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Abstract: The blade in its movement undergoes three types of deformation: longitudinal (bending), lateral and 

twisting, of interest for the bending mode since it appears the most important mode. The approach used for 

modeling of blade element bending is done by the finite element method of discretizing the blade beam element, 

each with two degrees of nodal freedoms. Solving the equation of motion based on the MEF is obtained by the 

application of modal analysis which consists of obtaining from the eigenmodes and system natural frequencies 

that will be used in the study of forced motion due to aerodynamic loads using the modal superposition method. 

Theory of the airfoil member is used for the evaluation of aerodynamic loads of dividing the blade in a series of 

elements (airfoils) that operate independently. 
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I. Introduction 
Wind energy is one of the oldest sources of energy used. The wind turbine blades are the most flexible 

part of this machine, and modal behavior has a great influence on the total dynamic. Recently, more attention 

has been paid to modal analysis. This is reflected by the number of experimental and numerical studies 

conducted on this subject The calculation of frequencies and bending normal modes of a rotating blade is a 

thorny problem because of the complexity of the equation that governs its movement .In fact, this equation has 

no exact solution. In addition, it is characterized by complex boundary conditions that hinder any numerical 

solution A modeling of finite element is applied to a complex blade shape using Ansys software. 

In this paper, the resolution of the equation of bending motion of the blade is solved by the finite 

element method using the Matlab code.  The method involves the blade in small discrete beam elements, using 

the principle of the Galerkin residual method, which has applied the equation of motion. A modal analysis 

system ,  is carried out to obtain eigenvector and natural frequency of blade bending. The use of these results 

helps to study the equation of bending forces . The blade bending comes from the normal stress in this mode, the 

curvature is counted. To obtain responsible aerodynamic forces in bending mode, we use axial momentum 

theory. This theory is made to divide the blade in a series of elements (airfoils) that operate independently.  The 

interaction between tubes' flow corresponding to the neighboring elements is neglected. Thus, it is possible to  

obtain independently the forces of drag and lift applied to each element, regardless of the flow in the adjacent 

elements .  

 

II. Formulation 
The wind turbine blade is treated as an elastic beam rotating with a constant angular velocity. The 

blade is treated as a Bernoulli beam clamped-free, vibrating right angles, which studies the elastic axis 

coinciding with its neutral axis supposedly. The blade is subject to the aerodynamic force. The efforts applied to 

the blade element are illustrated in Fig.1.  The application of second law of Newton leads to an equation 

according to the three main axes x, y and z, which are attached to the undeformed blade . X is coincided with the 

axis elastic; z is the axis of rotation of the blade.  

 
Fig.1: forces on a blade element. 
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Fig.2: Deflexion of the blade 

 

• Projection along the x axis: 
2dG m rdr                                                                                                               (1) 

•Projection along the y axis: 
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Note: Considering the weight of the element is neglected to the shear force V 

• Projection along the z axis: 
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Beam Theory allows us to write the relationship between the bending moment and the shear force, so the 

expression of the moment is: 
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The coupling of three equations allows us to have the differential equation of 4th order: 
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III. Aerodynamic Loads 
It is assumed that the aerodynamic load acting on a blade element is uniform as shown in Fig1. 

1- In the non- deformed configuration 

The theory applied to the blade member involves dividing the blade in a series of elements (airfoils) 

that operate independently. This mean that the interaction between the flow tubes corresponding to the adjacent 

elements is neglected. Thus, it is possible to obtain independently the forces of drag and lift applied to each 

element, regardless of the flow in the adjacent elements [2], [3]. The pressure field on a profile gives rise to an 

elementary aerodynamic force. It comprises of two elementary forces (Fig.3). 

 

 
Fig.3: Section of an element of the blade to a radius r 
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20.5 ( )x a xdF w C cdr                                                                                                      (6) 

20.5 ( )z a zdF w C cdr                                                                                                      (7) 

 

 
Fig.4: Speed triangle 

                                                                                                                         (8) 

arctan dV

r


 
  

 
                                                                                                                                (9) 

xC  and zC  are coefficients of drag and lift, respectively, depend on coefficients β. These profiles are obtained 

from numerical simulations or tests [7]. Fig.5 and Fig.6 show the aerodynamic characteristics Profile 

NACA2412 [7]. 

sin cosn x zdF dF dF                                                                                           (10) 

Only the normal component occurs in the case of bending. 
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Fig.5: Coefficient of the drag for NACA 2412; =3000 

 

-4 -2 0 2 4 6 8 10 12
-0.5

0

0.5

1

beta(°)

C
z

NACA2412;Re=3000

 
Fig.6: Coefficient of the lift for NACA 2412; =3000 

 

2- In the deformed configuration 

Deformation of the blade bending at z axis introduced a quantity dz that applies a variation in the angle of 

incidence, in this case β becomes: 
' u                                                                                                                  (11)  

With the expression of u (see fig.7) 

arctan
dz

u
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                                                                                                          (12) 

The expressions found in the case of the undeformed blade will be replaced by the following expression: 

 
2'2 2 2( )cosw v r u                                                                                                (13) 

Forces drags and lift become as follow:                                                                                     
'2 '0.5 ( )z a zdF w C cdr                                                                                                     (14) 
'2 '0.5 ( )x a xdF w C cdr                                                                                                     (15) 
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Fig.7: Forces at the blade deformed 

