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 Abstract : The well-known problem of unidirectional plane flow of a fluid in a non-porous half-space due to 

the impulsive motion of the rigid plane wall it rests upon is discussed in the context of an unsteady MHD fourth-

grade fluid in presence of Hall currents. The governing non-linear partial differential equations describing the 

problem are converted to a system of non-linear ordinary differential equations by using the similarity 

transformations. The complex analytical solution is found by using the homotopy analysis method (HAM). The 

existing literature on the topic shows that it is the first study regarding the effects of Hall current on flow of an 

unsteady MHD fourth-grade fluid over an impulsively moving plane wall. The convergence of the obtained 

complex series solutions is carefully analyzed. The effects of dimensionless parameters on the velocity are 

illustrated through plots and the effects of the pertinent parameters on the local skin friction coefficient at the 

surface of the wall are presented numerically in tabular form. 

Keywords: Fourth-grade fluid, HAM, Hall currents, Stokes first problem, Unsteady. 

 

I. INTRODUCTION 
Almost every student of fluid mechanics is familiar with Stokes' first problem [1], the flows over a 

plane wall which is initially at rest and is suddenly set into motion in its own plane with a constant velocity is 

termed as Stokes' first (or Rayleigh-type) problem [2-3]. Teipel [4] discussed impulsive motion of a flat plate in 

a viscoelastic fluid. Puri [5] investigated impulsive motion of a flat plate in a Rivlin-Ericksen fluid. Erdogan [6] 

analyzed plane surface suddenly set in motion in a non-Newtonian Fluid. Zeng and Weinbaum [7] investigated 

Stokes problems for moving half-planes. Tan and Xu [8-9] investigated Stokes' first problem not only for 

generalized second grade fluid but also for generalized Maxwell fluid. Erdogan [10] analyzed the unsteady 

unidirectional flows generated by impulsive motion of a boundary or sudden application of a pressure gradient. 

Fetecau and Fetecau [11] solved Stokes' first problem for ordinary Oldroyd-B fluid by sine transform. Stokes' 

first problem for Oldroyd-B and second grade fluid in a porous half space is studied by Tan and Masuoka [12-

13]. Zierep and Fetecau [14] given energetic balance for the Rayleigh--Stokes problem of a second grade fluid. 

Zierep et al. [15] discussed Rayleigh--Stokes problem for non-Newtonian medium with memory. Vieru et al. 

[16] found exact solution corresponding to the first problem of Stokes for Oldroyd-B fluid. Stokes' first problem 

for the rotating flow of a third grade fluid is numerically solved by Shahzad et al. [17]. Hayat et al. [18] 

presented numerical solution of Stokes' first problem for a third grade fluid in a porous half space. Fakhari et al. 

[19] presented a note on the interplay between symmetries, reduction and conservation laws of Stokes' first 

problem for third-grade rotating fluids. Sajid et al. [20] discussed Stokes' first problem for a MHD third grade 

fluid in a porous half space. The theoretical study of the Effects of Hall current on flow of non-Newtonian fluids 

has been a subject of great interest to researchers because of its various applications in power generators and 

pumps, Hall accelerators, refrigeration coils, electric transformers, in flight MHD, solar physics involved in the 

sunspot development, the solar cycle, the structure of magnetic stars, electronic system cooling, cool 

combustors, fiber and granular insulation, oil extraction, thermal energy storage and flow through filtering 

devices and porous material regenerative heat exchangers. In presence of a strong magnetic field in an ionized 

gas of low density, the conductivity normal to the magnetic field is decreased by free spiraling of electrons and 

ions about the magnetic lines of force before suffering collisions. The phenomenon, well known in the literature, 

is called the Hall effect and a current induced in a direction normal to the electric and magnetic fields is called 

Hall current [21]. The Hall term representing the Hall current was ignored most of the time while applying 

Ohm's law, because it has no markable effect for small and moderate values of the magnetic field. The effects of 

Hall current are very important if the strong magnetic field is applied [22], because for strong magnetic field 

electromagnetic force is noticeable. The recent investigation for the applications of MHD is towards a strong 

magnetic field, due to which study of Hall current is important [23-30]. 

