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Abstract: A comprehensive review of the influence of Galactic and Solar Cosmic Rays (GSCRs) in the Earth’s 

atmospheric is hereby presented. The results of the characterizations of the GSCRs (measured in counts) and 

AST (measured in 
o
C) against Time (measured in hours) shows significant variations. The positive correlation 

coefficient, r between GSCRs and ASTs, ranging from 0.020 to 0.800 also shows that the events of GSCRs gives 

rise to ASTs in the earth’s atmosphere. The low level of r in these result indicates that other solar activities such 

as sunspot, coronal mass ejection and solar wind directly enters the Earth’s atmosphere, while the high level of 

r shows that the GSCRs is responsible for the ASTs. The large number of references up to 118 is a source for 

scholars’ interest in the various contribution of space research. 
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I. Introduction 

The influence of Galactic and Solar Cosmic Rays (GSCRs) to generate ionization and produce nuclear-

electromagnetic cascade which enhances the variation of average surface temperature in the earth’s atmosphere 

cannot be over emphasized. The enhance hazard of these variations to astronauts, communication, human DNA 

is highly debated globally [1]. The main origin of GSCRs are from outside and within our solar system. The sun 

is the driving source within our solar system for Galactic Solar Cosmic Rays (GSCRs) were sporadic particles 

are release into space during solar flares(SFs). SFs are high energy protons. Whereas, the Galactic Cosmic Rays 

(GCRs) are high energetic particles from outside our solar system. The GCRs consist also of high energy proton 

and heavy ions origin. The composition of this primary GSCRs are proton (~ 10%) and electrons (~1%). The 

increase rate of ionization that takes place in the earth’s atmosphere is the most dangerous emissions from this 

radiations, including protons, x- rays and ultraviolent radiations (UV). In spite of these, they continuous 

monitoring of the Earth’s atmospheric ionization remains unlimited for astronomers, astrophysics and space 

scientist globally [2, 3]. 

The naked Eye observation shows confusing climatic variation as the time rolls. These led to initial 

design and construction of early Balloon experiments used in the past to measure the induced ionization at 

different locations and during solar cycles [4,5,6,7,8], Rockets [9], Spacecraft [9, 10], Muon telescope 

[11],Neutron monitor data and Cherenkov counter measurements at high mountain altitude [12] and Ground 

base observatory networks[13]. 

The creation of independent galactic charged particles interaction at the D-region of the Earth’s 

atmosphere ranging from 50 to 100km above the sea level have been identified[14,15,16]. Furthermore, above 

100km altitude, the contributions of the electromagnetic, x-rays and ultraviolent radiation dominates [16]. Based 

on these, the particles influences the ionization, chemical and electrical conditions in the atmosphere ranging 

from 5 to 100km. In contrary, near the Earth’s surface which is below 5km, an additional source of ionization 

occurs via natural radioactivity of the soil may introduce radon gas emission in some regions [17]. 

Several authors have studied and published papers on GSCRs forclarifications as follows:Origin of  

Cosmic Rays [18, 19, 20, 21]; Cosmic Rays in the Earth’s Atmosphere[22, 23]; Cosmic-ray propagation in the 

atmosphere [24];Solar and Galactic Cosmic Rays in the Earth’s Atmosphere[25,26];Protons and Heliumspectra 

compositions of cosmic rays [27,28,29, 9, 30,31,32,33];Cosmic ray and solar protons induced ion and ionization 

production in the atmosphere and its influence on ozonosphere[34,35,36,37, 38, 39,40, 14, 41, 42, 43,44,45, 

46],Ionization profiles caused by galacticand solar cosmic rays[47];Ratio of solar cosmic ray ion 

generation[47,48]; Global atmospheric electrical circuit on climate and Solar 

windcontrol[49,50,51,52,53,54,55,56,57,58,59,60,61,62, 7];Production of atomic nitrogen and oxygen by 

relativistic proton impact in air[63,64];Rate of electron production in ionosphere by cosmic 

rays[65,66,67];Calculation ofelectron production rate profiles[68];Determinationof electron production rates 

caused by cosmic ray particlesin ionospheres of terrestrial planets [69];Influence of galactic cosmic rays on 

atmospheric composition and dynamics[70,71]; Galactic cosmic ray influence on climate and ozone variations 