 

IV. Finite Element Method 
Analysis by the finite element method [6], [10] is useful for the space discretization of the equilibrium 

equation of motion. The blade is divided into beam elements. Each element consists of two nodes, with two 

degrees of freedom in each node and denoted  and θ as shown in fig.8. The distribution of z is represented by 

the nodal displacement by using the interpolation function: 

  ( ) iZ x H                                                                                                                      (16) 

 H  The interpolation vector that expresses: 
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And the vector of degrees of freedom of an element is defined as: 
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Fig.8: A finite element showing nodal degrees of freedom. 
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The interpolation function of Equation (17) is the Hermit polynomial and is defined as follows: 
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                                                                                  (19) 

Substituting the formula (16) in equation (5) and applying the weighted residue Galerkin to this 

equation (5) we obtain the equation of the following element: 

e i e i eM K F                                                                                                                      (20) 

With  

1e e eGK K K                                                                                                                         (21) 

The global matrices of the system are obtained by assembling the elementary matrices and the assembly 

procedure is shown in fig.9 

 

 
Fig.9: The assembly process of elementary matrices and elementary vectors forces. 

 

There is then the equation of motion of the blade in the absence of damping by an equation of the same 

form as that of an element [10]. 

M K F                                                                                                                              (22) 
 

Boundary Conditions 

In this case, we studied a free beam. This blade condition embedding one extremity involves the cancellation of 

the potential and kinetic energies. At this point, this is equivalent to removing 2 rows and 2 columns of the mass 

and stiffness matrices in the overall equation of the system. 

 

 Solution Procedure : 

• Free motion Study  
The motion is free when the blade is not required by external forces, which means that equation (5) becomes: 

0M K                                                                                                               (23) 

In this case the solution takes the form: 



Modeling the bending of the blade wind turbine Using Finite Element Analysis.  

DOI: 10.9790/4861-0804027886                                      www.iosrjournals.org                                       83 | Page 

   sint x t                                                                                                      (24) 

Substituting (24) in the equation (23) we get: 

2( ) 0i iK M x                                                                                                         (25) 

• Property eigenmodes 

T

m n mnX MX                                                                                                              (26) 

T

m n mnX KX                                                                                                               (27) 

These orthogonality property modes will operate with the study of forced motions. 

.• The Study of forced motions:  

The equation is solved with modal superposition method. In order to decouple the equations of this system, we 

use the orthogonality property of the eigenmodes. It is therefore interesting to rewrite this equation in the base of 

the natural modes [14]. The displacement Δ is written in matrix form:  

(t)=P (t)                                                                                                                                          (28) 

Equation (20) allows having a 2n equation each equation represents a system with one degree of freedom: 

2( ) ( )k k k kt t C                                                                                                                   (29) 

Note that the terms of the first part of the equation for a given mode are independent of other modes, while the 

second member (aerodynamic load) depends on all modes. 

The solution of equation (29) is:    
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Fig.10: The flowchart summarizing the method for solving equation (22) 

 

V. Results And Discussion 
Features used: 

NACA 2414 [8] 

E  9 25.8.10 /N m  

I  7 49.5.10 m
 

L  8m  

c  0.4m  

  8  

m  6.69 kg/m 
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Fig.11 : eigenmode 1 
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Fig.12: eigenmode2 
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Fig.13: Eigenmode 3 

 

Of all the mechanical vibration problems, the lowest frequency is the most interesting, for this reason, the first 

three modes are taken into account.  
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Fig.14: The defluxion of the tip end of the blade (=12rad/s) 

 

We can see that the defluxion maximal of the tip end of the blade for  = 12rad/s is 0.3875m 
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VI. Conclusion 
In this work, we intended to develop a mathematical model of analysis, so a study of vibration of wind 

turbine blades subjected to the aerodynamic loads was carried. This allows us to calculate the slowness of the 

blades and to estimate their lifetime. 

Nomenclature: 

 t  : Time 

G  : Centrifugal force 

E : Young's modulus 

I : Blade cross section moments of inertia 

xdF  : Elementary drag force  

zdF  : Elementary lift force  

ndF  : Elementary normal force up to x 

xC : Blade-section drag coefficient 

zC : Blade-section lift coefficient 

R : Rotation speed of the blade 

 : Pitch angle  

 : Twist angle  

 : Angle of attack 

M : The global mass of matrix 

K : The global stiffness matrix 

F :  The global force vector acting on the entire blade 

c : Blade chord 

i : Vector of an element’s nodal displacement 

 H : Vector interpolation 

V : Shear force 

M : Bending moment 

  w  : Blade section resultant air velocity 

v  :  Elastic displacements in the z directions 

   : Rotation of the  node in the y directions  

, ,x y z : Undeformed blade coordinates 

 a  : Density of air  

   : Density of the element of the blade  

   : Vector of global degrees of freedom 

  : Rotor blade angular velocity 

m : Mass per unit length of blade 

 : Test function 

dV :  Air velocity, m/sec 

eK : Stiffness matrix 

P : Eigen vector 

 : The Kronecker symbol 

1eK : Stiffness matrix due to deformation 
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GK : Stiffness matrix due to centrifugal force 

Z : Deflexion of bending of the blade 

r : Distance from the axis of rotation 

L : The length of the blade 

l : Length of an element of the blade 

 :specific speed 
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