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Abstract: We studied squeezing in the sum and difference of the field amplitude in parametric down 

conversion process under the short-time approximation based on a fully quantum mechanical approach. It is 

shown that for uncorrelated modes the normal squeezing in the sum and difference-frequency field depends on 

the sum and difference squeezing of input field modes respectively, which can generate normal squeezing in the 

sum and difference-frequency field mode. We shown that if the high-frequency mode is in a coherent state and 

the low-frequency mode is squeezed, the field state will be difference squeezed if the amplitude of the high-

frequency mode is large enough; otherwise the state may or may not be difference squeezed. If both modes are 

squeezed, then the state may or may not be difference squeezed. Detection of sum and difference squeezing in 

this process is also studied. All the possibilities for obtaining sum and difference squeezing in two modes and its 

dependence on squeezing of individual field modes are investigated. 

Keywords: Sum and difference squeezing; Higher-order squeezing; Parametric down conversion process; 

Optical parametric oscillator; Photon number operator. PACS Code: 42.50.Dv; 42.50.Ar; 42.50.p 

 

I. Introduction 
Over the past decades, the squeezing [1-6] in quantized electro-magnetic fields has received a great 

deal of attention because of its wide applications in many branches of science and technology especially for low 

noise property [7–9] with an applications in high quality telecommunication [10], quantum cryptography [11, 

12], and so forth. The basic concept of squeezed light is concerned with reduction of quantum fluctuations in 

one of the quadrature, at the expense of increased fluctuations in the other quadrature. Squeezing has been 

focused on theoretical investigations and experimental observations in a variety of nonlinear optical processes, 

such as harmonic generation [13, 14], multiwave mixing processes [15–18], Raman [19–21], hyper-Raman [22] 

Hong and Mandel [23, 24], Hillery [25–27], and Zhan [28] for improving the performance of many optical 

devices and optical communication networks. Squeezing and photon statistical effect of the field amplitude in 

optical parametric and in Raman and hyper Raman scattering processes has also been reported by Perina [29]. 

Higher-order sub-poissonian photon statistics of light have also been studied by Kim and Yoon [30]. Recently, 

Prakash and Mishra [31, 32] have reported the higher-order sub-poissonian photon statistics and their use in 

detection higher-order squeezing. Furthermore, another type of higher-order squeezing, called sum and 

difference squeezing were proposed by Hillery [33] for the two modes which are in fact the simplest versions of 

multimode higher-order squeezing. These concepts have recently been generalized to include three modes for 

sum and difference squeezing [34-36] as well as an arbitrary number of modes for sum and difference squeezing 

[37-39]. More recently, Prakash [40] et al. has reported regarding detection of sum and difference squeezing and 

Zhan [41] and Truong et al. [42] has introduced the concept of entanglement using sum and difference 

squeezing. 

The objective of this paper is to study for the first time the concept of sum and difference squeezing in 

Parametric down conversion process under the short-time approximation based on a fully quantum mechanical 

approach. The paper is organized as follows. Section II gives the definition of sum and difference squeezing in 

two-mode field. Sum squeezing of the field amplitude in the pump mode is investigated in section III. In this 

section it is shown that for uncorrelated modes the normal squeezing in the sum-frequency field depends on the 

sum squeezing of input field modes, which can generate normal squeezing in the sum-frequency field mode. 

Detection of sum squeezing of two-mode field in this process is also studied in section III. In Section IV, 

squeezing in the difference of the field amplitude in the signal and idler modes are investigated. All the 

possibilities for obtaining difference squeezing in two modes and its dependence on squeezing of individual 

field modes are investigated. The different conditions for obtaining difference squeezing state and their 

detection in this process are also studied in section III. Finally, we conclude the paper in Section V. 
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II. Definition Of Two-Mode Sum And Difference Squeezing 
1. Two-mode sum squeezing 

In order to define two-mode sum and difference squeezing in Parametric down conversion process, let 

us consider first for two-mode of the electromagnetic field of frequency 2  and 3  with creation 

(annihilation) operators b
†
(b) and c

†
(c) and introduce two operators which correspond to real and imaginary 

parts respectively, of the sum of the field amplitude as 

W1 = 
2

1
(BC + B

†
C

†
)                                  (1) 

and  W2 = 
2i

1
(BC - B

†
C

†
)                                             (2) 

These operators satisfy the commutation relation 

        [W1, W2] = 
2

i
(NB + NC + 1)                                                                                          (3) 

and the uncertainty relation 

        1 N  N 
4

1
  

2
W 

1
W CB                                                                                                        (4) 

where NB = B
†
B and NC = C

†
C are the photon number operator for the Stokes and idler mode respectively. 

A state is said to be sum squeezed in the W1 direction if 

4

1
   2)

1
W(  1 N  N CB                                                         (5) 

 

2. Two-mode difference squeezing 

For two modes of frequency 1  and 3  with creation (annihilation) operators a
†
(a) and c

†
(c) 

respectively, squeezing operators U1 and U2 may be defined as  

 U1 = 
2

1
 (AC

†
 + A

†
C)                                                                  (6) 

and  U2 = 
2i

1
(AC

†
 - A

†
C)                                                                                   (7) 

The variables U1 and U2 obey the commutation relation 

[U1, U2] = 
2

i
(NC - NA)                                                                        (8) 

and the uncertainty relation 

A
N -

C
N

4

1
  

2
ΔU 

1
ΔU                                                                                                                 (9) 

where NA = A
†
A is the photon number operator for the pump mode.     

