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Abstract: Organic halides and other organic compounds that contain electronegative elements, have a strong 
chemical shift and a brilliant NMR spectrum will prevail.  
Relationship between 1H, 13C NMR chemical shift and Electronegativity in some simple R-X organic compounds 
(X=F, Cl, Br, I, O, H, ...R=CH3 or CH3-CH2-) give nonlinear equation, as well as a power series equation 
appears between nuclear magnetogyric ratio, magnetic shielding constant and chemical shift, which are not 
included in the theoretical expressions. More investigations required to remove the discrepancy between the 
theoretical and the experimental results. 
Keywords: Electronegativity, chemical shift, shielding constant, magnetogyric ratio. 
 

I. Introduction 
Nuclear magnetic resonance, or NMR is a physical phenomenon was observed in 1945[1,2], which 

occurs when the nuclei of certain atoms,  firstly, subject to nuclear Zeeman effect[3,4,5]will Precession with the 
Larmor frequency [6, 7]. Secondly, exposed to an oscillating electromagnetic field (radio waves), then if the 
radio wave frequency exactly matches the precession frequency, the resonance phenomenon will happen and 
this is the so-called nuclear magnetic resonance. 

However, experimentally, it has been noticed [8, 9, 10] that a nucleus may have a different resonant 
frequency for a given applied magnetic field in different chemical compounds, this difference in resonant 
frequency is called the chemical shift or sometimes fine structure. So that the shift is observed only for 
molecule compounds, and not for ions or free atoms, because of the differences in shielding of the nuclear 
magnetic moment when chemical environment is changed, where the electronic configuration of a molecule 
depends on the chemical binding [11]. 

Electron density shields the protons and the nucleus feels weaker magnetic field because of shielding, 
where a chemical shift decreases because of inner-shell electrons make a barrier decreases the nucleus attraction 
on the outer electrons, and deshielding is the opposite of shielding. The nucleus feels stronger magnetic field, 
and a chemical shift of a nucleus increases due to removal of electron density, magnetic induction, or other 
effects. 

Nevertheless, electron density depends on electronegativity of nearby atoms, where electronegativity 
is a chemical property describes the power of an atom to attract electrons towards itself [12, 13, 14, 15]. 

In addition, Sensitivity of NMR [16, 17, 18, 19,] is dependent on population distribution (Boltzmann 
distribution), applied field strength, the gyromagnetic or magnetogyric ratio of the nucleus of a particle or 
system which is the ratio of its moment to its spin momentum and abundance of spin in population. 

After that, anisotropic induced magnetic field effects (paramagnetic or diamagnetic local induced 
magnetic fields from circulating electrons where a nucleus feels with them) [20]. 

This paper will concentrate on the effect of the electronegativity  and substituents of electronegative 
elements at the NMR chemical shift spectra in some hydrocarbon compounds, and the relationship between 
chemical shift, electronegativity and Magnetogyric ratio, which will support theoretical studies. 

 
II. Quantum Theoretical Background 

In quantum mechanical terms, the nuclear magnetic moment of a nucleus can align with an externally 

applied magnetic field of strength Bext in only 2I + 1 way, either parallel (spin +1/2) with notation 0   or 

opposing Bext(spin -1/2) with  1   .  

The quantum state of a two level system(TLS) are thus called a qubit, the qubit of two configuration 
system may be given by the point on the Bloch sphere representation which is well known in nuclear magnetic 
resonance [21,22,23],thus one qubit state can be written in the form: 
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Where angles 0 ≤ θ≤ π and 0 ≤ ϕ<2π defines a point (Bloch vector) on the Bloch sphere. The states 0 
and 1 of a classical bit, lie at the north and south poles of the Bloch sphere, while a qubit can lie anywhere at all 
on the surface.  

