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Abstract: We Make an analytical study of a waveguide whose guiding cross-section is bounded by two 

equiangular spirals in which core and cladding regions are filled with different dielectric materials having 

refractive index n1 and n2 where n1>n2. The characteristic equation is derived under the scalar wave 

approximation for weak guidance. Dispersion curves and cutoff curve are also shown and interpreted. Unlike 

the planar waveguide, a nonzero cutoff is deduced which may be attributed to the curvature of the boundaries 

and the flare. 
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I. Introduction 
In recent years optical waveguides with non-circular cross-section have received considerable 

attention. Among the non-circular cross-sections there are the triangular, elliptical, planar, polygonal and other 

more complicated shapes investigated [1–9]. Dielectric plane slab waveguides form the basic building blocks of 

a variety of devices in the field of integrated optics, laser beam technology, and microwave communications. 

Modal characteristics and attenuation properties of slab waveguide, multilayered waveguides and fibers have 

been studied extensively [10-12]. In the present paper we consider a waveguide whose guiding region is 

bounded by two equiangular spirals in which the core and the cladding regions are filled with different dieledric 

materials. If we consider a local region of this cross-section, we find that it resembles the cross-section of a 

distorted planar waveguide. The distortion has two aspects, namely, there is a curvature and there is also flare. 

This deformation may result from an external influence. For the analysis of such waveguide we use the scalar 

wave weak guidance approximation to obtain the characteristic equation. Dispersion curves for various modes 

are, however, obtained from the characteristic equation. The cutoff curve is also plotted after applying the cutoff 

condition. The analytical study of deformed planar waveguide with parabolic cylindrical boundaries [4] gave the 

result of bunching of modes. But in the proposed waveguide the deformation does not affect the discreteness of 

modes, it gives non- zero cutoff unlike the planar waveguide. 

 

Theory 
The cross-section of waveguide to be analysed is shown in figure (1). In the given figure three regions 

are shown and these are 

Region (i): The first Cadding region 

Region (ii): The Core region 

Region (iii): The second Cladding region 

The Polar equation of equiangular spirals is given by 

𝑟 = 𝜉𝑒𝑚𝜃   (1) 

Where (r, ө) are polar coordinates of a typical point on the spiral and 𝜉 and m are two parameters. 

Its normal curve is 

𝑟 = 𝜂𝑒−𝜃 𝑚                         (2) 

To Introducing new coordinate system (𝜉, 𝜂, 𝑧) we obtain scale factors h1, h2, h3. Thus  
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1
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Using weak guidance approximation, the scalar wave equation of the wave function ψ is given by 

∇2𝜓 + 𝜔2𝜇0𝜖𝜓 = 0          (3) 

In the new coordinate system(𝜉, 𝜂, 𝑧), the scalar wave equation is 
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𝑑𝑧2 + 𝜔2𝜇0𝜖𝜓 = 0 (4) 

To solve above equation the separation of variables technique can be applied  

𝜓 𝜉, 𝜂, 𝑧 = 𝐹1 𝜉 . 𝐹2 𝜂 𝑒𝑖𝛽𝑧             (5) 

Where β is the z–component of propagation vector. Using expression (5) we get rather complicated equation, for 

simplification consider an approximation namely m<<<1, we obtain following two equations. 

𝜉2 1 + 𝑚2 
𝑑2𝐹1

𝑑𝜉2 +  1 + 𝑚2 𝜉
𝑑𝐹1

𝑑𝜉
+   𝜔2𝜇0𝜖 − 𝛽2 𝜉2 − 𝑘2 𝐹1 = 0       (6) 

and 
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+

𝑚2
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Where k is the unknown constant. Since µ and 𝜖 are absent in equation (7) it is not physically relevance. 

Equation (6) can be written in the given form 
𝑑2𝐹1

𝑑𝜉2 +
1

𝜉

𝑑𝐹1

𝑑𝜉
+  𝑢′2 −
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Where 

𝜔2𝜇0𝜖1 − 𝛽2
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= 𝑢′2      𝑎𝑛𝑑         
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= 𝑛2 

The equation (8) is an ordianary Bessel differential equation. The solutions of this equation are 𝐽𝑛 𝑢′𝜉  

and 𝑌𝑛 𝑢′𝜉 . Where  𝑌𝑛 𝑢′𝜉  is the Bessel function of the second kind, n can take even non–integral value. 

The wave equation for the cladding region 
𝑑2𝐺1

𝑑𝜉2 +
1
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𝑑𝜉
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Here 𝑤′2 =
𝛽2−𝜔2𝜇0𝜖2

1+𝑚2  

This equation represents the modified Bassel differential equation. The two independent solutions of equation 

(9) will be 𝐼𝑛 𝑤′𝜉  and 𝐾𝑛 𝑤′𝜉 . 

Thus the acceptable solutions in the core and cladding regions are:-  

(i)  In region I ie (cladding region) the acceptable solution is 𝐼𝑛 𝑤′𝜉 , due to increasing nature. 

(ii) In region II (core region) the acceptable solutions are 𝐽𝑛 𝑢′𝜉  and 𝑌𝑛 𝑢′𝜉 , due to oscillating nature. 

(iii) In the third region the acceptable solution is 𝐾𝑛 𝑤′𝜉 , due to its decreasing nature. 

