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I. Introduction 

We know renormalization of a theory is a necessary condition for an acceptable gauge theory. Similarly, 

to find the most accurate result of the inherent physical quantities such as electric charge, magnetic moment, etc 

are also equally important which can be found from the finite parts of the result, by writing it in the form of form 

factors. It is interesting to note that the contribution of quantum effects is the key point to get most accurate result 

that can be found from loop diagrams. 

As we know the VVA triangle diagram give anomalous result for the two currents. That means if the 

vector currents are conserved then the axial vector current is anomalous and vice-versa. Hence, it is interesting to 

evaluate the form factors of these diagrams.  

Long time ago Ward, Takahashi, Taylor, Slavnor [1]-[4] gave an identity to find the renormalization of a 

theory. That means using this identity one can check the conservation of currents in case of loop diagrams. As we 

know in most cases the loop diagrams are divergent, so one has to use some kind of regularization method to 

evaluate these.  Pre-regularization method [5] is one of the best methods to evaluate the loop diagrams. Using 

Pre-regularization method Chowdhury [6] has shown that in the VVA triangle diagram there is an anomaly in 

axial current if the vector currents are conserved. Using this prescription Chowdhury et al [7]-[9] have also shown 

anomalies or ambiguities in the conservation of currents in many other loop diagrams. However, he did not 

worked out anything from the finite parts of the result. Recently, Chowdhury [10] modified their old prescription 

so as to incorporate and to find some other important features of the underling theory, which cannot be found 

through the existing prescription and it is called Modified Pre-regularization. Using this prescription we have 

evaluated the form factors [11] in QED which arises from the finite parts of the result. Since the VVA triangle 

diagram gives anomalous result for the conservation of currents so it is interesting to check whether the form 

factors for VVA triangle diagram can be evaluated using this new prescription. In this paper using the 

Pre-regularization and Modified Pre-regularization methods and following the procedure adopted in [11] we 

have first evaluated the Ward identities for the two currents viz; Vector Ward identity and Axial Vector Ward 

Identity, then fixing the vector identity we have found the result for axial vector identity which is very important. 

Using this result we have evaluated the form factors of these diagrams. A thorough discussion of the form factors 

for different values of axial vector momentum has been given in this paper. From these result the magnetic 

moment and anomalous magnetic moment have been found. Also an explanation is given why the charge form 

factor is absent in this case. 

II. Ward Identities and VVA Triangle Diagram 

The three point Feynman diagrams for two vectors and one axial vector current can be represented by the 

two Feynman diagrams (see, Figure 1). Now using Pre-regularization method [5] and following ref. [6] the total 

three point function is given by: 

),(),(),(
12

2

21

1

21
pppppp

T


                                                  (1)             

   where ),(
21

2
pp


  and ),(

12

2
pp


  are three point functions of diagrams 1(a) and 1(b) respectively. 

For the conserved vector currents and axial-vector current the Ward identities to be satisfied are as follows 
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Figure 1: Three Point Diagrams 

 

Axial-Vector current ward identity: 
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It is interesting to note that after calculation one can easily find that it would be almost impossible to 

satisfy the conditions (2) - (4) simultaneously. However, if we fixed the vector currents conserved, then the axial 

vector current is anomalous.  

According to Pre-regularization prescription [5], we add arbitrary parameters 
1

s and 
2

s  to diagrams in 

1(a) and 1(b) respectively. These momentum ambiguities are used to ensure that the Ward identities of equations 

(2) - (4) are respected. With these parameters equation (1) yields 
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Here, these integrals lead to be linearly divergent, but computation shows that the sum of the two 

integrals is finite [6]. If the external momentum 
1

p  dotted with 
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
  and 
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  at 


 vertex of equations (6) - 
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We see that by power counting each term of (8) is quadratic divergent. Hence in this type of divergent 

integrals if we are allowed to shift the variable of integration naively then all integrals cancel out exactly. 

However, for divergent integrals the naive shifting is not allowed because of surface terms. The advantage of 

Pre-regularization method is that in this kind of situation when we shift the variable of integration then there is a 

procedure for keeping track of the appropriate surface terms. In this method it is seen that after calculation the 

divergent integrals cancels each other leaving with the finite surface terms. This finite part is now easy to evaluate 

with our prescription, where as in other methods it is not that much easy.  

After performing all manipulations we get, 

)1(
8

),(
21212

2

211
 BBppi

ie
ppp

T 







                                         (9)                                               

     where we have used 
21

pBpAs
iii

 . 