A state is said to be difference squeezed in the U1 direction if 

 
A

N
C

N
4

1
  

2)
1

U(                                                   (10) 

Similarly, for two modes of frequency 1  and 2  with creation (annihilation) operators a
†
(a) and b

†
(b) 

respectively, squeezing operators V1 and V2 may be written as 

 V1 = 
2

1
(AB

†
 + A

†
B)                                                                             (11) 

and  V2 =  
2i

1
(AB

†
 - A

†
B)                                                                                 (12) 

These operators obey the commutation relation 

[V1, V2] = 
2

i
(NB - NA)                                                                      (13) 
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and the uncertainty relation 

A
N -

B
N

4

1
  

2
ΔV 

1
ΔV                                                                                             (14) 

A state is said to be difference squeezed in the V1 direction if 

 
A

N
B

N
4

1
  

2)
1

V(                                                   (15) 

 

III. Squeezing In The Sum Of The Field Amplitude In The Pump Mode 
Parametric down conversion (PDC) process, shown in fig.1, is a three-wave interaction process where a 

pump of photon of frequency p splits into two, signal and idler, photons with lower frequencies s , i  

respectively and the corresponding Hamiltonian can be written as 

H = 1a
†
a + 2b

†
b + 3c

†
c + g (ab

†
c

†
 + a

†
bc)                                                                                  (16) 

                  Virtual level 

                                    signal                                                                   ωs                                                

             

            pump                                                                                                      ωp 

                                                                    idler 

                                                                                       ωi                   

                        Nonlinear χ
2
 crystal 

 

Fig1: Schematic diagram showing the interaction of pump, signal and idler frequencies  

and energy level diagram for PDC process 

 

where a
†
(a), b

†
(b) and c

†
(c) are the creation (annihilation) operators of the A, B and C modes respectively and g 

is the coupling constant in the interaction Hamiltonian, which is assumed to be real, describes the coupling 

between the two modes of the order of 10
2
–10

4
 per second and is proportional to the nonlinear susceptibility of 

the medium as well as the complex amplitude of the pump field [43, 44]. However, to take care of complex g, 

we have used |g|
2
 in the place of g

2
 as we are not considering the phase terms. In the case of phase matching, g 

can also be treated as real [45].  

Using the interaction Hamiltonian of the equation (16) in the coupled Heisenberg equation of motion  

  A(t) H,  i  
t

A(t)
 (t)A 



    (ħ =1)                  (17) 

where the dot denotes time derivative. 

Equation (17) leads to coupled Heisenberg equations of motion 

†
igAB

.
Cand

†
igAC

.
BigBC,

.
A                                                                                (18) 

where A, B and C are slowly varying operators because the interaction between modes, the operators A(t) and 

A
†
(t) induces a slower dependence on time as compared to fast variation, which are defined by A = a exp(i1t), 

B = b exp(i2t) and C = c exp(i3t), with the relation  1= 2 + 3. 

Note that the system evolution during a short period of time is practically relevant because the actual 

interaction is in fact very short. Hence the interaction time is taken to be short, of the order of 10
-10

 sec and a 

nanosecond or picosecond pulse laser can be used as the pump field. For real physical situation in the short-time 

scale gt 1 (gt10
-6

) and the number of photons are very large (α
2
1), it is possible to obtain much simpler 

approximate analytical formulas describing the variances. Expanding A(t) in Taylor‟s expansion and keep terms 

up to second order in gt, we get 

A(t) = A- igtBC-
2

1
g

2
t
2
 (NBA+NCA+A)                                                                                           (19) 

and      A
†
(t) = A

† 
+ igtB

†
C

†
-

2

1
g

2
t
2
 (NB A

†
+NC A

†
+ A

†
)                                                                              (20) 

Similarly,  B(t) = B – igtAC
†
 - 

2

1
g

2
t
2
 (NC-NA)B                                             (21) 
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and B
†
(t) = B

†
 + igtA

†
C - 

2

1
g

2
t
2
 (NC-NA)B

†
                                           

(22) 

also C(t) = C – igtAB
†
 - 

2

1
g

2
t
2
 (NB-NA)C                                             (23) 

and  C
†
(t) = C

†
 + igtA

†
B - 

2

1
g

2
t
2
 (NB-NA)C

†
                                             (24) 

In order to examine the squeezing of the field amplitude of the fundamental A mode and its dependence on sum 

squeezing in the B and C modes as a function of time, we define two general quadrature components, 

X1A(t) = 
2

1
[A(t) + A

†
(t)]                                                                                                      (25) 

and  X2A(t) = 
i2

1
[A(t) - A

†
(t)]                                                                                                      (26) 

Using equations (19) and (20) in equations (25) and (26), we can obtain that to second order in gt 

X1A (t) = X1A + |g|
 
t W2 – 

2

1
|g|

2
 t

2
 (NB + NC +1) X1A                                      (27) 

and X2A (t) = X2A - |g|
 
t W1 – 

2

1
|g|

2
 t

2
 (NB + NC +1) X2A                                               (28) 

For uncorrelated modes at t = 0, we get 

[∆X1A (t)]
2
 = (∆X1A)

