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Abstract: In this very paper a summary of several previous papers is shown – and an extended version of a new 

universal formula of the rotation velocity distribution of galaxies and also a new formula of the energy density 

distribution of galaxies are presented. The newest version of this formula is based on a relativistic invariant La 

Place wave equation where it has been possible to obtain expressions for the rotation velocity - and energy 

density distributions versus distance to the galactic centre. Several mathematical proofs of these new formulas 

are also given. These formulas are divided into a Keplerian (general relativity)-and a relativistic (special 

relativity) part. It has also been possible to derive these formulas for galaxies by using geodetic line 

expressions. The relativistic invariant La Place wave equation has also been shown to be applicable to 

planetary systems too and it has been still developed in a new and very dynamic version with several 

advantages. According to the rotation velocity distribution of the galaxies the rotation velocity increases very 

rapidly from the centre and reach a plateau which is constant out to large distance from the centre. This is in 

accordance with observations and is also in accordance with the main structure of rotation velocity versus 

distance from different galaxy measurements. It is also possible to determine the mass, radius and maximum 
rotation velocity of the galaxy from these rotation velocity-and energy density calculations. Newer and more 

advanced computer simulation programs have also been developed and used to establish and verify the rotation 

velocity and energy density distributions in the galaxy system, according to this paper. These computer 

simulations are in accordance with observations in two and three dimensions. It has also been possible to study 

the matching percentage in these calculations showing a very high matching percentage between theoretical 

and observational values with this new formula.  

Keywords:  Astrophysics, Spiral galaxies, Theory of Relativity and Universal Formula. 

 

I. Introduction 

A. It is common in established physics that electron circular movement around atoms and planetary circular 

movement around the sun follow the usual Keplerian relationship V α ( 1 / √ R ), where V is the rotation speed 

and R is the distance to the nucleus of the atom or the centre of the sun respectively. 

The mass of a spiral galaxy can be determined from the dependence of its rotational velocity as a function of the 

distance from the center of the galaxy. Such a rotational curve has been determined from gas and stars in the 

distant parts of our galaxy, far beyond our distance to the centre. Unexpectedly, it does not follow the Keplerian 

decrease in which the circular 

rotation velocity V decreases  α R-1/2  where R is the distance to the center. According to the  

the 3:rd law of Kepler the mass of a galaxy can be expressed  as  :    

                                                       M = V
2
 R / G                                        (1) 

and the rotation velocity as :   

                                                       V = ( G M / R )
1/2

                                 (2) 

where G is the gravitation constant. 

 

By using these formulas it is possible to determine the mass and rotation speed at a certain distance of the 

galaxy. According to these equations  both mass and rotation velocity will 

decrease with increasing distance, which is established today. 

In the 1970s and 1980s radio astronomers discovered that the spiral rotation velocity remains constant 

with increasing radius Freeman ( 1 ) ,Rubin and Ford ( 2 ). They studied neutral hydrogen clouds at 21-cm radio 

wavelength and in the optical wavelength in spiral galaxies and found non-Keplerian rotation curves. These 

facts were not in accordance to the established views and came as a shock to the establishment. 

This is illustrated in Combes et al.( 3 ) (Figs 3.1-3.3)  , where the velocities of many spiral galaxies increase the 

velocity very rapidly at small distances up to a constant plateau at larger distances from the galaxy centre. 

Astronomers discovered that many galaxies rotated at very high velocities. 
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To explain this most astronomers believe that this is caused by introducing dark matter in the Keplarian 

equations above and to keep the galaxies together. They believe that most matter in a galaxy consists of dark 

matter and only a minor part consists of ordinary matter which emits light. 

This paper shows another aspect about this problem by presenting a summary of results from different 

papers about a new rotation velocity formula for galaxies. An important formula in these papers is the 

relativistic invariant La Place wave equation for evaluating the new rotation velocity formula. This relativistic 

invariant La Place wave equation has also shown to be useful for planetary orbit equations too. 