All particles (protons, neutrons, electrons, quarks, leptons) with spin (1/2) have just two eigenstates 

[24], Spin up and spin down or in the language of the qubit, 0   , 1   , are governed by the 

Schrödinger equation which does not interact with any other system [25]. 
When a proton with a magnetic moment µ is placed in an external applied magnetic field [26], nuclear 

energy levels will subject to nuclear Zeeman Hamiltonian [23, 27]: 
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Where ˆI is the nuclear spin operators, which connect with Pauli matrix operators̂ , When 0x yB B   , 

Hamiltonian for a proton in a magnetic field will give two eigenvalues of energy levels: 
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The quantity n B   is called the Larmor precession frequency, and this expression defines the 

gyromagnetic ratio /n n Ng   ( HμN = 5.05078324(13) ×10−27 J/T), and ng is the splitting factor [28, 29, 

30].Where theoretical Larmor precession frequency ratiobetween1H an13C equal: 
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Multiply the wave function (5) by an arbitrary phase, in this case, 
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Where this expression looks like the Bloch sphere equation: 
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Comparing (7) with (6), the Bloch vector is processing around the applied magnetic field with a 
frequency nB   known as the Larmor frequency, When

n B t t      . 

In addition to the previous Zeeman static field, if a radio frequency ω as in pulsed NMR is applied in a 
direction perpendicular to Bz. This alternating field may be considered as made up of two circularly polarized 
fields as following equation [31, 32]: 
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First, we begin with the Hamiltonian in the lab frame and manipulate it according to Bloch spin rotation 
operators Equations [33, 34]: 
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Where Û is a change of basis unitary transformation and ˆ
RH is the Hamiltonian in the new rotating frame, 

which by solution it gives an effective magnetic field: 
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      , this gives the nuclear resonance condition, that mean 

Larmor frequency = applied radio frequency.  
Due to the presence of shielding electron(s), the external applied magnetic field Bext. will become less 

than what is so called the effective magnetic field strength Beff. The effective nuclear Zeeman energy gap Heff  is 
therefore generally less than the normal Zeeman effect by a fraction (absolute magnetic shielding constant or 
screening constant) [35] and this can be written as: 
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=0   naked nuclei,  > 0  nuclei is shielded by electron cloud,  < 0  electron around this nuclei is 
withdraw, i.e. deshielded behavior. 
Theoretical effective resonance frequency (from 11) will be then: 
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Magnetic shielding is a very complicated problem and comes from many factors, so that shielding Hamiltonian 
HS given by [36]: 
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Where dia diamagnetic contribution, para paramagnetic contribution, nb neighbor anisotropy 

effect, rc ring-current effect, ef electric field effect, solv solvent effect. 
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 depends on electron density and on the structure of the compounds. Any factor that effects the 
distribution of bonding electrons with nucleus will affect the degree of shielding the nucleus experiences. 

Therefore, the electronegativities of the surrounding bonded atoms are an extremely important factor 
that will alter the distribution of bonding electrons. 

Theoretically, it is difficult to calculate absolute magnetic shielding constant without experimental 
support. Therefore, NMR spectroscopy gives an excellent experimental data and semiempirical chemical shift 
expressions about this topic [37]. 

 
III. Experimental Laws And Database 

Electronegativity is a chemical property was introduced by Linus Pauling in 1932 [12], and 
Electropositive elements, metals, generally react by losing one or more electrons to become cationic Lewis 
acids. 

There are many scales represent electronegativity to all elements in the periodic table. These scales are 
Pauling Electronegativity [13, 14, 15, 38], Sanderson Electronegativity [39], Allred Rochow electronegativity 
[40], Mulliken-Jaffe electronegativity [41, 42], and Allen electronegativity scale [43]. 

However, The Pauling scale is perhaps the most famous, where we used it here. In addition, the values 
of electronegativities for all other elements are less than four with a positive number as in table (1).Pauling 
found that the largest electronegativity difference was between Cs and F. Pauling set F arbitrarily at 4.0 (today, 
the value for F is set to 3.98). 