2
 + |g|

2 
t
2
 [(∆W2)

2
 – 1 N  N CB  (∆X1A)

2
]                                                     (29) 

and   [∆X2A (t)]
2
 = (∆X2A)

2
 + |g|

2 
t
2
 [(∆W1)

2
 – 1 N  N CB  (∆X2A)

2
]                               (30) 

If the A mode is initially in a coherent state, then  

 (X1A)
2
 = (X2A)

2
 =

4

1
                                       (31)   

and equations (29) and (30) reduce to  

[∆X1A (t)]
2
 – 

4

1
 =  |g|

2 
t
2
 [(∆W2)

2
 – 

4

1
1 N  N CB  ]                                       (32) 

and   [∆X2A (t)]
2
 – 

4

1
 = |g|

2 
t
2
 [(∆W1)

2
 – 

4

1
1 N  N CB  ]                                (33) 

These equations (32) and (33) give us the relation between sum squeezing and normal squeezing in sum-

frequency generation. We see that if the input state is sum squeezed in the W2 or W1 direction, then sum-

frequency generation will produce an output, which squeezed in the normal sense in the X1A or X2A direction 

respectively. In particular, sum squeezing in W1 will lead to normal squeezing in X2A, and sum squeezing in W2 

will produce normal squeezing in X1A. This result suggests a method of detection for sum squeezing in PDC 

process. 

It is also of interest to examine sum squeezing of the fundamental mode A as a function of time, we 

define the quadrature operators 

(t)](t)CB[B(t)C(t)
2

1
(t)W ††

1A                                                                                               (34) 

and (t)](t)CB[B(t)C(t)
2i

1
(t)W ††

2A                                                                                             (35) 

Under short-time approximation we keep terms up to first-order in „gt‟ in the Taylor‟s expansion to get 

................(0)BtB(0)B(t)                                                                                                     (36) 

and ................(0)CtC(0)C(t)                                                                                                     (37) 

Using equations (36) and (37) in equations (21-24), gives 

 
†igtACBB(t)                                                                                                                              (38) 

CigtAB(t)B †††                                      (39) 
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and 
†igtABCC(t)                                                                                                                           

(40) 

BigtAC(t)C †††                                      (41) 

Using equations (38-41) in equation (34), we find only for W1A quadrature as, 

W1A(t) = 
2

1
[(BC + B

†
C

†
) – igt (NB + NC + 1) (A - A

†
)]                                                                       (42) 

Now, we assume an initial quantum state as a product of coherent states |> for the fundamental mode A, |> 

for the signal mode B and > for the idler mode C, i.e.  

|ψ > = |>A|>B|>C                                                                                                       (43) 

Using equation (43) in equation (42), we obtain the expectation values as 

)]γβ2αγγβαβγβαγβ 2αγγαββγαβγβγα-βγ2α-          

ββγα γβ 2αγαβγβ γβ 2igt(α1γβγβ2γβγ[β
4

1
ψWψ

***2***2*****2**2**2**

2*22222222*222

1A





                           (44) 

and 

)]γβαγγβαβγβαγαβγγαββγαβγβγα-                            

βγα-ββγααβγγαβγβ γβ 2igt(αγβ2γβγ[β
4

1
ψWψ

***2***2*****2**2**2*

*2*222222*22
2

1A




 

               (45) 

Hence the field variance is 

  2

1A

2

1A

2

1A (t)W(t)W(t)ΔW   

                  )]γβα-γαββγα- γβ (α2igt 1γβ[
4

1 ******22
                                     (46) 

In order to determine sum squeezing, it is necessary to discuss the number of photons in the B and C 

modes. We find that to first order in „gt‟ 

BC)ACigt(ABN(t)B(t)B(t)N †††

B

†

B                                                                      (47) 

and BC)ACigt(ABN(t)C(t)C(t)N †††

C

†

C                                                                      (48) 

Using equation (43), we obtain 

  1(t)N(t)N
4

1
CB βγ)]αγβ (α2igt 1γβ[

4

1 ***22
                                      (49) 

Subtraction of equation (46) from equation (49) yields 

  21A (t)ΔW -  1(t)N(t)N
4

1
CB )θθsin(θ αβγgt 321                                              (50) 

where )exp(iθγ γand )exp(iθββ),exp(iθαα 321  .                                                                     (51) 

From this equation (50) we found that the squeezing of W1A will occur whenever )θθsin(θ 321  < 0. 

Let us now examine the dependence of sum squeezing for two-mode states on the squeezing of 

individual modes in which the modes are uncorrelated in Parametric down conversion process.  

We define for two-mode sum squeezing as [33] 

BC)eCB(e
2

1
W iφ††iφ

Aφ

                                                                                                        (52) 

A field state is squeezed if 
2

1
ΔWAφ   for someφ.  