The present investigation is to analyze the Stokes first problem for an unsteady MHD fourth-grade 

fluid in a non-porous half space with Hall currents. The arising non-linear problem is solved by the homotopy 

analysis method (HAM) [31-34]. The method gives complex analytic solution which is uniformly valid for all 

values of the dimensionless time. The convergence region for the complex series solution is found with the help 

of curve . The effect of the material parameters of the fourth-grade fluid, Hall parameter, Hartmann 
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number and homotopy parameter on the velocity and its time series are investigated for the impulsive motion of 

the wall. 

 

II. FORMULATION OF THE PROBLEM AND ITS ANALYTIC SOLUTION 
We consider the unsteady flow of an electrically conducting incompressible fourth-grade fluid past a 

rigid plane wall coinciding with the plane 0y . The fluid over the plane wall is initially at rest and it sets in 

motion due to the sudden jerked of the wall subjected to a uniform transverse magnetic field. It is assumed that 

the flow takes place in the upper half plane 0y  with the wall on the axisx  . The Cauchy stress tensor T  

for a fourth-grade fluid is given as [35] 
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where p  is the scalar pressure, I  is the identity tensor,  is the coefficient of viscosity, i , j , k  

      8 ,...,2 ,1 and 3 ,2 ,1 ,2 ,1  kji  are the material parameters of fourth-grade fluid, and iA  

 4 ,3 ,2 ,1i  are the first four Rivlin-Ericksen tensors defined by [35] 
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The equations governing the magnetohydrodynamic flow with Hall effect are: 
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The boundary and initial conditions are 

                                                     

 

 

  ,0for    ,0at    ,0,

,    as    0,

,0for    ,0at      ,,







yttyu

ytyu

tyUutyu w

 

                                                                                                                                              (5) 

where ),( tyu  is the velocity component in the directionx  , t  is time,   is the kinematic viscosity,   is 

the fluid density,   is the electrical conductivity of the fluid, 0B  is the applied magnetic field,  eew   is 

the Hall parameter, ew  and e  are the cyclotron frequency and collision time of the electrons respectively, and 

U  is the velocity of the wall. In order to non-dimensionalize the problem let us introduce the similarity 

transformations 
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where  ,f  is the dimensionless velocity function,   is the dimensionless distance from the wall and   is 

the dimensionless time. Equations (4) and (5) become 
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where prime denotes differentiation with respect to  ,  22

1 /  U  is dimensionless second-grade 

parameter,  34

1 /  U ,   34

32 /6  U  are dimensionless third-grade parameters, 

 46

11 /  U ,   46

8754322 /33  U  are dimensionless fourth-grade 

parameters and  22

0 / UBN   is the dimensionless modified Hartmann number [36]. The local skin 

friction coefficient or fractional drag coefficient on the surface of the moving wall is 
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Now using equations (1), (2), (3) and (6) the equation (9) can be written in dimensionless variables as 
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The boundary conditions (8) lead us to take base functions for the velocity  ,f  as 
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The velocity  ,f  can be expressed in terms of base functions as 
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To start with the homotopy analysis method, due to the boundary conditions (8) it is reasonable to choose the 

initial guess approximation 
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and the auxiliary linear operator 
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with the property: 
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where 1a  and 2a  are arbitrary constants. Following the HAM and trying higher iterations with the unique and 

proper assignment of the results converge to the exact solution: 
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similarly  ,2f ,  ,3f ,  ,4f  and so on are calculated. The obtained values of  ,0f ,  ,1f ,  
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By avoiding the detailed recurrence relations which we calculated but not presenting here due to space, the total 

complex analytic solution in compact form is 

                                             0,0

0,

00

lim,, m

L

m
L

m

m

Aff 








   

                                           ,lim ,

,

0

22

01

1

1













 













jiji

nm

m

j

nm

i

L

nm

n
L

n
L

Ae 
                                  (19) 

where from initial guess in equation (13) we obtain 
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We know that the auxiliary parameter   gives the convergence region and rate of approximation for 

the homotopy analysis method. From curve  in Fig. 1 we note that the range for the admissible value for 

  is 08.0   . Our calculations depict that the series of the dimensionless velocity in equation (19) 

converges in the whole region of   and   for 5.0 . 

