x16. 

The 8x8x8 fixed the error to about 1.6 meV. The 10x10x10 kgrid on the other hand is converged within 0.26 

meV. The 12x12x12 reduces the error to about 0.05 meV. 

Looking at the computational times for both AlAs LDA and GGA (Fig.4.b and Fig.5.b) calculations, 

we noticed two general trends in FHI-aims. First, the times strongly decrease towards larger lattice constants. 

This is because there is less overlap between atoms and so less integrations are needed. The approach of FHI-
aims is particularly efficient for “open” structures where the atoms occupy more space and thus have less 

neighbors. Second, increasing the number of k-points does not affect the computational times significantly up to 

comparably dense k-grids. A total energy calculation with a 10×10×10 grid is not so much more expensive than 

a 3×3×3 calculation. Only with even denser k-grids computational times increase become noteworthy. 

In conclusion, the 10×10×10 k-grids was chosen for zincblende phase AlAs  as a good compromise of high 

accuracy and reasonable computational time. 

From Fig..6 was generally noticed that, the minimal basis gives completely nonphysical results; there is 

not even an energetic minimum within the calculated range of lattice constants. The minimal basis lacks the 

flexibility to give reasonable geometries. On the other hand, the binding curve does not change significantly 

from minimal+spd to the full tier1 basis set whereas the computational effort increases significantly by adding 

the f functions from minimal+spd to full tier1. 

While the total energy difference of 70meV between minimal+spd and tier1 is still larger than what we 
were aiming for in the case of the k-grid, we can make use of the fact that the total energy is variational so that a 

large part of the basis set error actually cancels nicely in energy differences. Thus the minimal+spd basis was as 

a compromising choice between accuracy and reasonable computational time for AlAs calculation within both 

LDA and GGA. 

The resulting binding curves shown in Fig.7. and Fig.8. show that the experimentally observed 

zincblende structure of  and AlAs is moststable in LDA and GGA calculation among the crystal structures 

studied in this work. 

After finding “converged” computational settings, we now revisit the phase stability check of bulk 

GaAs as in section 3.1 before proceeding to calculate the basic cohesive properties avoid false conclusions. The 

reresulting binding curves shown in Fig.7 and 8 clearly show that the experimentally observed zincblende 

structure of AlAs is most stable in LDA and GGA among the crystal structures studied in this work. 
From the ground state cohesive properties of AlAs obtained as compared with the experimentally obtained 

values and other theoretically computed results, the lattice-constants obtained is under estimated by about 0.014 
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Ao for LDA and over estimated by about 0.088 angstrom within GGA computations. The error obtained in the  

calculation of the cohesive energies of AlAs are 1.27 eV for LDA and 0.39 eV for GGA. The bulk-modulus of 

AlAs computed in this work differ from the experimental values for both LDA and GGA calculations by 3.024 
GPa and 8.360 GPa respectively. 

 

V. Conclusion 
The ground state cohesive properties such as the lattice constant, cohesive energy and bulk modulus of 

AlAs zincblende crystal within LDA and GGA were calculated. The values obtained are in agreement with the 

available theoretical and experimental values reported within some reasonable percentage errors. It could be 

concluded that, the lattice constant calculated in this work differ from experimentally reported results by 0.25%  

for LDA and 1.00% for GGA. The calculated cohesive energies for AlAs are observed to be different from the 

experiment by 8.35% for LDA and 27% for GGA. The bulk modulus computed for AlAs in this work for  LDA 
and GGA are respectively 4.00% and 11.2% below the experimentally reported results.  
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