www.iosrjournals.org

Representation of d'Alembertian Operator in Quantum Mechanics

Umasankar Dolai

Assistant teacher, Garhbeta South C.L.R.C., Satbankura-721253, Dist.-Paschim Medinipur, West Bengal, India

Abstract: The quantum mechanical formulation of d'Alembertian operator \Box^2 will be drawn in this paper.

Keywords: Classical Mechanics, Quantum Mechanics, General and Operator Algebra.

I. Introduction

In classical mechanics, the d'Alembertian operator $\Box^2 = \Delta^2 - 1/c^2 \cdot \delta^2/\delta t^2$; where $\Delta^2 = \delta^2/\delta x^2 + \delta^2/\delta y^2 + \delta^2/\delta z^2$. Now what will be the form of \Box^2 in quantum representation?

II. d'Alembertian Operator

In quantum mechanics, the momentum operator $p=\hbar/i$. Δ and the energy operator $E=i\hbar.\delta/\delta t$.

Hence
$$p^2 = \hbar^2/i^2$$
. $\Delta^2 = -\hbar^2\Delta^2$ and $E^2 = i^2\hbar^2$. $\delta^2/\delta t^2 = -\hbar^2$. $\delta^2/\delta t^2$

Now $\Delta^2 = -p^2/\hbar^2$ and $\delta^2/\delta t^2 = -E^2/\hbar^2$

Thus $\Delta^2 - 1/c^2 \cdot \delta^2 / \delta t^2 = E^2 / c^2 \hbar^2 - p^2 / \hbar^2$

Therefore $\Box^2 = (E^2/c^2 - p^2)/\hbar^2$

III. Energy and Momentum

It is known that $E=p^2/2m+V(r)$.

As p= $\hbar/i.\Delta$; so E²= $\{-\hbar^2/2m.\Delta^2+V(r)\}^2$

$$=\hbar^4/4m^2.\Delta^4-2. \hbar^2/2m.\Delta^2.V(r)+V^2(r)$$

Hence $E^2/c^2 = \hbar^4/4m^2c^2 \cdot \Delta^4 - \hbar^2/mc^2 \cdot V(r) \cdot \Delta^2 + V^2(r)/c^2$

Thus $E^2/c^2 - p^2 = \hbar^4/4m^2c^2 \cdot \Delta^4 - \hbar^2/mc^2 \cdot V(r) \cdot \Delta^2 + V^2(r)/c^2 + \hbar^2\Delta^2$

 $= \hbar^4/4m^2c^2.\Delta^4-\hbar^2\Delta^2\{V(r)/mc^2-1\}+V^2(r)/c^2$

Therefore $(E^2/c^2-p^2)/\hbar^2 = \hbar^2/4m^2c^2.\Delta^4 - \{V(r)/mc^2-1\} \Delta^2 + V^2(r)/\hbar^2c^2$

IV. Wave Equation

The equation of motion of wave propagation is $\Delta^2 \psi(\mathbf{r},t) = 1/u^2 \cdot \delta^2/\delta t^2 \cdot \psi(\mathbf{r},t)$.

If u=c, then $\{\Delta^2 - 1/c^2 \cdot \delta^2/\delta t^2\} \psi(r,t) = 0$.

Again from the above discussion, $(E^2/c^2-p^2)/\hbar^2 = \Box^2 = \hbar^2/4m^2c^2 \cdot \Delta^4 - \{V(r)/mc^2-1\} \Delta^2 + V^2(r)/\hbar^2c^2$.

Therefore $\Box^2 \psi(r,t) = [\hbar^2/4m^2c^2.\Delta^4 - \{V(r)/mc^2-1\} \Delta^2 + V^2(r)/\hbar^2c^2]\psi(r,t) = 0.$

V. Conclusion

Finally the d'Alembertian operator takes the form in quantum representation as

 $\Box^2 = \hbar^2 / 4m^2c^2 \cdot \Delta^4 - \{V(r)/mc^2 - 1\} \Delta^2 + V^2(r)/\hbar^2c^2.$

As well as in this respect, the wave equation in quantum mechanical interpretation is

 $\label{eq:continuous} [\hbar^2/4m^2c^2.\Delta^4 - \{V(r)/mc^2 - 1\} \ \Delta^2 + V^2(r)/\hbar^2c^2]\psi(r,t) = 0.$

References

- [1]. J.D.Jackson, Classical Electrodynamics.
- [2]. E.P.Ney, Electromagnetism and Relativity.
- [3]. P.A.M.Dirac, Quantum Mechanics.
- [4]. V.Rojansky, Introductory Quantum Mechanics.