𝜈   

𝑝1 
𝑝2 

−(𝑝1 + 𝑝2) 

5,  

𝑘 + 𝑠1 𝑘 + 𝑠1 + 𝑝1 + 𝑝2 

𝑘 + 𝑠1 + 𝑝1   𝜈 

𝑝2 
𝑝1 

−(𝑝1 + 𝑝2) 

5,  

𝑘 + 𝑠2 𝑘 + 𝑠2 + 𝑝1 + 𝑝2 

𝑘 + 𝑠2 + 𝑝1 



Form Factors in VVA Triangle Diagram Using Modified Pre-regularization Method 

DOI: 10.9790/4861-08123543                      www.iosrjournals.org                             37 | Page 

Similarly, if we dotted 
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we end up with 
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For Axial vector current divergence, we have to dot )(
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Now for conserved Vector and Axial vector Ward identities (9) - (11) must be zero. That is, 
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Here we can see it is not possible to find any values for A ’s and B ’s which satisfy both the equations 

simultaneously. That is, we cannot find any specific values of 
1

s and 
2

s  to satisfy the Ward identities [6]. If we 

find values for A ’s and B ’s to satisfy vector Ward identities then axial vector Ward identity is anomalous and 

vice-versa. We will use this result in the calculation of form factors. 

 

III. Evaluation of One-loop VVA Diagram with Modified Pre-regularization Method 

The amplitude of the two diagrams has been given in equations (6) - (7). Let us take equation (6) we get  
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Combining the denominators using the Feynman identity and applying Pre-regularization prescription we obtain 
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Performing the integration over k  and integrating over x  and y , it yields,  
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Using (19) only in the divergent part of (20) and simplifying we get, 
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Similarly, for diagram 1(b), we get 
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Adding equations (21) and (22) and using Modified Pre-regularization method [10] we get 
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Then the following expressions can be written as  
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Using the equations (27) – (29) and some related algebra, we can write the Feynman parameter integral part in 

(24) as follows 
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The relations for Ward identities that found in [6] have been written in equations (12) - (14). In [6] it is clearly 

shown that if the vector Ward identity is satisfied then the axial vector Ward identity is anomalous. Let us consider 

here that the vector Ward identity is satisfied then this implies that we can take 
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where we have used the result in (12) – (13). 
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where,  

)1()1(

)}()({

83

1
)

2
(

24
)(

22

32222
1

0

1

0
2

2

2

2

2)1(

1

yxyQxxm

xxmxyxyQ
dydx

eie
QF

x














  







             (33) 

)1()1(

)(

83

1
)

2
(2

24
)(

22

222
1

0

1

02

2

2

2

2)2(

1

yxyQxxm

xyxyyyQ
dydx

eie
QF

x














  







            (34) 

)1()1(83

1
)

2
(

24
)(

22

22
1

0

1

02

2

2

2

2)3(

1

yxyQxxm

xyQ
dydx

eie
QF

x












  







               (35) 

)1()1(

)()(

16
)(

22

22322
1

0

1

0
2

2

2)1(

2

yxyQxxm

yxxymyyQ
dydx

e
QF

x




  




                                     (36)                 

)1()1(16
)(

22

22
1

0

1

0
2

2

2)2(

2

yxyQxxm

yxm
dydx

e
QF

x


  




                                      (37)                

)1()1(

)(

16
)(

22

222
1

0

1

0
2

2

2)3(

2

yxyQxxm

yxxyxxm
dydx

e
QF

x




  




                                      (38)           

Now we perform the Feynman parameter integrals y  in equations (33) - (38) to yield 
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If we can express the following term as 
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Again, performing the Feynman parameter integrals of x in equations (39) - (44) and putting
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IV. Behavior of Form Factors for Different Values of Q
2
 

Behavior of form factors for Q
2
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Behavior of form factors for 0
2
Q : 

This behavior can not be found by putting 0
2
Q  in equations (51) - (56) as before. But this can be 

done by putting 0
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Q  in equations (33) - (38) and after performing the Feynman parameters integrals, we get 
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V. Discussion over the Result 

The results obtained for VVA triangle diagram are displayed in equation (51) - (53) for )(
2)(
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 and 

(54) - (56) for )(
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. At this stage we are now able to calculate the form factors for different values of 
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that we have found and given in (46) - (50) are very important. Using these values we can find the most accurate 

values for magnetic form factors. 

We have seen that in both cases, that is 
2

Q  and 0
2
Q , there are no divergent part in 

)(
2)(

2
QF

i
. The divergent part lies only in )(

2)(

1
QF

i
. The finite parts of )(

2)(

1
QF

i
 and  )(

2)(

2
QF

i
 will give 

us magnetic form factors and its anomalous magnetic moment. Here we can see that the result is proportional to 

fine structure constant  . It should be noted here that we have already shown in section- 2 that the vector current 

is conserved while the axial vector current is not and now we have found the anomalous magnetic moment which 
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comes from the axial vector current Ward identity. This is a quite new result that we have found using Modified 

Pre-regularization method. 
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