R-X compounds consist of (C, H, F, Cl, Br, I, O…) nuclei, and most needed information about these 

nuclei exist in table (1) [44, 45] where
1
H and 

13
C nuclei with Spin 1/2. Only nuclei that contain odd mass 

numbers (such as 1H, 13C, 19F and 31P) or odd atomic numbers (such as 2H and 14N) give rise to NMR signals. 

The chemical shifts range for 
13

C NMR for most organic compounds is 200 ppm compared to 10 –15 ppm for 
1H. 
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H1 99.98  1/2 26.7519 0  500.000 2.79628 2.2 
C13 1.108 1/2 6.7283 0  125.721 0.7024118  2.55 
O17 2-3.7*10 5/2 -3.6279 2-2.6*10- 67.784 1.8930- 3.44 

F19 100 1/2 25.181 0  470.385 2.6273 3.98 

Cl35 75.53 3/2 2.624 -0.1  48.991 0.8218743 3.16 

Br79 50.54 3/2 6.7228 0.37 125.267 2.106400 2.96 

I127 100 5/2 5.3817 -0.79 100.036 2.81327 2.66 

Table 1 properties of most nuclei, which belong to R-X compounds. 

Larmor precession frequency ( n B  ) changes with changing magnetic field, NMR 

spectrometers has been developed to give very high resolution and a very accurate information .Table (2) [46] 
give some information about Larmor NMR frequencies for various external magnetic field Bext(T) for 1H and 
13C (free atom) with chemical shift zero. 
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Table 2 Larmor NMR frequencies for various external magnetic field (T) 
for 1H and 13C (free atom). 

 
Experimentally, it is difficult to obtain absolute magnetic shielding constant without reference point 

that help to calculate relatively magnetic shielding constant. For this purpose, they used an internal reference in 
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NMR spectrometer to give relative NMR frequency (MHz) in organic compounds. There are many kinds of 
reference solvents, but for 1H and 13C, it is better to use tetramethethylsilane (TMS) as a solvent, because methyl 
groups are magnetically equivalent and isolated from one another, In addition, the magnetic shielding constant 
for TMS is much larger than for most other hydrogen nuclei in organic compounds. 

Relative frequency for any sample gives what is so called chemical shift equation, which could be 
given from (12) as follows: 
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So that, the chemical shift parameter δ defines as Skoog, et.al. [47]: 

  610 (15)ppm TMS sample      

x-axis will be as an axis for δppm and spectroscopy intensity as y-axis, where δppm is independent of the applied 
field strength, and its units ppm (parts per million). 
From relation (13) shielding constant of sample consists of many terms: 

....sample dia para nb rc ef solv              

For protons, paramagnetic effects cannot arise because no -orbitals in H, which explains why 

virtually all protons resonate within -10ppm while other nuclei resonate within hundreds or thousands of ppm (C 
-250 ppm, N 900 ppm, F 800 ppm, Co 18000 ppm etc. ). 

To reduce diamagnetic effect, it is important to find any factor reduces the distribution of electron 
density around the nucleus, where elements that have highly electronegativity are an extremely important factor 
that will alter the distribution of bonding electrons in an organic compound.  

In R-X compounds, protons are bonded to carbon atoms, so substituent protons by electronegative 
atom will influence the shielding of the partial charge on the carbon that then influences the shielding of the 
proton shifts and chemical shift signal will move to downfield.  

Table (3) [48] shows how chemical shifts for a series of compounds (CH3-X) are affected by the 
presence of an electronegative element (halides) as a substitute of protons, which reduces the diamagnetic effect 
for the protons of the methyl group. 

A nucleus in the vicinity of an electronegative atom experiences reduced electron density and the 
nucleus is therefore deshielded. In proton NMR of methyl halides (CH3-X) the chemical shift of the methyl 
protons increase in the order I < Br < Cl < F from 2.16 ppm to 4.26 ppm reflecting this trend. 
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Table 3 Electronegativity effects on proton NMR chemical shifts. 