 

III. GRAPHS, TABLE AND DISCUSSION 

The discussion of emerging parameters on the dimensionless velocity ),( f  is as follows: 

Figs. 2 to 9 are plotted in absence of Hall currents and in Fig. 10 Hall current is taken into account. Fig. 2 

displays the velocity f  for various values of  . This figure describes that as we move away from the moving 

wall the velocity decreases and also the fluid near the wall moves together with the wall with the same velocity 

as of the wall. Fig. 3 presents the velocity profile f  for various values of  . This figure shows that with the 

passage of time the velocity of the fluid decreases as we go in the increasing direction of  . Fig. 4 elucidates 

the variation of Hartmann number on the velocity. It is found that the velocity and boundary layer thickness 

decreases with an increase in N . When magnetic field is applied transverse to the fluid velocity then it gives 

rise to a drag-like or resistive force which slow down or suppress the motion of the fluid on the wall. This leads 

to a reduction in the velocity of the fluid as seen in Fig. 4. This means that the magnetic force provides a 

mechanism to the control of boundary layer thickness. Fig. 5 illustrates the influence of second-grade parameter 

on the velocity profile f . It is evident from the figure that an increase in   results in the increase of the 

velocity, here boundary layer thickness increases and shear thickening is observed. In Figs. 6 and 7 the velocity 

distribution is presented for the various values of third-grade parameters   and  . It is observed that the 

velocity decreases by increasing the influence of   and  . Figs. 8 and 9 show that the velocity f  decreases 

for fourth-grade parameters 1  and 2 . With the inclusion of Hall term velocity field becomes complex, so we 

plot absolute value of the velocity profile f  in Fig. 10. We observe that with increase in Hall parameter   

absolute value of the velocity and boundary layer thickness increases. 
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Table shows the influence of the Hartmann number N , Hall parameter   and fourth-grade parameters 1 , 2  

on local skin friction coefficient fC  given by equation (10). It is observed from table that with increase in 

Hartmann number N  absolute value of the skin friction coefficient fC  increases and with increase in Hall 

current   absolute value of the skin friction coefficient decreases. When magnetic field is applied normal to the 

fluid velocity then it gives rise to a drag-like or resistive force which slow down or suppress the motion of the 

fluid on the moving surface. This leads to a reduction in the velocity of the fluid and flow rates. With the 

increase in the strength of the magnetic field the motion of the particulate suspension on the surface reduces due 

to which shear stress at the wall reduces with increase in Hall current  , as observed in the table. Table 

illustrates that increase in the fourth-grade material parameters 1  and 2  give an increase in the value of the 

shear stress at the moving wall. 

 

Table. Absolute Values of the skin friction coefficient fC  with 1.0 , 1.0 , 1.0 , 1.0 , 

5.0 . 

 1    2    1.0    1.0    1.0    1.0N    1.0N    1.0N   

  
 1.0N    3.0N    5.0N    2.0    3.0    5.0   

 0.1    0.1    1.31797    1.50744    1.69454    1.31532    1.31123    1.30026   

 0.3    0.1    1.53032    1.72276    1.9128   
 1.52762   

 1.52345   
 1.51226   

 0.5    0.1    1.74271    1.93812    2.13112    1.73996    1.73571    1.72432   

 0.1    0.2    2.16588    2.39382    2.62091    2.16267    2.15771    2.14446   

 0.1    0.3    4.07518    4.42794    4.78267    4.07021    4.06253    4.04201   

 0.1    0.5    20.1533    21.4182    22.6789    20.1354    20.1076    20.0334   
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IV. CONCLUSION 
The Stokes' first problem of an unsteady MHD fourth-grade fluid in a non-porous half space is 

discussed by taking Hall currents in to account. Analytical solution for the non-linear problem is given and 

convergence of the solution is appropriately discussed. The non-linear effects on the velocity is shown and 

discussed. This reveal that plots for shear thickening/shear thinning behavior of a fluid are dependent upon the 

rheological properties of the fluid. The numerical results for Hall parameter  , Hartmann number N  and 

fourth-grade material parameters 1 , 2  reveal that Hall parameter, Hartmann number and fourth-grade 

material parameters have significant influence on the local skin-friction coefficient on the surface of the 

impulsively moving wall. 
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