Using equation (52), we obtain the following expectation values as 

22iφ-††††2††2iφ2

Aφ (BC)eCBCBBCCB)C(Be
4

1
W   
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22iφ-††††2††2iφ (BC)e1CCBBCBC2B)C(Be

4

1
                               

(53) 

 22iφ-††2††2iφ
2

Aφ BCeBCCB2CBe
4

1
W                                (54) 

Hence, the field variance is 
2

Aφ

2

Aφ

2

Aφ WW ]W[   

             

]}BCBC)([e BCCB2-                                        

1CCBB CBCB2]CB)CB([{e
4

1

222iφ-††

††††2††2††2iφ




  

                                                                                                                                                                             (55) 

Using equation (5) in equation (55), we find 

]}BCBC)([e BCCB2-                                                    

CBCB2]CB)CB([{e
4

1
1NN

4

1
]W[

222iφ-††

††2††2††2iφ

CB

2

Aφ




 

                                                                                                                                                               (56) 

A state is squeezed if the term in brackets becomes negative. This term is smallest when 

 π φ2]BCBC)(arg[ 22                                                                                            (57) 

If φ satisfies this condition, then 

 222

CBCB

2

Aφ BCBC)(BC NN
2

1
1NN

4

1
]W[                    (58) 

Therefore, a state is sum squeezed if and only if  

|<(BC)
2
> - <BC>

2
|      <(NBNC)> - |<BC>|

2
                                                    (59) 

If the modes are uncorrelated, then the expectation values factorize into those for the B and C modes and the 

above equation (59) becomes 

|<B
2
><C

2
> - <B>

2
 <C>

2
|      <NB> <NC> - |<B><C>|

2
                                     (60) 

Case-I: If the modes are uncorrelated and neither the B nor the C mode is squeezed, for which we have the 

condition [33-35] 

|<B
2
> - <B>

2
 |      <NB> - |<B>|

2
                                      (61) 

and  |<C
2
> - <C>

2
|       <NC> - |<C>|

2
                                                    (62) 

Further, if none of the B and C modes are squeezed then none of the pairs can be sum squeezed [33-34], i.e. 

|<B
2
><C

2
> - <B>

2
 <C>

2
|      <NB> <NC> - |<B><C>|

2
                                     (63) 

Comparing this with equation (60) we see that the B and C modes are not sum squeezed in PDC process.  

Case-II: If the B mode is squeezed and the C mode is in a coherent state of amplitude γ, we then have 

|<B
2
><C

2
> - <B>

2
 <C>

2
| = |γ|

2
 |(<B

2
> - <B>

2
)|    

                |γ|
2
 (<NB> - |<B>|

2
)                             (64) 

where <NC> = |γ|
2
 for coherent states and the inequality in equation (60) is fulfilled hence state is sum squeezed. 

Case-III: If the C mode is squeezed and the B mode is in a coherent state of amplitude β, we then have 

|<B
2
><C

2
> - <B>

2
 <C>

2
| = |β|

2
 |(<C

2
> - <C>

2
)|    

                                                       |β|
2
 (<NC> - |<C>|

2
)                                           (65) 

where <NB> = |β|
2
 and the inequality in equation (60) is satisfied hence the B and C modes are sum squeezed. 

Case-IV: If B and C modes are squeezed, then we have 

|<B
2
><C

2
> - <B>

2
 <C>

2
|    <NB> <NC> - |<B><C>|

2
                                   (66) 

This satisfies the condition (60) and hence the state is sum squeezed. 

 

IV. Squeezing In The Difference Of The Field Amplitude In The Signal And Idler Modes 
We now investigate the dependence of the occurrence of normal squeezing in the field amplitude of the 

signal mode B on difference squeezing in the A and C modes i.e. 2= 1-3 as a function of time, we define 

quadrature components 

X1B (t) = 
2

1
[B(t)+B

†
(t)]                                                                            (67) 
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and   X2B (t) = 
2i

1
[B(t)-B

†
(t)]                                                                                        

(68) 

Using equations (21) and (22) in equations (67) and (68), we have 

X1B (t) = X1B + |g|
 
t U2 – 

2

1
|g|

2
 t

2
 (NC – NA) X1B                                                     (69) 

and X2B (t) = X2B - |g|
 
t U1 – 

2

1
|g|

2
 t

2
 (NC – NA) X2B                                 (70) 

For uncorrelated modes at t = 0, we get 

[∆X1B (t)]
2
 = (∆X1B)

2
 + |g|

2 
t
2
 [(∆U2)

2
 – 

AC N -N (∆X1B)
2
]                                       (71) 

and   [∆X2B (t)]
2
 = (∆X2B)

2
 + |g|

2 
t
2
 [(∆U1)

2
 – 

AC N -N (∆X2B)
2
]                                     (72) 

If the B mode is initially in a coherent state, then  

 (X1B)
2
 = (X2B)

2
 = 

4

1
                                       (73)   

and equations (71) and (72) reduce to  

[∆X1B (t)]
2
 – 

4

1
 = |g|

2 
t
2
 [(∆U2)

2
 – 

4

1
AC N -N ]                                          (74) 

and   [∆X2B (t)]
2
 – 

4

1
 = |g|

2 
t
2
 [(∆U1)

2
 – 

4

1
AC N -N ]                                      (75) 

Equations (74) and (75) show that X1B in the signal mode is squeezed if U2 is squeezed and X2B is squeezed if 

U1 is squeezed. In other words, the B mode is squeezed in the X1B direction if the A and C modes are difference 

squeezed in the U2 direction and the B mode is squeezed in the X2B direction if the A and C modes are 

difference squeezed in the U1 direction. Hence, difference-frequency generation changes difference squeezing 

into normal squeezing. In particular, difference squeezing in U1 will be converted into squeezing in X2B and 

difference squeezing in U2 will lead to squeezing in X1B. 

