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Summary: Interacting boson model (IBM-1) was used in the present work to study some of nuclear structures 

for selected Dysprosium isotope  of even  mass number Dy( A=154-158). The energy levels and energy ratios of 

these isotopes were investigated for there are experimental. The calculated results were compared with the 

available experimental data, the results were in general  good agreement. 

 

I. Introduction 

The Interacting Boson Model (IBM), initially introduced by Arima and Iachello has been rather 

successful in describing the collective properties of several medium and heavy nuclei .We note that in the 

interacting boson model-1 (IBM-1)one describes an even-even nucleus as a system of N bosons able to occupy 

two levels, one with angular momentum re- stricted to zero (s boson) and one with angular momentum 2 (d 

boson). )1( 

 

II. The interacting Boson model 
In the simplest version of the interacting boson model (IBM-1), its assumed that low-lying collective 

states in even-even nuclei away from closed shells are dominated by excitation of the valence protons and the 

valence neutrons (particles outside the major closed shell) while the closed shell core is inert. Furthermore, its 

assumed that the particle configurations which are most important in shaping the properties of the low-lying 

states are these in which identical particles are coupled together forming pairs of angular momentum  0  and  

2.(1)  

The interacting Boson model (IBM-1) is used in the present work, this model represents very important 

step formed in the description of collective nuclear excitations. The underlying U(6) group structure of model 

basis leads to a simple Hamiltonian which is capable of describing the three specific limits of collective 
structure vibrational U(5), rotational SU(3) and gamma unstable O(6). (2) 

The interacting boson model offers a simple Hamiltonian, capable of describing collective nuclear 

properties across a wide range of nuclei, based on general algebraic group theoretical techniques which have 

also recently found application in problems in atomic, molecular, and high- energy physics )3,4(. 

 

III. Theoretical Basis: 
Hamiltonian operator function according to IBM-1 is written in terms of creation and annihilation 

operators as follows ;(5,6) 
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Where E=Ed - Es  is the boson energy. 

 Where ε, a0, a1, a2, a3 and a4 are parameters used in IBM-1 to determine the Hamiltonian function . 
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and a0 ,a1,a2,a3,a4 are the phenomenological parameter . 

 

3.1.1 Rotational Limit SU(3):      

The electromagnetic transition rates, B(E2) values of this chain and the quadrupole moments (QI) are described 

by [6]; 
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In particular, for  I=0, or 2 
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The basic condition for the observation of a SU(5) symmetry in the electromagnetic transition is[7]: 
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Where the necessary conditions for the observation of the SU(3) symmetry are[8]; 
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3.1.2.The Vibrational SU(5) Limit) 
The electromagnetic transition rates, B(E2) values of this chain and the quadrupole moments (QI) are described 
by (8). 
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In particular, for  I=0, or 2 
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The basic condition for the observation of a SU(5) symmetry in the electromagnetic transition is[8]: 
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IV. Transitional Regions in IBM-1 
4.1.1 SU(3)-SU(5) transitional dynamical symmetry 

This transitional region includes the two groups, SU(3) and SU(5). The SU(3) has to be broken with dn term. 

The general form of Hamiltonian operator of this region can be given as(9,10). 
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 -----------------------(13) 

The solution of the equation (13) depends on the ratio of ( /a2), when the ratio ( /a2) is large the 

eigenfunction of Ĥ are those appropriate to the limiting SU(5). Also the B(E2) values are affected by the ratio (
 /a2). The B(E2) ratios ( Branching Ratios)  R can be given by (10). 
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Where : 

R= 0    in SU(5) region 

R=7/10   in SU(3) region 

 

4.1.2 SU(3)-O(6) transitional dynamical symmetry 

The breaking of SU(3) symmetry in the direction of O(6) symmetry can be treated in this transitional region by 

adding the term PP ˆ.ˆ †
, so that the Hamiltonian form can be written as (11). 
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The solutions of equation (14) depends on the ratio (ao/a2), when it is large, the eigenfunction of the Hamiltonian 

Ĥ are appropriate to O(6)  
Symmetry, but if it is small, the eigenfunction are appropriate to SU(3) symmetry. In this region the change in 

the electromagnetic rates can be seen from the branching ratios R which takes values 

R= 7/10  in SU(3) symmetry 

R= 0    in O(6) symmetry 

 

4.1.3 .SU(5)-O(6) transitional  dynamical symmetry  

The form of Hamiltonian in this region can be written as (12). 
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†                              -------------------(16) 

The solution of the equation ( 15) depends on the ratio ( /ao) 
The B(E2) values show a smooth transition towards typical O(6) vales, the branching ratios takes constant value 

(12,13). 

