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 Abstract: Dirac-Maxwell’s equations, retained for magnetic monopoles, are generalized by introducing 

magnetic scale field. It allows the magnetic monopoles to be time-dependent and the potentials to be Lorentz 

gauge free. The non-conserved part or the time-dependent part of the magnetic charge density is responsible to 

produce the magnetic scalar field which further contributes to the magnetic and electric vector fields. This 

contribution makes possible to create an ideal square wave magnetic field from an exponentially rising and 
decaying magnetic charge. 
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I. INTRODUCTION 
The Maxwell–Heaviside equations prescribe both open dissipative systems having coefficient of 

performance (COP) > 1 and equilibrium systems having COP < 1. Imposition of the Lorentz symmetrical 

regauging reduces the set of Maxwell–Heaviside equations into a subset which discards open dissipative 

Maxwellian systems and retains only those in equilibrium [1]. However, the discarded class of Maxwellian 

systems contains all Maxwellian electromagnetic (EM) power systems exhibiting COP > 1, by functioning as 
open dissipative systems freely receiving and using excess energy from the active vacuum. To study the open 

dissipative systems the potentials are to be made Lorentz gauge free. While studying such systems, 

Anastasovski et al [2] obtained equations for vacuum current density and vacuum charge density and proposed 

to pick up by a receiver and use to generate huge electrical energy. Similar results have been deduced by 

Lehnert [3–6] and Lehnert and Scheffel [7] from the condition of a nonzero charge density from vacuum 

fluctuations in combination with the requirement of Lorentz invariance. By another approach Teli and Jadhav 

[8] removed the Lorentz condiction on potentials by introducing scalar potentials in the Generalized Dirac-

Maxwell’s equations which made the electrical charges time varying in nature. These charges then did not 

satisfy the continuity equation. The non-conserved part of the charge density was accommodated in terms of a 

scalar field. They obtained electromagnetic fields of non-conserving electric charged particle. However, 

magnetic monopoles, elementary particles with a net magnetic charge, have been a curiosity for physicists and 

many believe they ought to exist. Our attempt is to find out the fields of non-conserving magnetic monopoles 
with removing Lorentz gauge on the potentials. 

The next section includes the Generalization Maxwell’s equations for magnetic monopoles by 

introducing a magnetic scalar field H0, which removes the Lorentz condition on the potentials. In section 3, the 

magnetic scalar field, in addition to the magnetic vector field and the electric vector field of a time-dependent 

magnetic monopole is obtained. It is found that the magnetic scalar field H0 is a function of the time rate of 

change of the magnetic charge on the monopole. In section 4, the magnetic vector field and magnetic scalar field 

of a stationary time-dependent magnetic monopole are evaluated. Section 5 includes calculation of ideal square 

wave magnetic field from a rising and decaying magnetic monopole. Section 6 includes the discussion. 

 

II. GENERALIZATION OF MAXWELL’S EQUATIONS FOR MAGNETIC MONOPOLES 

Analogous to [8], we may introduce a scalar function H0 into Dirac-Maxwell’s equations retained for 
magnetic monopoles only to accommodate the time dependent part of the source densities such as  
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where P1 and P2 are operators and H0 is a magnetic scalar field. 

As usual the vector fields can be expressed in terms of the potentials 
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These potentials satisfy the usual differential equations: 
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provided that 

 
























tctc
HP

m

m
11

01 A       (4a) 

 



















tc
HP

m

m
1

02 A       (4b) 

These equations give 
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The magnetic scalar field H0 is the actual replacement of the Lorentz condition. If the potentials satisfy 

the Lorentz condition, the magnetic scalar field disappears and the Dirac-Maxwell’s equations for magnetic 

monopoles attain their original form. The generalized Dirac-Maxwell’s equations for magnetic monopoles are 

then: 

 0 E         (7a) 

 mρ
t

H

c
4

1 0 



 H        (7b) 

 m

c
H

tc
j

H
E

41
0 




       (7c) 

 0
1







tc

E
H        (7d) 

Equations (2a), (2b) and (5) are solutions of Generalized Dirac-Maxwell’s equations. 
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 In the absence of the sources, all of them propagate with velocity c in vacuum. Equation (8c) shows 

that the charges satisfy the continuity equation in the absence of the scalar field. 
 