 

B.  Keplarian relationships of planetary systems 

Planets follow a similar equation to equation 2 following  the 3:rd law of  Kepler. The exact  

formula between the planet rotation speed V and the masses m for the planet and M for the sun is 

                                         V =  ( G ( m  +  M ) / r )
1 /2

                                     ( 3 ) 

for circular motion according to Lang ( 4 ) p.542.      

 

II. Galaxies. The Use Of  Schwarzschild Metric 
In Barrera and Thelin ( 5 ) we have presented a new formula about the formation of galaxies. It is based 

on the relativistic Schwarzschild/ Minkowski metric, Schwarzschild ( 6 ),Einstein ( 7 ), where it has been 

possible to obtain a formula for the rotation velocity and also a density distribution versus distance to the 

galactic centre. Similar rotation velocity profiles to our new formula have also been observed from data 

published in established books in this field. These profiles are in accordance to observations, as is seen in 

equations ( 1-10 ) in Barrera and Thelin ( 5 ). Computer simulations of equations 19 and 22 of  Barrera and 

Thelin ( 5 ) were also performed to establish and verify the velocity and density distributions suggested in that 

paper. 

According to Lang ( 8 ) p.146 a spherically symmetric gravitational field outside a massive non-rotating body in 

vacuum, can follow the Schwarzschild expression, where the line element  ds becomes : 

ds
2
 =  ( 1 – 2GM / c

2
 r )c

2
 dt

2
  -  ( 1 – 2GM /c

2
  r )

-1
 dr

2
  -  r

2
 dθ

2
  -r

2
 sin

2
 θ 

d ψ
2
                                                                                                                                       ( 4 )          

 

Here  r, θ and ψ are spherical coordinates whose origin is at the centre of the massive object with the mass M , G 

is here the gravitational constant and r is the distance. These things have earlier been studied and published by 

Barrera and Thelin ( 5 ) in detail for the rotation velocity studies in galaxies, where a new formula has been 

presented. A summary of these studies is presented here. 

By using a polar coordinate system with dθ = 0   the following expression from equation (4) is obtained :  

 

                                   ds
2
 = -  γ

-1
 dr

2
 - r

2
 dθ

2
 + γ dt

2                                                          ( 5 ) 
where  γ = ( 1 – 2M/r ) , which is the Schwarzschild term Eddington ( 9 )( p.82-85) 

From this formula it is possible to obtain an expression for the angular rotation speed 

of a galaxy :    

dθ = (1 / r )  ( ( 1 – 2M / r ) dt
2
 – ( 1 – 2M / r )

-1
 dr

2
 )

1/2
                                                     (6) 

 

The formula of the rotation speed (km/s) is obtained from the expression  

                                   v = r  (dθ/ dt)                                                                                   (7)   
 

This means that the rotation speed in km/s will be the following expression : 

                           v = k ((1 – 2M/r ) )
1/2

                                                                               (8) 

 

III. The New Universal Formula 
According to this rotation velocity formula, the rotation velocity increases very rapidly from the center 

and reach a plateau which is constant out to big distance from the center. This has also been observed in many 

papers, Sofue and Rubin.( 10 ) and Combes et al.( 3 ). 

In paper by Barrera and Thelin ( 5 ) an improvement is made of the rotation formula for galaxies in 

equation(19) of  Barrera and Thelin ( 5 ) and is seen in equation ( 33 ) in paper  (11 ) and equations ( 

14,20,22,24,52 and 59 ) in this summary paper. The approximate formula from Barrera and Thelin ( 5 )  is also 

seen in equation (15) of paper( 11 ). The new improved rotation formula in equation 33 is divided into one 

