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Abstract:  
Why should the wavefunction have a Guassian Function for a Harmonic Oscillator? 

What is the lowest energy? 

What does the “ Zero point energy” signify? 

When is a wavefunction oscillatory? 
Does the wavefunction have any bearing with the turning points? 

What is parity? When is parity even or odd? 

Many such questions can be answered by the computational method. The computational methods used for 

solving the second degree differential equation (Schroedinger’s  time independent equation) is by  Runge-Kutta 

fourth order method using Microsoft-Excel. 

For harmonic oscillator, the accuracy of the results is good. An initial guess of the wavefuntion at a point can 

give the value at successive points using a small step size. 
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I. Introduction 
 Obtaining the eigen value and eigen functions  by solving the Schrodinger equation is pretty involved. 

Solving a second degree differential equation by computational  method using Runge Kutta 4th order is another 

easy way. 

 The animated wavefunction speaks volume about the characteristics of eigenfunctions.  It also explains the 

discrete eigenvalues. Concept of parity becomes obvious  and, comparison with the classical oscillator, 

pictorially, is satisfying. The correspondence principle for large quantum number becomes visual. View the 

spread sheet 

 

II. Methodology 

 The potential of a harmonic oscillator is 
21

2V kx The parabolic potential of a harmonic oscillator  is 

shown in Fig 1.  

 

 
Fig 1. Parabolic potential 

     

Eigenvalue Problem  
 The time independent Schroedinger equation for a  non-relativistic quantum system, in one dimension, and 

in atomic units  ( 1, 1m    ), can be written as  
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Guess solution with a Guassian function gives 
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The Guassian function satisfies the requirement of the wavefunction at    x or x  . But, C 
is to be determined!  

Boundary conditions are essential in determining the solution. Since the energy of the oscillator should be 

equal to or larger than the potential, the turning points at  x1 and x2 gives [1]   

     E = V(x1) =V(x2)       ..3 

The turning points are symmetrically placed from the origin. We can write x1= -x0 and x2 = x0, then 

    

2

0
0

2
( ) ,      

2

E kx
x E where E

k
   ..4 

 

For a bound state, the energy eigenvalues are discrete and each of the eigen solution corresponding to 

the eigen value describes some physical stationary state.  
The simplest numerical method is to start with a trial energy and keep on changing the value till it 

satisfies the boundary condition  

 0  n for x  
                    ..5

 

 

With ψ as the wavefunction, ψ’ and ψ’’  the first derivative and second derivative respectively., the fourth order 

Runge-Kutta coefficients [2] are 
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Hence, the wavefunction and its derivative at  (x+h) is 

   
1
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 Computation using Microsoft excel gives the following. 

  

The eigenfunction obtained with E = 2.5 and the corresponding graphs is shown in Fig. 2  
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Fig. 2   Wavefunction of harmonic oscillator with E = 2.5 

 

The continuity of the derivative of the eigenfunction is shown in Fig. 3 

 
Fig. 3  The derivative of the eigenfunction is also continuous. 

 

III. Results of harmonic oscillator 
o The eigen values are discrete, E = 0.5, 1.5, 2.5,…..energy units  only satisfy the boundary 

condition 0  for  and x x      

o For eg., E = 0.5 satisfies the boundary condition  0  for  and x x     

as shown in Fig. 5 (a)   But, for E greater than 0.500 the wavefunction tends to minus infinity (as shown in Fig. 

5 (c))   while for E lesser than 0.500 , the wavefunction tends to plus infinity  (as shown in Fig. 5 (b)).These   

wavefunctions are not physically acceptable. 

 

o All acceptable eigenfunctions  have  eigen values that are half integers. Thus, En = (n+ 1
2 )  units where n 

= 0,1,2,….. 

 

o n  refers to the nodes of the oscillatory function within the potential well. For example, at  

E = 2.5 units, there are only two nodes.  

 

o Odd n wavefunctions are assymetrical, hence refer to odd parity while for even n the wavefunction are 

symmetrical ,thus have  even parity (Fig 4 & 5(a) respectively) 

 

 
Fig 4. Odd parity for odd n 
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o Accuracy of the eigenvalue depends on the step-size h. Uncertainity decreases with decreasing step-size. 

Refer to (Fig 5(a) & 6 (a). 

o  

 

 
Fig 5(a) Wavefunction tends to zero at ±∞ and has even parity for even n. 

 

 
Fig 5(b) Not a meaningful wavefunction. 
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Fig 5(c) Not a meaningful wavefunction 

 

 
Fig. 6(a) Meaningful wavefunction with Energy 0.50000 

 

 
Fig 6 (b )Not a meaningful wavefunction,  h= 0.05. 

 

 
Fig 6 (c) Not a meaningful wavefunction  h=0.05 

 

Eg., E = 1.500 ± 0.001 for h = 0.1 as shown in Fig 5 (a),(b),(c) 

and E = 1.5000 ±.0005 for h = 0.05 as shown in Fig 6 (a),(b),(c). 

o The normalization constant  increases the amplitude/intensity of the wave function, but does not affect 

otherwise.  

 

o Like in Classical theory, for large n (=100) the probability of obtaining the particle at the turning points is 

more as shown in the Fig. 7. This is the Bohr’s correspondence principle.[3]  
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Fig 7. Bohr’s correspondence principle for n = 100 

 

Thus, the animated wavefunction answers all the questions and is a novel method to explain difficult  

topics to young students of Physics  in the classroom. 

For watching the animation, go to the link View the spread sheet and use the excel sheet. Change the 

eigenvalue E quickly and watch the modifications in the wavefunction in the graph. The wavefunction explains 

it all. 
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