To examine difference squeezing of the fundamental mode A as a function of time, we define the 

quadrature operators 

(t)C(t)]A(t)[A(t)C
2

1
(t)U ††

1A                       (76) 

and (t)C(t)]A(t)[A(t)C
2i

1
(t)U ††

2A                                                                                             (77) 

Using equations (19), (20), (23) and (24) to the first order coupling, we obtain 

 )BNigt(NAC(t)A(t)C AC

††                                                                                              (78) 

and 
†

AC

†† )BNigt(NCA(t)C(t)A                                    (79) 

Using equations (78) and (79) in equation (76), we find only for U1A quadrature as, 

U1A(t) = 
2

1
[(AC

†
 + A

†
C) – igt (NC – NA) (B - B

†
)]                                                                              (80) 

Using equation (43) in equation (80), we obtain the expectation values as 

)]γγβαγβαγγαβγαβγβγαβγα                       

αβγ γβ 2igt(αγαγα2γαγ[α
4

1
ψUψ

2**2**2**2**2*2*

2*2*222222*222

1A








 

                          (81) 

and 

 

)]γγβααγβαγγαβαγαβγβγααβγα                       

ααβγγ γβ 2igt(αγα2γαγ[α
4

1
ψUψ

2**2**2**2**2*2*

2*2*2222*22
2

1A




 

               (82) 
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Hence the field variance is 

  2

1A

2

1A

2

1A (t)U(t)U(t)ΔU   22
γα 

4

1
                                                                  (83) 

Now, the number of photons of the A mode up to first order in „gt‟ 

BC)ACigt(ABN(t)A(t)A(t)N †††

A

†

A                                                                     (84) 

Using equations (43), (48) and (84), we obtain 

  (t)N(t)N
4

1
AC βγ)]αγβ (α2igt γα[

4

1 ***22
                                                 (85) 

Subtraction of equation (83) from equation (85) yields 

  21A (t)ΔU -  (t)N(t)N
4

1
AC )}θθ(cos{θ αβγigt 321                                             (86) 

From above equation (86) we found that the squeezing of U1A will occur whenever )}θθ(cos{θ 321  < 0. 

Similarly, we now investigate the dependence of difference squeezing of the state on the squeezing of 

individual modes. For this case we define the two-mode operator as 

)ACeCA(e
2

1
U †iφ†iφ

Aφ

                                                                                                        (87) 

Using equation (87), we obtain  

2†2iφ-††††2†2iφ2

Aφ )(ACeCAACCACA)C(Ae
4

1
U   

            
2†2iφ-

CACA

2†2iφ )(ACeNNN2N)C(Ae
4

1
                                            (88) 

 2†2iφ-††2†2iφ
2

Aφ ACeACCA2CAe
4

1
U                               (89) 

Hence,  
2

Aφ

2

Aφ

2

Aφ UU ]U[   

                

]}AC)(AC[e ACCA2-                               

NN NN2]CA)CA([{e
4

1

2†2†2iφ-††

CACA

2†2†2iφ




  

                                                                                                                                                                             (90) 

Using equation (10) in equation (90), we find 

]}AC)(AC[e ACCA-2N2                                

NN2]CA)CA([{e
4

1
NN

4

1
]U[

2†2†2iφ-††

C

CA

2†2†2iφ

AC

2

Aφ




 

                                                                                                                                                               (91) 

A state is squeezed if the term in brackets becomes negative. This term is smallest when 

 π φ2]AC)AC([ arg 2†2†                                                                                      (92) 

If φ satisfies this condition, then 

]AC)(AC -NAC NN[
2

1
NN

4

1
]U[ 2†2†

C

2
†

CAAC

2

Aφ   

               (93) 

Therefore, a state is difference squeezed if and only if  

|<(AC
†
)

2
> - <AC

†
>

2
|      <NANC> - |<AC

†
>|

2
 + <NC>                                       (94) 

For uncorrelated modes the equation (94) becomes 

|<A
2
> <(C

†
)

2
> - <A>

2
<C

†
>

2
|      <NA><NC> - |<A><C

†
>|

2
 + <NC>                                     (95) 

Case-I: If the modes are uncorrelated and both are unsqueezed, the condition for which is given by [33] 

   

|<A
2
> - <A>

2
 |      <NA> - |<A>|

2
                                      (96) 

Using equations (62) and (96), we then have 
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  |<A
2
> <(C

†
)

2
> - <A>

2
<C

†
>

2
|      <NA><NC> - |<A><C

†
>|

2
                                          

(97) 

This implies that the condition given in equation (95) is not satisfied, so that the state is not difference squeezed. 

Case-II: If the A mode squeezed and the C mode is in a coherent state of amplitude γ, we then have 

  |<A
2
> <(C

†
)

2
> - <A>

2
<C

†
>

2
|   =  |γ|

2
 |(<A

2
> - <A>

2
)|                                                                 (98) 

so that the state is difference squeezed if [33-35] 

|<A
2
> - <A>

2
|  > <NA> - |<A>|

2
 + 1                                                                                                 (99) 

Comparing with the condition as given in (96) we find that the above state may or may not be difference 

squeezed. 