III. FIELDS OF A TIME-DEPENDENT MAGNETIC MONOPOLE 
For a time-dependent point magnetic monopole, the equations (3) have usual solutions as given by 

Panofsky and Philip [9]: 
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where 
c

RS
vR 

 , r'rR  , r is the field point vector, r' is the source point vector at the retarded time 't  

defined by c/Rt't   and v is the instantaneous velocity of the monopole. 

The EM fields for such a monopole in arbitrary motion, using equations (2), (5) and (9), are 
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Both the fields H and E receive contributions from the instantaneous value of the magnetic charge on 

the monopole as well as the rate of the change of the charge with time. Clearly, the magnetic scalar field H0 is a 
function of the rate of change of the magnetic charge on the monopole with time. For time-independent 

magnetic charge on the monopole, the scalar field disappears and the above field equations reduce to their usual 

forms. 

 

IV. MAGNETIC FIELD OF A STATIONARY MAGNETIC MONOPOLE WHOSE CHARGE IS 

CHANGING WITH TIME 
 The net magnetic field due to a magnetic monopole when its velocity is zero, using equation (10a) and 

with dt'dt  , is 
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Thus it is possible that H vanishes at 0rr  , if 

 00 
dt

dq

c

r
q

m
m        (12) 

which gives 

 
dt/dq

cq
r

m

m
0         (13) 

Thus, if 0r  to be positive, dt/dqm  should be negative, i.e. the magnetic charge should decrease with time. 

For decaying magnetic charge on the monopole, equation (11) with respect of equation (13) gives 
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It suggests that, if the magnetic charge on the monopole is positive and decaying, then at 0rr  , H is 

zero, for 0rr  , H is positive, and at 0rr  , H is negative, where 0r  is given by equation (13). 

 

V. IDEAL SQUARE WAVE MAGNETIC FIELD FROM A RISING AND DECAYING MAGNETIC MONOPOLE 

Developing an ideal square wave magnetic field at any point in space from conserved magnetic 

monopoles is impossible. But if the charge on the magnetic monopole is not conserved then the property of 

vanishing field from a decaying magnetic charge and maximum saturation value from an exponentially rising 

charge makes it possible to construct an ideal square wave magnetic vector field. 
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 Suppose that a charge mq  is initially at mq1  and it rises to mq2  in time T according to the following 

equation 

   m/tmm qeqq 10 1      for Tt 0     (15) 

At t = T, it reaches a maximum value mq 2  given by 

   m/Tmm qeqq 102 1           (16) 

The field produced in this time interval is 
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 Thus the magnetic field at cr   is independent on the instantaneous value of the magnetic charge on 

the monopole. 

In the further time interval T to 2T, suppose, the charge decays exponentially according to the equation 

  /tTmm eqq  2   for  TtT 2     (18) 

The field produced in this time interval as computed from (11) is 
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 Thus the field at cr   is zero and is again independent on the instantaneous value of the magnetic 

charge on the monopole. 

The requirement of    Tqq mm 20   gives  

 /Tmm eqq  21         (20) 

Equations (19) and (23) give mm qq 02  . 

 We thus see that for the decaying interval the magnetic field at cr  , by equation (19), is zero, while 

during the charging interval the field at cr  , by equation (17), is 
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 Thus periodically the field H attains only two states at cr  viz. 0 and constH , which is an ideal 

square wave magnetic field. 

 

VI. DISCUSSION  
Dirac-Maxwell’s theory under the Lorentz gauge does not include a time-dependent term of the 

magnetic charge in the fields. To see the effect of the time-dependence of magnetic charges on their fields, 

Dirac-Maxwell’s equations are made Lorentz gauge free. It shows the contribution of the rate of change of 

charge with time to the fields. Outcome of this proposition is that two magnetic charges of the same type can 

attract each other if they are decaying with time then 
dt
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 is negative for both and are placed apart by the 
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 the field gets inverted. It is clear that if the magnetic charges are time-independent then 

the scalar field H0 disappears and the generalized Dirac-Maxwell’s equations reduce to their usual form.  
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