[72,73,74,75,76,77,78,79]; Atmospheric profiles on extensive air shower observation [80,81,82], Empirical and 

approximation model of cosmic ray spectrum in energy[83, 84,],Analytical model forcosmic ray ionization by 
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nuclei with charge Z in the lowerionosphere and middle atmosphere,[85,86], Simulation and Chemistry-climate 

modeling[87,88,89,90,91];Model for inducedionization by galactic cosmic rays in the Earth atmosphere and 

ionosphere (Velinov et al., 2009;Wissing and Kallenrode, 2009),Simulation of cosmicray ionization profiles in 

the middle atmosphere and lowerionosphere [92];Newoperational models for cosmic ray ionization in space 

[93]; Improved cosmic rayionization model for ionosphere and atmosphere[94];Progress in space weather 

modeling in an operational environment [95];Code for computing the interaction of cosmic rays with the Earth’s 

atmosphere [96];Anomalous cosmic-ray component of singly ionization[97, 98,99,100]; Cosmic ray induced 

ionization in the atmosphere with CORSIKA code simulations [101,102];  Solar cosmic ray induced ionization 

in the Earth’s atmosphere with CORSIKA code simulations [103], Energy interval coupling in improved cosmic 

ray ionization model with three intervals in ionization losses function for the system atmosphere/ionosphere 

[104,105].The contribution of this work will focus on theinfluence of galactic and solar cosmic rays on 

ionization in the atmosphere where the index particles are cosmic rays and solar flares. These particlesaffect the 

variations of atmospheric phenomena such as average surface temperature (AST). The main procedure used in 

this work is to statistically analysis the hourly variations of percentage (% GSCR) and percentage (% AST) in 

the earth’s atmosphere applying excel programs.   

 

II. Atmospheric Galactic Cosmic Ray Ionization 
The primary galactic cosmic rays (GCRs) initiate a nucleonic-electromagnetic cascade at altitudes 

below 30 km in the atmosphere, with the main energy losses which results in ionization, dissociation and 

excitation of molecules (Dorman 2004). The full Monte-Carlo CORSIKA (Cosmic Ray SImulations for 

KAscade) simulation were used for modelling the atmospheric nucleonic-electromagnetic cascade [98]. The 

development of COST-724 action (2003–2007) which led to discovery of three numerical GCRs ionization 

models[25, 26].The Sofia model which worked for an analytical approximation of the direct ionization by GCR 

primaries above 30 km[85,106,107] as well as the CORSIKA Monte-Carlo package extended by FLUKA 

package to simulate the low-energy nuclear interactions below 30 km [86,31,82].The Oulu CRAC (Cosmic Ray 

Atmospheric Cascade) model which is based on the CORSIKA/FLUKA Monte-Carlo simulationsaccount for 

direct ionization by primary GCR particles [108,25,26]. 

The Bern model (ATMOCOSMICS/PLANETOCOSMICS code) is based on the GEANT-4 Monte-

Carlo simulation package[87]. The main contribution was obtained by Desorgher et al. (2005) and Schereret al. 

(2007),[25,26], etc. The codes of CORSIKA and GEANT-4confined study of the cascade evolution in the 

atmosphere.The simulation of the interactions and decays of various nuclei, hadrons, muons, electrons and 

photons resultedin the detailed information of the type, energy, momenta, location and arrival time of the 

produced secondary particles at given selected altitude above sea level [25,26]. 

 In contrast to the lower atmosphere, theyis ionization of the middle and upper atmosphere and the 

cascade could not be well developed. Based on these poor interactions to engineer the cascade, a relatively 

simple analytical solution was applied using model CORIMIA (Cosmic Ray Ionization Model for Ionosphere 

and Atmosphere) for cosmic rays ionization above 30 km[109]. Considering the fact that the atmospheric depth 

at the altitude of 30 km is about 10 g/cm
2
at 500 km, which is much less than the nuclear free path of protons and 

a particles of about 70 and 30 g/cm
2
 respectively. Theyconsidered only ionization losses of the primary cosmic 

ray particles and neglected nuclear interactions in the middle atmosphere above 30 km (upper stratosphere and 

ionosphere) [14,26];. In addition, they further neglect changes of energetic particles for the altitude above 50 

km, thus, reducing the computation of cosmic ray ionization to an analytical thin target model [65,67,68]. At the 

altitude ranging from 25–30 to 50 km, an intermediate target model needs to be applied which accounts for the 

particle’s deceleration due to ionization losses [66]. This model was also used for the calculation of electron 

density and atmospheric electrical conductivities in the middle atmosphere for different particles: Galactic 