Case-III: If the A mode is in a coherent state of amplitude α and the C mode is squeezed, we then have 

  |<A
2
> <(C

†
)

2
> - <A>

2
<C

†
>

2
|   =  |α|

2
 |(<C

†2
> - <C

†
>

2
)|                                                             (100) 

where <NA> = |α|
2
 and the state is difference squeezed if  

|<C
†2

> - <C
†
>

2
|  > <NC> - |<C

†
>|

2
 + 

2

C

α

N 
                                                                                 (101) 

Comparing with the condition as given in (62) we find that the above state can be difference squeezed if 

|α|
2
 >> <NC>                                                    (102) 

i.e. the amplitude of mode A is large enough.  

Case-IV: If both A and C modes are squeezed then  

|<A
2
> <(C

†
)

2
> - <A>

2
<C

†
>

2
|   >  <NA><NC> - |<A><C

†
>|

2
                                                         (103) 

The above situation for A and C modes is similar to that for sum squeezing of B and C modes. Hence the state 

may or may not be difference squeezed. 

In the same manner we define the amplitude quadrature components in the idler mode for the 

difference squeezing condition 3 = 1 - 2 as 

X1C(t) = 
2

1
[C(t) + C

†
(t)]                                                   (104) 

and X2C(t) = 
2i

1
[C(t) - C

†
(t)]                                                                (105) 

Using equations (23) and (24) in equations (104) and (105) for uncorrelated modes at t = 0, we have 

  [∆X1C (t)]
2
 = (∆X1C)

2
 + |g|

2 
t
2
 [(∆V2)

2
 – 

AB N -N (∆X1C)
2
]                                     (106) 

and   [∆X2C (t)]
2
 = (∆X2C)

2
 + |g|

2 
t
2
 [(∆V1)

2
 – 

AB N -N (∆X2C)
2
]                                   (107) 

If the C mode is initially in a coherent state i.e., 

 (X1C)
2
 = (X2C)

2
 = 

4

1
                                                     (108)   

Then equations (106) and (107) reduce to  

[∆X1C (t)]
2
 – 

4

1
 = |g|

2 
t
2
 [(∆V2)

2
 – 

4

1
AB N -N ]                                        (109) 

and   [∆X2C (t)]
2
 – 

4

1
 = |g|

2 
t
2
 [(∆V1)

2
 – 

4

1
AB N -N ]                                      (110) 

Equations (109) and (110) show that X1C in the idler mode is squeezed if V2 is squeezed and X2C is squeezed if 

V1 is squeezed. In other words, the C mode is squeezed in the X1C direction if the A and B modes are difference 

squeezed in the V2 direction and the C mode is squeezed in the X2C direction if the A and B modes are 

difference squeezed in the V1 direction. Hence, difference-frequency generation changes difference squeezing 

into normal squeezing. In particular, difference squeezing in V1 will be converted into squeezing in X2C and 

difference squeezing in V2 will lead to squeezing in X1C. 

Now, the difference squeezing of the fundamental mode A as a function of time, we define the 

quadrature operators for A and B, as 

(t)B(t)]A(t)[A(t)B
2

1
(t)V ††

1A                                                                                              (111) 

and (t)B(t)]A(t)[A(t)B
2i

1
(t)V ††

2A                                                                                            (112) 

Using equations (19-22) to the first order coupling in equation (111), we find for V1A quadrature as, 
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V1A(t) = 
2

1
[(AB

†
 + A

†
B) – igt (NB – NA) (C - C

†
)]                                                                       (113) 

Using equation (43) in equation (113), we obtain the field variance as 

  2

1A

2

1A

2

1A (t)V(t)V(t)ΔV   22
βα 

4

1
                                                                  (114) 

Hence using equations (15) and (114), we obtain 

  21A (t)ΔV -  (t)N(t)N
4

1
AB )}θθ(cos{θ αβγigt 321                                            (115) 

From equation (115) we found the same result as given in equation (86) that the squeezing of V1A will occur 

whenever )}θθ(cos{θ 321  < 0. 

Now, similarly the condition for the state to be difference squeezed in the present case is given by 

|<(AB
†
)

2
> - <AB

†
>

2
|      <NANB> - |<AB

†
>|

2
 + <NB>                                     (116) 

For uncorrelated modes the equation (116) becomes 

|<A
2
> <(B

†
)

2
> - <A>

2
<B

†
>

2
|      <NA><NB> - |<A><B

†
>|

2
 + <NB>                                   (117) 

Case-I: If the modes are uncorrelated and both are unsqueezed.  

Using equations (61) and (96), we then have 

  |<A
2
> <(B

†
)

2
> - <A>

2
<B

†
>

2
|      <NA><NB> - |<A><B

†
>|

2
                                          (118) 

This implies that the condition given in equation (117) is not satisfied, so that the state is not difference 

squeezed. 

Case-II: If the A mode is squeezed and the B mode is in a coherent state of amplitude β, we then have 

  |<A
2
> <(B

†
)

2
> - <A>

2
<B

†
>

2
|   =  |β|

2
 |(<A

2
> - <A>

2
)|                                                              (119) 

so that the state is difference squeezed if  

|<A
2
> - <A>

2
|   <NA> - |<A>|

2
 + 1                                                                                                   (120) 

Comparing with the condition as given in (96) we find that the state may or may not be difference squeezed. 