Keplerian (general relativity) part and one relativistic (special relativity) part, which also makes it possible to 

use this formula for atoms, planets and galaxies. A mathematical proof of this new universal formula is also 

given. Computer simulations in  2 and 3 dimensions with this new formula in paper (11) are also achieved, 

giving it a strong support of the appearance of atoms, planets and galaxies. In Table 1 in paper (11), galaxy 

parameters and matching between theoretical and observational data are also studied for a number of galaxies.  
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In paper (11) an exact solution of complete relativity for polar coordinates is presented where 

Minkowsky/Schwartschild metric gives for non geodetic lines(Inverse lines) 

ds
2
 = -  γ

-1
 dr

2
 - r

2
 dθ

2
 + γ dt

2                                                                                        ( 9 )   
According to the gravitation tensor of Einstein Gµ = 0 which is symmetric and gives possibility to the 

interchange between the t and s variables. 

This interchange between the s and t variables gives the rotation velocity in arc-length parameters gives : 

dt
2
 = -  γ

-1
 dr

2
 - r

2
 dθ

2
 + γ ds

2
                                                                                         (10) 

Rearranging the order between the parameters involved gives : 

r
2
 dθ

2
 = -  γ

-1
 dr

2
+ γ ds

2
  - dt

2
                                                                                         (11)  

By dividing with ds we obtain : 

r
2
  (dθ / ds) 

2
 = -  γ

-1
 ( dr / ds )

2
  + γ   - ( dt / ds )

2
                                                           (12)   

From this we obtain the relativistic rotation speed v2 =  r  (dθ / ds)  =  (- γ
-1

 ( dr / ds )
2
  + γ   - ( dt / ds )

2
 )

1/2
                                                                                                                       

(13)  

By assuming that we have circular orbit follows ( dr / ds ) = 0  which gives : 

v2 = r  (dθ / ds)  =  (  γ   - ( dt / ds )
2
 )

1/2
   = =  ((1 – 2M/r - ( dt / ds )

2
  ))

1/2
                     (22)                                                                             

Now we weight the solution such that we obtain the new universal rotation formula, which is divided into one 

Keplarian and a relativistic part :  

vtot =  w1 ( MG/r )
1/2

  +  w2 ( vmax
2
   -   MG/r )

1/2
                                                                                       (14) 

 

IV.   A. The Relativistic Invariant Laplace Wave Equation 
To obtain such a formula in paper (12) we start with studying such a formula for a light wave  

                                   𝛁𝟐 ψ  - ( 1 / c
2
 ) ψtt = 0                                                                             ( 15) 

where a sinusiodal wave function is shown with c = speed of light and c = ω / k, where ω = angular frequency. 

This formula (15) is an example of a relativistic invariant Laplacian wave equation Engström ( 13) p.129. It is 

invariant because it fulfills the Lorenz transformation Kay ( 14 ) p.172 and 167 and has proportionality in all 

coordinate systems. This equation is then transformed into spherical coordinates by using spherical harmonics 

explained in Råde and Westergren ( 15 ) p.264 with the “chain rule”. After that we project the equation onto a 

plane in order to eliminate an unnecessary constant so it can represent a spiral galaxy. 

This relativistic invariant Laplacian formula fully developed has the following appearance 

(∂
2
ψ / ∂r

2
 ) + (2/r) ( ∂ψ / ∂r ) +  (( ∂2

ψ / ∂ θ
2
 )   + (cot θ/ r

2 
) ( ∂ψ / ∂ θ

 
))  + 

 (( 1 / (r
2 
 sin

2
 θ)) ( ∂

2
ψ / ∂ φ

2
 )) – (1/ C

2
) (∂

2
ψ / ∂ t

2
 ) = 0                                                ( 16 )   

where  r = distance to centre,  C = wave phase constant , θ = spherical angle    

and will be a basis equation for galaxies. This formula is also invariant according to the Lorenz transformation 

according to Kay (14) p.167 and has proportionality in all coordinate systems. 