Cosmic Rays (GCRs), Anomalous Cosmic Rays(ACRs) and Solar Energetic Particles (SEPs)[109].An 

intermediate target ionization model was added to account for the Chapman function values for the penetrating 

particles in the spherical atmosphere [110,111]. The program CORIMIA was discovered for the calculation of 

the electron and ion production rate profiles due to cosmic rays using ionization losses (Bohr-Bethe-Bloch 

function) approximation in six characteristic energy intervals, which includes the charge decrease interval for 

electron capturing [93,117,118]. The detailed model for calculation of CR ionization rates which is the number 

of electron-ion pairs in cm
_3

 per second at given altitude in the ionosphere and middle atmosphere[16]. The 

mathematical expression of the fully operational program CORIMIA is detailed in Velinov 1966.The 

contributions to the expression ofionization losses [118] of particles and the charge of the nuclei(Q = 35 eV) 

which was the energy necessary for theformation of one electron-ion pair [63]. 

Model CORIMIA computed the cosmic ray ionization profiles at a given location and time, solar and 

geomagnetic activity. The calculations were done in the cusp (that is, a pointed end where two curves meet) 

region (Rc = 0 GV) at different altitudes ranging from30–120 km. Observation showed that these are the 

maximum values of ionization in the atmosphere of the Earth. The results for ionization rate profiles for the 
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different groups of galactic cosmic rays (GCRs) nuclei and GCRs ionization profile at minimal solar activity are 

shown in Fig.1. Thus, the total ionization rate of Fig.1Bcompose of the ionization rates from main groups of the 

GCRs nuclei: protons, Helium (a particles);Light and Medium shown in Fig.1A;and, Heavy and Very Heavy 

presented in Fig. 1B. The ionization profiles which are shown in Fig.1A and 1B show the maximal ionization in 

the Earth’s ionosphere and atmosphere[16]. The computational resultsof computer algebra system, version 7.0 

are obtained(Wolfram, Mathematic 2008).  

 

 
Fig.1. Electron production rate q(h) profiles due to GCRs in cusp region for A: p, a, L and M groups of nuclei, 

and B: H and VH groups of nuclei and the total GCRs ionization during minimal solar activity[115]. 

 

 
Fig. 2. Electron production rate q(h) profiles due to GCR for cusp, middle latitudes (k = 41_) and equator at 

minimal, moderate and maximal solar activity. Experimental data (*) are taken from Brasseur & Solomon 

(2005); [116][16]. 

 

The calculations which give a decrease of the ionization rates with the latitude as shown in Fig. 2may 

be attributed to theincrease of geomagnetic cut-off rigidity from geomagnetic poles (Rc = 0 GV) to the 

geomagnetic equator (Rc = 15 GV). In Fig. 2are presented results for electron production rate profiles for cusp 

(geomagnetic latitude k = 90), middle latitudes (k = 41) and equator (k = 0) at minimal, moderate and maximal 

solar activity. Experimental data (*) from rocket measurements (40–100 km) are considered [116]. The 

influence of solar wind modulation into the GCR causes the atmospheric ionization decreases with growth of 

solar activity [16]. 

 

III. Data, Methods And Result Analysis 
The data used in this work are downloanded from observatories of Mexico for cosmic ray data, Space 

Physics Interactive Data Resources (SPIDR) and National Space Research and development Agency, 

(NASRDA), Anyiba, Nigeria; for cosmic rays, solar flare and average surface temperature respectively for the 
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year 2010 respectively. These data were collected in hourly intervals for a month. These data of about 720hrs 

per month for 12- months events were arranged in four different groups in an excel spread sheets were they are 

statistically analyzed and used in this paper. In each of the group, the percentage of accommodation of galactic 

cosmic rays (%GCR), galactic solar flare (%GSF) and average surface temperature (%AST)in the earth’s 

atmosphere were computed hourly and considered. Then, %GCR and %GSF were summed to a single source of 

percentage of galactic and solar cosmic rays (%GSCR,that is, %GCR + %GSR = %GSCR). 