0,0090029 ( )TMS MHz clculated =300MHZ     , 
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LarmorT,  =7.05 extB  

  

 
When several substituents are present, the additive effect will prevail and shielding will decrease, so 

chemical shift will increase, table (4) [49, 50] shows deshielding effects of electronegative substituents which 
clearly obey to additive effect. 

Cpd./Sub. X =F X=Cl X=Br X=I X=OR X=SR 
CH3X 4.27 3.0 2.7 2.1 3.1 2.1 
CH2X2 5.54 5.3 5.0 3.9 4.8 3.8 
CHX3 6.41 7.3 7.0 5.7 5.2 - 

Table 4  additive effect on proton chemical shifts (ppm) 
=300MHZ1 H

L arm or=7.1T, extB  
 

 
The effect of multiple substituents on a carbon atom are shown in table (5) [48,49,50, 51]. Halogen 

substitution effects are complex, with fluorine and chlorine generally shifting the carbon resonance to 
downfield, but iodine having an opposite influence. In carbon NMR, the chemical shift of the carbon nuclei 
increases in the same order from around (-21) ppm (upfield shifts, higher shielding) to 75 ppm (downfield shifts, 
lower shielding) with X, and the Inductive deshielding effects of electronegative substituents are additive. 

 
Cpd./Sub. X=F X=Cl X=Br X=I X=OMe 

CH3X 75 25 10 -21 60 
CH2X2 110 54 22 -54 103 
CHX3 119 77.5 12 -140 115 
CX4 123.6 97 -29 -293 121 

Table 5  additive effect on carbon chemical shifts (ppm) 

=75MHZ
13 C

L arm o r=7.1T,extB  
 

 
Also, when the carbon atom is removed further away from an electronegative element the effect of this 

element  diminishes until it can be observed no longer affective  as shown in tables (6,7)[48,49,50,51,52], where 
the longer-range influence of such substituents is apparently diminished. 
 

Compound Methyl-X Ethyl-X  1-Propyl-X 
Position of Substituent X (α)3CH–X (α)2CH–X (β)3CH– (α)2CH–X (β)2CH– (γ)3CH– 

X Electronegativity of X δ in ppm  δ in ppm δ in ppm δ in ppm δ in ppm δ in ppm 
–H 2.1 0.23 0.86 0.86 0.91 1.33 0.91 
–F 4 4.27 4.55 1.35 4.30 1.68 0.97 
–Cl 3.1 3.06 3.47 1.33 3.47 1.81 1.06 
–Br 2.8 2.69 3.37 1.66 3.35 1.89 1.06 
–I 2.5 2.16 3.16 1.88 3.16 1.88 1.03 

–OH 3.44 3.48 3.71  1.24 3.59 1.59 0.94  
-Si 1.8  0(TMS) 0(TMS)  0(TMS) 0(TMS) 0(TMS)  0(TMS) 

(δ in ppm) at sp3 carbons for long range influenceH Chemical Shifts 1 6 Table 

=300MHZ
1 H

L arm o r=7.1T,extB 

 
X3CHRCompound,   RCH2F RCH2Cl RCH2Br RCH2H RCH2I Si4)3(CH 

Element X  F Cl Br H I Si 
Electronegativity of Element X  4.0 3.1 2.8 2.1 2.5 1.8 

Chemical shift, δ / ppm 84  45  34 10 7 0 
Frequency(Hz) 6,300 3,375 2,550 750 525 0 

)/ppm
sampleShielding constant( 104.1 143.1 154.1 178.1 181.1 188.1 

 
Table7 Electronegativity effects on α-carbon NMR chemical shifts. 

=75MHZ13 C
L arm or=7.1T, extB 
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Figure (1) shows effect of electronegative element on deshielding of protons and its distance from CH3, and 
chemical shift at CH3 is lower than CH2Br. 