This equation can be rewritten as:  

ψrr  +  (2/r) ψr  -  ( l ( l+1 ) / r
2
 ) Ynl – ( 1 / C

2
 ) ψtt = 0                                                    ( 17 )  

In equation (17) Yl  is here a spherical harmonics function and ψrr and ψr are wave function deravities and  l is 

the azimuthal quantum number. These spherical harmonics are compositions of  orthogonal sines- and cosines 

functions and Legendre polynomials which are transformed into spherical coordinates according to Kay (14)  

p.167.   

The general solution including time terms will be : 

ψ( r, θ, t )  =  ( cos ( r + θ ) / r ) ( exp ( -i C t )                                                               (18 )      

The spiral galaxy model described is an energy density wave theory model and the resulting solution shall be 

powered by 2, i.e 

Ψ  ( r, θ, t ) =  |  ψ ( r, θ, t ) | 
2   ≈ ( 1 / r

 
)
 
                                                                       (19)  

Equation ( 19 ) shows a normal procedure in quantum mechanics used for atoms. Now we are using the same 

procedure for galaxies. 

The energy density fall-off  rate is therefore proportional to the inverted distance to the centre of the galaxy. The 

equation is invariant in coordinate system transformations, and invariant under a Lorenz transformation since 

the solution is produced by the relativistic invariant Laplace equation. It has the general and special relativity 

characteristics, such as rotation velocity where ψ = vrot 
2
  which gives : 

vrot =  (M / r )
1/2

 ( 1-w
2
 )

1/2
 + (v

2
max– ( M / r ) w

2
)

1/2
                                                        (20)     

where w is a weighing term used for balancing the equation , M is the mass of the galaxy and vmax is the 

maximum rotation velocity of the galaxy. Gravity units are applied in this equation. Equation ( 20 ) is similar to 

the rotation velocity formulas in papers ( 5 ) and ( 11 ) 

 

B.  General solution of relativistic invariant Laplace equation in spherical coordinates using Quaternions 

The general equation to the galaxy relativistic Laplace equation in spherical coordinates from equation 28 of 

paper (12) in gravitational units projected onto the polar plane is using quaternions. 
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Trigonometry gives : 

|   vrot   | 
2
  = A

2
 ( M/r )  +  B

2 
( v

2
max -   ( M/r ))                                                             (21)  

 

Using  a complex coefficient on B we obtain in gravitation units :   

 vrot   = A ( M/r )
1/2

  +  i B
 
( v

2
max -   ( M/r ))

1/2
                                                               (22)    

       

This is our general rotation velocity formula for galaxies similar to papers ( 5 ) and ( 11 ). 

C.  The complete galaxy equation in spherical coordinates 

which can be rewritten in a shorter version under certain restrictions as : 

𝛁𝟐 ψ  -  (1 / c
2
)(∂

2
ψ / ∂ t

2
 )  = 0                                                                                                 (23)      

                                                              

which is similar to the light wave equation (15). 

The difference between the Laplace equation and the relativistic galaxy equation determines the amount of 

uniform rotation in its own coordinate system. 

vrtot =  A ( M / r )
1/2

 + i B ( v
2
max– ( M / r ))

1/2
                                                                 (24)  

 

Equation ( 24 ) is also similar to the rotation velocity formulas in papers ( 5 ) and ( 11 ) and equations (17) and 

(28) in paper ( 12 ). The first term of equation ( 24 ) concerns the galaxy body (Keplerpart) and the second part 

concerns the spiral arms(relativistic part) in gravitation units.  

 

V. Planetary Orbits From Special Relativity. 
This section shows that it is possible to use the relativistic invariant Laplacian equation ( 16 ) in spherical 

coordinates on planetary orbits. These results are in accordance with the planetary orbit calculations and 

formulas by Einstein ( 9 ) . 

Letting the angle θ  be a constant and by using a deflating  procedure and eliminating one variable at a time the 

following expression is achieved. 