Case-III: If the A mode is in a coherent state of amplitude α and the B mode is squeezed, we then have  

|<B
†2

> - <B
†
>

2
|    <NB> - |<B

†
>|

2
 + 

2

B

α

N 
                                                                                 (121) 

Comparing this with equation (61) we see that the state can be difference squeezed if  

|α|
2
    <NB>                                                                 (122) 

i.e. the amplitude of mode A is large enough.  

Case-IV: If both A and B modes are squeezed, then the situation is similar to that for difference squeezing of the 

modes A and C i.e. the state may or may not be difference squeezed. 

 

V. Conclusions 
In this paper we have found that the squeezing of the sum frequency field depends on the sum 

squeezing of the signal and idler modes in pump mode of PDC process. 

In pump mode, we have established the relation between sum and normal squeezing in sum-frequency 

generation. That is sum squeezing can be turned into normal squeezing via sum-frequency generation. This 

result suggests a method of generation and also detection for sum squeezing in PDC process. We have also 

observed that the sum squeezing will occur whenever the condition will follow as )θθsin(θ 321  < 0 to case 

of first order coupling. To generate sum squeezing, we have shown all kind of possibilities for an uncorrelated 

two modes state. If both modes are not squeezed, then the state is not sum squeezed. If one mode is squeezed 

and the second one is in a coherent state, then the state is sum squeezed. Finally, if both modes are squeezed, 

then the state may or may not be sum squeezed.  

In signal and idler modes, difference squeezing is turned into normal squeezing by difference-

frequency generation. The effect of first order coupling on squeezing in signal and idler modes have also studied 

and found that the difference squeezing will occur whenever the condition will follow as 

)}θθ(cos{θ 321  < 0. Various possibilities for obtaining difference squeezing in two modes and its 

dependence on squeezing of individual field modes are investigated. If both modes are not squeezed, the 

resulting state is not difference squeezed. If the high-frequency mode is in a coherent state and the low-

frequency mode is squeezed, the field state will be difference squeezed if the amplitude of the high-frequency 

mode is large enough; otherwise the state may or may not be difference squeezed. If both modes are squeezed, 

then the state may or may not be difference squeezed.  
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These results suggest ways to generate a squeezed sum and difference-frequency fields in a 

nonlinear optical process. As a result, this family of higher-order squeezing effects can be used as a resource to 

improve high quality optical telecommunication [46].  

 

References 
[1]. D. F. Walls, “Squeezed states of light” Nature 306 141-146 (1983).  
[2]. R. Loudon and P. L. Knight, “Squeezed light” J. Mod. Opt. 34 709-759 (1987). 

[3]. M. C. Teich and B. E. A. Saleh, “Squeezed states of light” Quant. Opt. 1 153-191 (1989).  

[4]. J. Perina,  “Quantum Statistics of Linear and Nonlinear Optical Phenomena‖ Kluwer, Dordrecht, Chapters 9 and 10 (1991). 
[5]. L. Mandel, ―Nonclassical states of the electromagnetic field‖ Phys. Scr. T 12 34-42 (1986).  

[6]. V. V. Dodonov, ―Nonclassical states in quantum optics: a squeezed review of the first 75 years‖ J. Opt. B: Quant. Semiclass.  Opt. 

4 R1-R33 (2002). 
[7]. B. E. A. Saleh and M. C. Teich, ―Can the channel capacity of a light-wave communication system be increased by the use of   

photon-number–squeezed light?‖ Phys. Rev. Lett. 58  2656-2659 (1987). 

[8]. K. Wódkiewicz, “On the Quantum Mechanics of Squeezed States‖ J. Mod. Opt. 34 941-948 (1987). 
[9]. H.J. Kimble, D.F. Walls, “Squeezed states of the electromagnetic field: Introduction to feature issue” J. Opt. Soc. Am. B 4 1450-  

1741 (1987). 

[10]. H.P. Yuen, J.H. Shapiro, “Optical communication with two-photon coherent states—part I: quantum-state propagation and 

quantum-noise reduction‖ IEEE Trans. Inf. Theory. 24, 657–668 (1978).  

[11]. C.H.Bennett, G.Brassard and N.D. Mermin, ―Quantum cryptography without Bell’s theorem‖ Phys Rev.Lett. 68, 557–559 (1992).  

[12]. J. Kempe, ―Multipartite entanglement and its applications to cryptography‖ Phys. Rev. A. 60, 910–916 (1999). 
[13]. L.Mandel,―Squeezing and photon antibunching in harmonic generation‖ Opt. Commun. 42, 437–439 (1982). 

[14]. S. Kielich, R. Tanas and R. Zawodny, “Squeezing in the third-harmonic field generated by self-squeezed light” J. Opt. Soc. Am B 4 

1627-1632 (1987). 
[15]. J. Perina, V. Perinova, C. Sibilia and M. Bertolotti, “Quantum statistics of four-wave mixing” Opt. Commun. 49 285-289 (1984). 

[16]. M. S. K. Razmi and J. H. Eberly, “Degenerate four-wave mixing and squeezing in pumped three-level atomic systems” Opt. 

Commun. 76 265-267 (1990). 
[17]. D. K. Giri and P. S. Gupta, “The squeezing of radiation in four-wave mixing processes” J. Opt. B: Quant. Semiclass. Opt. 6 91-96 

(2004).  