 
Fig.1 protons NMR chemical shift of CH3CH2Br (after encyclopedia Britannica, 1997) 

 
IV. Results And Discussions 

In this paper, the relationship between electronegativity effects and chemical shift have been discussed 
in order to improve the picture of the NMR phenomenon in R-X compound, and following  discussion will treat  
the substituents influence, multiple substituents influence, additive Influence, longer- range  Influence  and  
Magnetogyric ratio Influence. 

The organic compounds, which scan by NMR Spectrometer, have two types to characterize, 1H NMR 
and 13C NMR; they are used to determine the type, number, position, intensity, spin- spin splitting, and others of 
signals of H and C atoms in a molecule. 

Figures (2, 3)[sources of all figures from tables 1-7] show a nonlinear relationship between proton and 
carbon Chemical shift with Electronegativity of X, which may be belong to complex effects of shielding 
constant. 
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Fig. 2 proton NMR chemical shift vs. electronegativity 
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Fig.3 carbon NMR chemical shift vs. electronegativity 

 
Figures (4, 5) show the additive effect on protons and carbon where the chemical shift increases with 

increasing the number of electronegative elements connected with carbon atoms. 
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Fig. 4 additive effect on protons chemical shifts ( ppm ) 
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Figure (6) shows the long distance effect on chemical shift where the farthest carbons and protons from 
electronegative elements has the lowest chemical shift. The relation between α –carbon chemical shift and 
electronegativity is nonlinear.  
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Fig. 6  α-carbon NMR chemical shift versus electronegativity. 

so, TMS is 188.1-C13 , andTMS shielding constant is about 30 -H1 Absolute value of 

(16)sample TMS ppm     

It was found by using Jaguar 7 program a linear fitting between protons NMR chemical shift and shielding 
constant (B3LYP/LACV3P**)[53]: 

δ = -0.957887412 * σcalc + 30.58499337              (17) 
However, figure (7, 8) shows nonlinear relation between shielding constant and chemical shift, comparing with 
expression (13), may be found some information about many contributions in these relations. .  
 

 
Fig. 7 proton magnetic shielding constant versus chemical shift. 

 

 
Fig. 8 carbon magnetic shielding constant versus chemical shift. 

To understand the nature of the gyromagnetic ratio, protons values of  ,ef f ef fB  was calculated 

and figure (9) shows the relation between them, it appears that the relationship is not linear and the theoretical 
relation with theoretical relation (12): 
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Fig. 9 proton effective frequency versus magnetic effective field. 

Most of studying concentrated on shielding constant, but the magnetogyric ratio has a special 
significance because of the role it plays in nuclear magnetic resonance (NMR) and magnetic resonance imaging 
(MRI). 

There are difference between proton gyromagnetic ratio and shielded proton gyromagnetic ratio and 
other many constants [54], where shielded Larmor equation tells that not only shielding effect but also 
gyromagnetic ratio affected by nuclear surroundings and other isotopes (triton g factor, deuteron g factor, 
deuteron magnetic moment, triton magnetic moment). 

Figure(10) shows nonlinear equation relationship between  calculated  gamma bar( n )for each sample 

and proton NMR chemical shift,that mean, at the same time , there are a double or more effects as a sum of 
factors from many sources, which need to study more carfully.  
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Fig.10 proton gyromagnetic ratio bar ( n ) versus proton chemical shift 

 
V. Conclusion 

Experimental analysis of data denotes to formulae between electronegativity and NMR chemical shift 
is not linear, as well as, shielding constant, effective frequency, and the gyromagnetic ratio gives an expression 
like a power series, whereas theoretical formulae almost linear relations, which mean, there are partially 
inconsistent between theoretical and experimental relationships. 

Power series equations may discover the contributions of many factors, where some of them still 
ambiguous until now, using experimental formulae will be able to predict most mysterious phenomena in NMR 
phenomenon. 

Theoretical equations need further to study to identical with experimental formulae and it is necessary 
to compare between them to detect the physical meaning of each term in near future.  
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