 (∂
2
ψ / ∂r

2
 ) + (2/r) ( ∂ψ / ∂r )  + (( 1 / (r

2 
 sin

2
 θ)) ( ∂

2
ψ / ∂ φ

2
 )) – (1/ C

2
) (∂

2
ψ / ∂ t

2
 ) = 0                                          

(25) 

By assuming a solution of the type : 

ψ =  R( r ) Φ(φ) T( t )  =  R  Φ T                                     (26) 

where   r = distance ,   φ = azimute angle,   and   t = time   

and substituting this into the equation( 25 ) and performing separation of variables gives : 

( R” Φ T) + (2/r) ( R
’
 Φ T) + (( 1 / (r

2 
 sin θ)) ( R  Φ

’’
 T)  -   (1/ C

2
) ( R  Φ T

’’
) = 0 (27) 

Dividing with   R  Φ T gives the following result : 

(( R
’’
 + (2 / r) R

’
) / R + (( 1 / (r

2 
 sin θ)) ( Φ

’’
  / Φ ) - (1/ C

2
) ( T

’’
 / T ) = 0                     ( 28  ) 

In this chapter we analyze the sign of the radial part of equation (16 ) and use a deflating procedure. We first 

assume a trivial solution to equation ( 28 ) 

R = ψ = 1/ r – k   and its first and second  derivatives : 

R
’
 = ψr  = - 1 / r

2
     and         R’’

 = ψrr  = - 2 / r
3
 

These derivatives were put in equation ( 28 ) and  gave the following expression : 

and   (( R’’ + ( 2 / r ) R
’
 ) / R =  (( 2 / r

3
 ) + ( 2 / r )( - 1 / r

2
 )) / (( 1 / r ) + k ) = 

r (( 2 / r
3
 ) + ( 2 / r )( - 1 / r

2
 )) / ( 1 + r k ) = 0 / ( 1 + r k ) = 0                                        (29) 

If  r k ‡ -1  we can deflate our equation to :          

( 1 / (r
2 
 sin θ)) ( Φ

’’
  / Φ ) - (1/ C

2
) ( T

’’
 / T ) =  - ( R’’ + ( 2 / r ) R

’
 ) / R = 0                   (30) 

or more clearly : 

( 1 / (r
2 
 sin θ)) ( Φ

’’
  / Φ ) - (1/ C

2
) ( T

’’
 / T ) = 0                                                               (31) 

 If we now deflate our 4-dimentional wave function into the following two dimentional equations : 

  (  ( 1 / (r
2 
 sin θ)) ( Φ

’’
  / Φ ) - (1/ C

2
) ( T

’’
 / T ) = 0                                                        ( 32 )   

which can also be written :  

( 1 / (r
2 
 sin θ)) ( Φ

’’
  / Φ )  =  (1/ C

2
) ( T

’’
 / T )                                                                 (33)   

If we assume complex exponential solutions on the left side ( the Φ – variable ) of this equation, then we have 

the second and zero (function) derivatives of Φ and T. 

Φ
’’
 =  - a

2
 C exp ( i a φ)                                                                                                   (34) 

 Φ
 
 = C exp ( i a φ)                                                                                                           (35) 

T’’= b
2
 C exp ( i b t )    and                                                                                             (36) 

T
 
 =  C exp ( i b t )                                                                                                           (37)                                                   

 Then the combined solution could be expressed as including a potential part, a φ-part and a T-part(time) in the 

following way : 

ψ = ( e / R0 ) exp ( i n  φ)  exp ( i c t / λ2 )                                                                        (38) 
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We adjust the solution with a constant e for the eccentricity and set r = R0  then we have : 

ψ = ( e / R0 ) exp ( i n  φ)  exp (  i c t / λ  )                                                                         (39) 

We have also a trivial solution :                     

ψ = 1/ r – k                                                                                                                       (40) 

and the inverse        

 r = 1 / ( ψ + k )                                                                                                                 (41) 