[18]. D. K. Giri and P. S. Gupta, “Short-time squeezing effects in spontaneous and stimulated six-wave mixing process” Opt. Commun. 
221 135-143 (2003). 

[19]. J Perina and J Krepelka, ―Stimulated Raman scattering of squeezed light with pump depletion‖  J. Mod. Opt. 38  2137-2151 (1991). 

[20]. A. Kumar and P. S. Gupta, “Short-time squeezing in spontaneous Raman and stimulated Raman scattering” Quant. Semiclass. Opt. 
7  835-841 (1995).  

[21]. A. Kumar and P. S. Gupta, “Higher-order amplitude squeezing in hyper-Raman scattering under short-time approximation” Quant. 

Semiclass. Opt. 8 1053-1060 (1996). 
[22]. D. K. Giri and P. S. Gupta, “Higher-order squeezing of the electromagnetic field in spontaneous and stimulated Raman process” J. 

Mod. Opt. 52 1769-1781 (2005). 

[23]. C. K. Hong and L. Mandel, “Higher-order squeezing of a quantum field” Phys. Rev. Lett. 54 323-325 (1985).  
[24]. C. K. Hong and L. Mandel “Generation of higher-order squeezing of quantum electromagnetic fields” Phys. Rev. A 32 974-982 

(1985). 

[25]. M. Hillery, “Squeezing of the square of the field amplitude in second harmonic generation” Opt. Commun. 62 135-138 (1987).  
[26]. M. Hillery “Amplitude-squared squeezing of the electromagnetic field” Phys. Rev. A 36 3796-3802 (1987).  

[27]. M. Hillery “Phase-space representation of amplitude-squared squeezing” Phys. Rev. A 45 4944-4950 (1992).  

[28]. You-bang Zhan, “Amplitude-cubed squeezing in harmonic generations‖ Phys. Lett. A 160 498-502 (1991). 
[29]. J. Perina, V. Perinova and J. Kodousek, ―On the relations of antibunching, sub-poissonian statistics and squeezing‖ Opt. Commun. 

49 210-214 (1984). 

[30]. Y. Kim, T. H. Yoon, “Higher order sub-Poissonian photon statistics of light‖ Opt.Commun. 212, 107–114 (2002). 
[31]. H. Prakash, D. K. Mishra, “Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing 

and amplitude-squared squeezing‖ J. Phys. B At.Mol.Opt. Phys. 39, 2291–2297 (2006).  
[32]. D. K. Mishra “Study of higher order non-classical properties of squeezed kerr state‖. Opt. Commun. 283, 3284–3290 (2010). 

[33]. M. Hillery, “Sum and difference squeezing of the electromagnetic field” Phys. Rev. A 40 3147-3155 (1989). 

[34]. Ashok Kumar and P. S. Gupta, “Sum squeezing in four-wave sum frequency generation” Opt. Commun 136  441-446 (1997). 
[35]. Ashok Kumar and P. S. Gupta, “Difference squeezing in four-wave difference frequency generation” Quant. Semiclass. Opt. 10 

485-492 (1998). 

[36]. D K Giri and P S Gupta, ―Squeezing effects in the sum and difference of the field amplitude in the Raman process‖ Mod. Phys Lett. 
B 19 1261-1276 (2005). 

[37]. M. K. Olsen and R. J. Horowicz, “Squeezing in the sum and difference fields in second harmonic generation” Opt. Commun. 168 

135-143 (1999).  
[38]. Nguyen Ba An and Vo Tinh, “General multimode sum-squeezing” Phys Lett. A 261 34-39 (1999). 

[39]. Nguyen Ba An and Vo Tinh, “General multimode difference-squeezing” Phys Lett. A 270 27-40 (2000).  

[40]. R Prakash and P Shukla, ―Detection of sum and difference squeezing‖ IOSR J. App. Phys. 1 43-47 (2012). 
[41]. Y. Zhan, ―Sum and difference squeeze properties of entangle coherent state‖ Mod. App. Sci. 4 157-162 (2000). 

[42]. Truong Duc Minh, Nguyen Hoai Thi Xuan  and Nguyen Ba An, ―Sum Squeezing, Difference Squeezing, Higher-Order 

Antibunching and Entanglement of Two-Mode Photon-Added Displaced Squeezed States‖ Int. J. Theo. Phys. 53 899-910 (2014). 
[43]. R. Tanas, “Squeezing from an anharmonic oscillator model: (a†)2a2 versus (a†a)2 interaction Hamiltonian” Phys. Lett. A 141 217-

220 (1989). 

[44]. R. Tanas, A Miranowicz and S. Kielich, “Squeezing and its graphical representations in the anharmonic oscillator model” Phys. 
Rev. A 43 4014-4021 (1991). 

[45]. J. Perina, “Quantum Statistics of Linear and Nonlinear Optical Phenomena‖ Kluwer, Dordrecht, Chapters 9 and 10 (1991). 

[46]. D K Giri, R P Singh and A Bandyopadhyay ―Displacement gain dependent fidelity in quantum teleportation using entangled two-
mode squeezed light‖ Opt. Quant. Elect. 46 1127-1137 (2014). 

http://www.informaworld.com/smpp/content~content=a713822230~db=ai~order=page
http://www.informaworld.com/smpp/content~content=a713822230~db=ai~order=page
http://josab.osa.org/abstract.cfm?id=79370
http://link.springer.com/journal/10773