To obtain the characteristic equation for the above mentioned waveguide, apply boundary conditions at two 

boundaries ie at 𝜉1 = 𝑎 𝑎𝑛𝑑 𝜉2 = 𝑏 

These conditions are 

 𝐴𝐽𝑛(𝑢′𝜉) + 𝐵𝑌𝑛 𝑢′𝜉 = 𝐶𝐼𝑛 𝑤 ′𝜉 

𝐴𝑢′𝐽′𝑛 𝑢′𝜉 + 𝐵𝑢′𝑌′
𝑛 𝑢′𝜉 = 𝑐𝑤′𝐼′𝑛  𝑤′𝜉 

      𝜉 = 𝑎 

 𝐴𝐽𝑛 𝑢′𝜉 + 𝐵𝑌𝑛 𝑢′𝜉 = 𝐹𝐾𝑛 𝑤 ′𝜉 

𝐴𝑢′𝐽′𝑛 𝑢′𝜉 + 𝐵𝑢′𝑌′
𝑛 𝑢′𝜉 = 𝐹𝑤′𝐾′𝑛 𝑤′𝜉 

      𝜉 = 𝑏 

Where 𝑛 =
𝑘

 1+𝑚2
 

Since for convenience, we consider the value of k as 1 and keep a fixed value of m=1.12. For these, 𝑛 =
2

3
. 

Using boundary conditions  𝐹𝑜𝑟 𝑛 =
2
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, 𝑢′ =
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𝑤  following equations are obtained. 
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The set of these four equations with unknowns A, B, C, F has a non–trivial solution if the determinant formed 

by the coefficients of these unknown constant is zero. 
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On expanding this determinant we can obtain the characteristic equation 

Δ = 0                                                                                                                                    (10)  
Cutoff condition can be achieved from the characteristic equation taking w→0 in the cladding region. 

∆1=
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Cut of Equation is 

Δ1 = 0                                                                                                                                                                       (11) 

The solution of this equation will yield the cut-off β-values corresponding to the guided modes. 

 

Numerical Computation 
 We are now in a position to make some numerical estimates of the modal properties of a fiber with a 

guiding region bounded by two equiangular spirals. For this the parameters have been given the following 

values. We take n1=1.50 (core refractive index) n2=1.48 (cladding refractive index) and operating wavelength 

λ0=1.55µ. All of the significant modal properties are obtainable from characteristic equation (10). 

In order to obtain the dispersion curves from characteristic equation (10) we plot a graph between 

allowed β values and left hand side of the characteristic equation (10) at fixed values of a and b. It is known that 

β values lie in the range 𝑛1𝑘0 > 𝛽 > 𝑛2𝑘0, where 𝑘0 =
2𝜋

𝜆0
. For convenience, we again consider the value of a as 

2µ, whereas the size parameter b is allowed to change from 3µ to 20µ. Thus we plot a graph between the 

allowed β values and left hand side of characteristic equation (10) for different values of (b-a) in which „a‟ is 

fixed and b is allowed to change. From these graphs we can obtain the cutoff β values corresponding to the 

intersections of the curves with the β axis for different modes. These cutoff β values are plotted against the „V‟ 

parameter for each mode. The „V‟ parameter defined as 𝑉 =
2𝜋

𝜆0
  𝑏 − 𝑎   𝑛1

2 − 𝑛2
2. It is reasonable to plot a 

graph between the „b′’ parameter  (normalised propagation constant) versus V parameter rather than a graph 

between cutoff β values and V parameter, where 𝑏′𝑛𝑜𝑟 =
 

𝛽

𝑘0
 

2
−𝑛1

2

𝑛1
2−𝑛2

2 . These dispersion curves are shown in fig (2). 

To obtain modal cutoff curve for this waveguide we plot a graph between Δ1 and V parameter  𝑉 = 𝑢 𝑏 − 𝑎   

represented by fig (3). All these calculations are done for a  fixed value of m =1.12 and for a fixed value of k=1 

(lowest mode), so n is equal to 2/3. 

 

II. Result And Discussion 
From the above computational analysis we are in a position to make several interesting results about 

the presented optical waveguide whose guiding region is bounded by two equiangular spirals with dielectric 

core–dielectric cladding. The dispersion curves (shown in figure 2) give us information about the number of 

modes which can propagate through the considered waveguide. When V<2, the waveguide sustains only a 

single mode. The number of modes is increased with the value of V parameter as expected. When V<7 this 

waveguide allows to propagate two modes. When V<12 and V<16 the number of possible modes sustained by 

the waveguide is three and four respectively. The results obtained from dispersion curves are consistent with 

those obtained from the cutoff curve which is shown in fig (3). Since the cutoff curve is obtained by the 

approximation w→0, in the characteristic equation, there is some minor difference in the cutoff V values which 

are obtained from the cutoff curve and those found from dispersion curves. The dispersion curves, however are 

more realiable than cutoff curve. The considered waveguide can be looked upon as distorted planar waveguide 

with a curvature and flare. If we compare the dispersion curves for planar waveguide with considered 

waveguide, the modes of such a distorted planar waveguide are discrete like planar waveguide and tend towards 

higher V values. It is well known that for a planar waveguide the cutoff values for successive TM and TE modes 

are obtained at VC=mπ, where m=0, 1, 2, ... etc. In the considered waveguide we find form dispersion curves 

that the lowest cutoff value is near V≈1 which is different from zero. This dissimilarity with planar waveguide 

may be attributed to the curvature and flare of the boundaries. Another interesting thing is that when planar 

waveguide deformed with parabolic cylindrical boundaries [4] the dispersion curves show the bunching of 

modes, unlike the planar waveguide, but the proposed deformation of planar waveguide does not change the 

discreteness of modes, it only yield a non-zero cutoff which is not seen in case of planar waveguide. 
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Figure Caption 

 
Fig 1: The guiding region cross-section bounded by two equiangular spirals. 

 

 
Fig 2: dispersion curves of some lower order modes for a=2µ (the parameter b is allowed to change). 
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Fig 3: The plot of left hand side Δ1 of equation (11) against u (b-a). 

 

 

 