Now we substitute the wave equation into the trivial solution which gives the planetary orbits a precessing 

ellipse 

r = 1  /  (( 1 / R0 ) + ( 1 / R0 ) e cos ( φ – ω – δω )) = R0 /  ( 1 + e cos ( φ – ω – δω ))      (42) 

where n=1,  ct / λ = - 3m2 φ / h2 and R0 = h2 / m which is the same formula defined in General 

Relativity(Eddington)( 9 ) p.88 where the radius is equal to 

r  =  h
2
  /  m ( 1 + e cos ( φ  – ω – δω ))                                                                            (43)       

This formula is planetary orbit formula by Einstein which we have shown to have its origin in the relativistic 

invariant Laplacian formula (16 )  

  

VI. Using The Geodetic Line Calculations For Deriving The New Rotation Velocity Formula 

For Galaxies 
Set Υ =  1 – 2M / r  from the reference (Eddington/Einstein/Schwarzschild)( 9 ) p.89 we use gravitation units 

for simplicity. Υ is here the Schwarzschild term  and  φ  is the rotation angle.                     

( d φ / dt )
2
 = ║ ( 1 / 2) Υ

’
 / r ║                                                         (44)             

r ( d φ / dt )
2
  = ║ ( 1 / 2) Υ

’
 ║                                                        (45)             

Integrating gives : 

∫r ( d φ / dt )
2
  = ║ ( 1 / 2) ∫ Υ

’
 dr ║                                                 (46)             

 Dividing by 2 then we have 

r
2
 ( d φ / dt )

2
  =  ║  +- C  + Υ     ║  or                                                                              (47)             

r
2
 ( d φ / dt )

2
  =  ║  +- C  + Υ     ║ = ║  1 +- C  -  ( 2m / r )  ║                                   (48)             

Here C is the constant of integration letting 1 +- C  = B2 Vlim
2 and splitting up the constant  2m = A2 M – B2 M 

we have 

v
2
rot  =  r

2
 ( d φ / dt )

2
  =  ║  +- C  + Υ dr = ║  1 +- C  -  ( 2m / r )  ║ = 

= ║ A
2
 M / r  +B

2
 v

2
lim   - B

2
 M / r  ║                                                 (49)                                      

v
2
rot  = ║    A

2
 M / r  +B

2
 ( v

2
lim   - M / r )  ║                                                (50)             

vrot  = ║ (   A
2
 M / r  +B

2
 ( v

2
lim   - M / r ) )

1/2
 ║                                             (51)             

Now using complex numbers this solution becomes 

vrot  = ║ (   A ( M / r ) 
1/2

 + iB (( v
2
lim   - M / r ) )

1/2
 ║                                       (52)  

Equation ( 52 ) is also similar to the rotation velocity formulas in papers ( 5 ) and ( 11 ) and equations (17) and 

(28) in paper ( 12 ).             

 

VII. Dynamic relativistic invariant La Place equation 
We define the dynamic relativistic invariant La Place equation as the  equation : 

f ( t )
2 𝛁𝟐ψ  -  ( f ( r )

2
 / c

2
) ψ tt =  0                                                                                             (53 ) 

where the two dynamic functions are f( t ) = V( t ) / t  and f ( r ) = V( r ) / r . These functions make equation 53 

to be a dynamic equation capable to regulate the length of arms and the rotation velocity of the galaxy. Inserting 

these functions in the equation 53 will lead to equation 54. 

|( V( t ) / t )|
2 𝛁𝟐ψ  -   (|( V( r ) / r )|

2
 / c

2
) ψ tt =  0                                                                     ( 54)     

This formula can be rewritten as :     

 𝛁𝟐ψ  - ( 1/ c 
2
) (|( V( r ) / r )|

2
  /  |( V( t ) /  t |

2
) ψ tt = 0                                                              (55) 

with the solutions : 

ψ 1  = ( R / r ) exp  ± i (( 2 π V( r ) /  λ1 r ) ( r ± c t )) + n φ / 2 )                                        (56) 

and 

ψ 2  = exp  ± (( 2 π V( r ) /  λ2 r ) ( r ± c t ))                                                                       (57) 

where  λ1  and  λ2  are the bandwidths of the galaxy. The combined solutions of equation 53 are 

ψ  = ψ1  ψ2                                                                                                                         (58)         

which are the combined solutions of equation 53. 