The group is the characterization of%GSCR and %AST (measured in count) against time (measured in 

hour)which represented January, February and March as shown in Fig.3. The process were repeated which 

represents the second thatcovered the events of April, May and June as shown in Fig.4., the third which covered 

the events of July, August and September as shown in Fig.5 and the fourthgroup which represents the activities 

of October, November and December as shown in Fig.6. Theduration of the time ranges from a maximum of 

0.744 ×10
2
hr to 0.768 ×10

2
hr as the numbers of days in the month varies. 

  

 
Fig.3.Variations of percentage Galactic and Solar Cosmic Rays (%GSCR) and percentage Average Surface 

Temperature (%AST) (measured in count) against Time (measured in hour). The legend colour for %GSCR and 

%AST: the month of January is black; the month of February is blue and the month of March red. 

 

 
Fig.4.Variations of percentage Galactic and Solar Cosmic Rays (%GSCR) and percentage Average Surface 

Temperature (%AST) (measured in count) against Time (measured in hour). The legend colour for %GSCR and 

%AST:the month ofApril is black;the month ofMay is blue andthe month ofJune is red. 
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Fig.5 Variations of percentage Galactic and Solar Cosmic Rays (%GSCR) and percentage Average Surface 

Temperature (%AST) (measured in count) against Time (measured in hour). The legend colour for %GSCR and 

%AST:the month ofJuly is black;the month ofAugust is blue andthe month of September is red. 

 

 
Fig.6.Variations of percentage Galactic and Solar Cosmic Rays (%GSCR) and percentage Average Surface 

Temperature (%AST) (measured in count) against Time (measured in hour). The legend colour for %GSCR and 

%AST:the month ofOctober is black;the month ofNovemberis blue andthe month of December is red. 

 

In addition to the above characterizations, a correlation analysis of excel program were carried out in 

order to ascertain the level of relationship between GCRs and SCRs. The results of the correlation coefficient, r, 

ranges from 0.020 to 0.800. 

 

IV. Discussion And Conclusions 
The data shown in the characterization from figures 3 to 6, indicates that the%GSCR and %AST 

intensity during a given month are uniquely related. This is precisely what would be expected in this work.The 

magnitude of the effect of %GSCRvary with atmospheric regions. The %GSCR and %AST intensity observed 

on the earth’s atmosphere are dependent on the distribution of interactions in the earth’s atmosphere over a long 

scale of time. The results of the statistical study in this work showed significant characterization with respect to 

hourly sample variations. The %GSCR and %AST showed a continuous variation with time (measured in hour). 

This variations are in agreement with some authors [26, 115;112,113,114].  
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The variations of fig.3 showed the event of %GSCR and %AST in January, February and March. Fig.4 

showed the event of%GSCR and %AST in May, June and April. Fig.5 showed high variations of %GSCR and 

%AST in July, August and September. Fig.6 showedvariations of %GSCR and %AST in October, November 

and December. 

The correlation coefficients, r between GCRs and GSFs are positive correlation, ranging from 0.020 to 

0.800. The positive correlation coefficient is in agreement with other authors [26,16, 111,112,113,114]. 

In conclusion, the observatory stations exploring the earth’s atmosphere records measurements of 

GCRs, GSFs and ASTs on hourly events for the year, 2010. The GCRs and GSFs are combined as a single 

source of GSCRs. The measurements are interpreted on an excel spread sheet statistically. The percentage of 

accommodation of GSCRs and ASTs are determined.The graphical analysis showed that they are presents of 

%GSCR and %ASTin the earth’s atmosphere. The hourly variation of GSCRs indicates a continuous arrival of 

events with variation in amplitude. Finally, the positive correlation coefficient found in theseresults show that 

the variation GSCRs events gives rise to the variation of AST. 
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