R= 0   in SU(5) symmetry 

R=0   in O(6) symmetry 

Also, when the ratio ( /ao) is large, the eigenfunction of Ĥ are those appropriate to the limiting SU(5), while 
when it is small, the eigenfunctions are appropriate to symmetry O(6). 

 

V. Results & Discussion 
In this work we have studied the energy levels of even-even Dy (A =154 -158) isotope transitions with 

change in number of neutrons observed when moving from the lighter to heavier isotopes, i.e. SU(5) - SU(3) 
transitional regions (Table 1). 

The even-even154, 156,158Dy isotopes have (66) protons and (88,89,90) neutrons respectively. The core is 

taken at major closed shell (82) for protons and neutrons. Therefore, the number of bosons were determined for 
154Dy ,156Dy and 158Dy, is equal (11),(12) and (13) bosons respectively. The nuclear deformation increases with 
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the increasing of valance boson number. The interacting boson model version one (IBM-1) gives us a very 

closing value with the experiment.  

 

5.1.2 .Energy bands (g, β, γ) ; 
Figures (1- 3) show the energy levels and the energy bands arrangement compared with identical bands 

for the three limits SU(5) - SU(3) and O(6).The IBM-1 model in its group theoretical formulation, exhibits three 

dynamical symmetries, each corresponding to a particular a way of breaking the degeneracy of the parent U(6) 

group.  

The behavior of the structure of each nucleus considered in this work is deduced by studying the 

dynamical symmetry of deformed Dy (A = 154-158) and the energy spectrum according to the sequences of 
energy bands g,  β,  γ.The parameters of Eq.[1] fitted to the experimental data are used to calculate the 

eigenvalues and eigenvectors of Dy (A = 154-158) isotopes, which are tabulated in Table 1. 

To carry out the calculation of  154-156-158 Dy using interacting boson model-1(IBM-1), which does not 

distinguish between the neutron- and proton- boson, we must evaluate the total number of bosons N (Table  2 ) 

and the dynamical symmetry. Levels energy belonging to the( g,β,γ) bands,energy Levels, and energy ratios are 

calculated. The calculated values are compared with the available theoretical and experimental data and show 

reasonable agreement. 

 the energy spectrum accordingto the sequences energy bands (g, β, γ) give agood agreement for the 

level sequence of each band with the typical sequence of ground band (0+, 2+, 4+,……), (β – band) (0+, 2+, 

4+,……), and (γ – band) (2+, 3+,4+, 5+,……).There are good agreement between the present results and the 

experimental 

 

5.1.1 .Energy ratios 

Table(3)show the theoretical energy ratios compared with the experimental data for chosen even-even  

IsotopesDy.The energy ratios of Dy(A=154-158)is the  )2(
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values,it has beenpointedout by Zhang et al [7] that the ratio E41
+/E21

+ is an important parameter for 

determining the shape of a nucleus.The value E41
+/E21

+increases from 2.33 for 154Dy to 2.93 for 156Dy and after 

that, there is increase in the value 3.2 of E4
+/E2

+ ratio from 158 Dy. 

Figures( A, B and C) showThe relation between the energy ratios as a function of number of neutron N for the 

even-even Dy(A=154-158) isotopes.. The dynamical symmetries for the isotopes under study have been 

determined.Which is found to be  154Dy which has transitional motion of the SU(5)-O(6) translation region 

,156Dy which hastransitional motion of theO(6)-SU(3) dynamical symmetryand158Dy which has rotational 

motion of theSU(3) dynamical symmetry. 

 
Table(1)Theoretical energy ratios compared with the experimental data for chosen even-even isotopes 
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52
+
  2.924 52

+
  2.094    

65
+
  3 65

+
  2.329    

72
+
  3.9416 72

+
  2.71    

85
+
  4  85

+
  3    

 
Table(2)The parameters of Hamiltonian function operator for Dy (A = 154-158) isotopes. 

Isotopes Nπ Nν NTot 
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Table(3)Theoretical energy ratios compared with the experimental data for chosen even-even isotopes 

 

 
Fig (1) Comparison between calculated IBM (pw) and experimental energy bands states g, β, γin isotope  

90

154

66
Dy  of the dynamical symmetry SU(5) – O(6). 
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Fig 2Comparison between calculated IBM (pw) and experimental energy bands states( g, β, γ) in isotope  

92

156

66 Dy  of the dynamical symmetry SU(3) – O(6). 

 

 
Fig 3Comparison between calculated IBM (pw) and experimental energy bands states( g, β, γ) in isotope  

94

158

66 Dy  of the dynamical symmetry SU(3) – O(6). 
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Number of Neutron N(A) 

 
Number of Neutron N (B) 

 

 
Number of Neutron N.(C). 

 

The relation between the energy ratios as a function of number of neutron N for the even-even Dy (A=154-158) 

isotopes. 
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