Letting    r = c t    the differential equation 53 is reduced to : 

𝛁𝟐 ψ  -  (1 / c
2
) ψtt = 0                                                                                                                 (59) 

which is the relativistic invariant La Place equation.                    
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VIII. Results And Figure From The New Dynamic Invariant Relativistic La Place Equation 

Formula And The New Rotational Velocity Formula For Galaxies. 
In this section ”experimental” results are presented from computer simulations of the galaxy NGC 

3200, where the dynamic equation ( 59 ) has been used. This is shown in Fig 1 and shows a galaxy with a very 

realistic appearance and is the result of further development of the new formula (59) and new computer 

programs. Fig 2 shows a rotation velocity distribution versus distance of the galaxy NGC 3200. These graphs do 

follow the observational velocity distributions with a Match of 95%  and has followed equation (24). 

Table 1 is a summary of calculations of   mass and radius from different galaxies together with Match 

percentage of the rotation velocity curves. The equation ( 24 ) has been followed here giving a mean value of  

97% of  the Match percentages. These values of   mass and radius  are in accordance with values published in 

Combes ( 3 ). 

 

IX.  Discussion 

We can se from section 2 and 3 from Barrera and Thelin ( 5 )  that the velocity formula between 

velocity and distance to the centre of the galaxy has a √x- structure. These facts are based on results presented in 

Combes ( 3 ) and Lang ( 4 ) and are not based on Kepler`s 3:rd law directly. These relationships are observed by 

the astronomers where the rotation velocity reach a constant speed at distances between 5 and 10 kpc from the 

centre of the galaxy. A similar structure of the rotation velocity versus distance is also obtained by using the 

theory of relativity and the Schwarzschild metric in equation 19 of Barrera and Thelin ( 5 ) and  from the new 

expanded formula (33) of the Barrera and Thelin ( 11 ) paper and is seen in Figs (5-7 ) in that paper. In these 

papers a steep rising of the velocity (angular and circular in km/s) at low distances is observed. After that rising, 
a  plateau  is reached, which will be dominating up to large distances.  

In  paper Barrera and Thelin ( 12 ) an extended verification of  the rotation velocity formula of galaxies 

from papers ( 5 ) and ( 11 ) together with a new energy density formula of galaxies are presented. These 

formulas have been derived with different mathematical methods together with a relativistic invariant Laplacian 

formula used in spherical coordinates and also using quaternions. This is also shown in paper ( 12 ) where such 

graphs are shown for the galaxies  NGC7606, 3200, 801, 1417 and IC724 . All the observational graphs of the 

rotation velocity- distance curves are showing very good correlation between theoretical and observational 

values Figs (1b – 5b) in paper ( 12 )  

Our model is also in accordance to the energy density distribution in the galaxy where computer 

simulations were performed on these galaxies, where the energy density versus distance was studied giving a 

realistic structure ( Figs 1a -5a ) in paper ( 12 ),  where also photographic pictures from space of these galaxies 

are shown. The similarity between experimental graphs and pictures is outstanding and gives a strong support of 

the results of this paper.  

It was also possible to calculate the Radius , Vmax , Estimated Mass of the galaxies studied, which are 

shown in Table 1 of paper ( 12 ). By using equation ( 28 ) in paper ( 12 ) a very good match percents are 

achieved. The approximated mass values follow a corresponding equation from Combes ( 3 ) p.83, which gives 

higher values.  

The observations from Freeman (1) and Rubin (2) are also observed by many astronomers and  have 

been a controversial discovery, because it contradict Kepler`3:rd law, which will follow  a  (1/ √r)  - 

dependence according to equation ( 2 ) and is not observed in any galaxies. Therefore many astronomers claim 

that there must be a large amount of dark matter in the galaxy, which is the cause of this discrepancy and also 

hold the galaxies together at those high rotation speeds.   

Similar √x- structures of the velocity curves as our curves have also been obtained in the so called 

Mond- project, where a modification of the Newton`s law is applied Sanders ( 16 ).  

In paper ( 12 ) and in our earlier papers in ( 5 ), ( 11 ) and also the paper by Sanders ( 16 ) raise the 

question if there is so much dark matter in the universe ? Our rotation curves fit very well with observations 

anyhow. 

An astonishing fact from this paper is the use of quantum mechanical (slightly corrected) calculations 

for galaxies which seem to be valid here. Such calculations are otherwise normally used for atoms. It is also 

interesting to note the similarity between the La Place equations ( 3 ) for a light wave and equation ( 36 ) for a 

galaxy in paper ( 12 ). It is fascinating how quantum mechanics and relativity theory can be unified here from 

the results of this paper(12).  

This paper presents a summary of results from different papers about a new rotation velocity formula 

for galaxies in accordance to observations, without   any influence of dark matter. An important formula in these 

papers is the relativistic invariant La Place wave equation for evaluating the new rotation velocity formula. This 

formula has been further developed into a dynamic version of the formula, which has shown to be still important 

here.  
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This relativistic invariant La Place wave equation has also shown to be applicable for planetary orbit 

equations too. These results agree well with planetary orbit calculations by Einstein which we have showed to 

have its origin in the relativistic invariant Laplacian formula (16 ). It has also been possible to derive the rotation 

velocity formula by using geodetic lines according to calculations by Eddington /Einstein/Schwarzschild)( 9 ). 

This means that it is possible to use different methods to calculate the same rotational velocity formula, which 

means that this formula and relativistic invariant La Place wave equation  seem to have a central role in this part 

of physics. 
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Fig 1  NGC 3200   Computer simulations of  randomly distributed  30000 “stars” distributed like an  ellipsoid in 

a galaxy. The dynamic relativistic invariant La Place equation ( 59 ) has been used here. 
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Fig 2   Rotation velocity distributions versus distance of the galaxy NGC 3200 

These graphs do follow the observational velocity distributions. 

(Computer simulations) Match 95 %. Equation ( 24 ) has been followed. 

Reproduction from Barrera and Thelin ( 12 ) 

 

Table 1 
Match %      Galaxy               Mass (x 1042 kg )                  Radius (x 1000ly) 

98                         NGC 3200                   1.0                                                 130 

97                         NGC 801                     1.5                                                 180 

95                         UGC 2885                   5.4                                                 350 

97                         Milky Way                  0.4                                                   60 

97                         NGC 7606                   0.9                                                 120 

97                         NGC 12810                 1.3                                                 180 

99                         NGC 1417                   1.8                                                 180 

96                         UGC 10205                 0.6                                                   90 

96                         IC 724                         1.9                                                  130 

96                         NGC 1024                   1.4                                                 180 

97                         NGC 4378                   1.0                                                 100 

99                         NGC 7083                   0.7                                                 130 

98                         M 33 Triangulus          0.2                                                  100 

95                         NGC 3198                   0.3                                                  100 

94                         NGC 7164                   0.3                                                   80 

96                         NGC 3145                   0.7                                                   80 

98                         NGC 4984                   0.8                                                   80 

95                         NGC 2403                   0.2                                                   70 

97                         NGC 2841                   1.6                                                 140 

97                         NGC  2903                  0.4                                                   80 

92                         M 31 Andromeda        0.9                                                 110 

Mean value                                                 Mean value 

97  %                                                         1.1 x 1042 kg 

 


