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Abstract: Using differential forms, we obtain, in an entirely new way, expressions for differential operators: 

gradient, divergence and curl which are invariant under Lorentz transformation. The expression for curlF of a 

vector field F contains curlF as a term, where F is a spatial part of F and the other term in it is related to the 

direction of time. This is but natural in 4-dimensional space-time structure. We have not found such a simple 

form for the expression of curlF   in the existing literature on Special Relativity. In addition we give expressions 

in spherical polar coordinates for the above mentioned differential operators. In this article we have used the 

standard Lorentz transformation in which the moving frame moves along one of the coordinate axes of the 

stationary frame. Considering a more general form of Lorentz transformation in which the moving frame moves 

with uniform velocity in an arbitrary direction, the expressions of the differential operators were obtained 

earlier [2]. But the computations involved there were too heavy and complicated for an interested reader 

(especially if he belongs to a faculty of physical sciences). Computations in this article are very few in 

comparison and the new way of derivation may inspire further investigation in the field of Special Relativity. 

  In order to understand the computations given in this article, all that one needs to know is that the product of 

differentials dx,dy etc. is skew symmetric and it is indicated by inserting a wedge between them. 

Thus dx dy dy dx    . Another property is that of Hodge star operator [3]. About this, the details are 

given where necessary. 

 

I. Preliminaries 
Minkowski space ( , )M  is a globally hyperbolic Lorentz manifold with a flat metric . Consider a coordinate 

system
0 1 2 3( x ,x ,x ,x ) in the underlying manifold

4E  with
0x ct . We assume that the velocity of light c  is 

unity, so that 
0x t  has the unit of length. The

1 2 3x ,x ,x are space coordinates. The basis vectors e
x

 





 , 

0 1 2 3  , , ,   satisfy: 

 (1.1)                       
1( e ,e )         if 0      

 

                                               1      if 1 2 3 ,   , ,  
 

                                               0     if     
                        

                     Standard LT is a transformation from one system of coordinates  x
 in a Lorentz frame    into 

another system
'x
in a Lorentz frame ' which is moving with uniform velocity v  along 

1x -axis. The 

transformation equations are given by [4], [5], 

(1.2)                               

' '  x x  
  , 

'

'  x x  
 

                                 

where we have followed Einstein summation convention for repeated indices and the coefficient matrices are 

constant matrices which satisfy: 

                     

' '

' ')            a  
       

 

   (1.3)          
  ' ' ' ')          b  

       
 

                    

' '

' ')            c   
    

 

                   

'

')            d   
    

                                  
Note that ' '   are defined as in (1.1) by setting: 

                                 
' ' ' '( , )e e    
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with 

                                    

' '
e

x
 


 


 
Since the coefficient matrices in (1.2) are constants we have: 

 (1.4)                                 

' 'dx dx  
 

 

                                          

'

' .dx dx  
 

                                   
Hence 

(1.5)           

' ' ' '

' ' ' '  .dx dx dx dx dx dx       
           

                   

We get 

(1.6)                                 

2  d dx dx 
  

 

                                                
0 2 1 2 2 2 3 2( ) ( ) ( ) ( )dx dx dx dx   

                                
Then (1.5) shows that d is invariant under a Lorentz transformation.   is called the proper time . The 

coordinate expression of a world line ( )X  of a particle is given by: 

(1.7)                               

'
'( )X x e x e 

   
                                  

Since the basis vectors do not depend on the parameter   , we have  
'

'dx e dx e 
  . Using (1.4) we obtain:

  ' ' '
                          ' ' '(1.8)       , so dx e dx e dx e e e    

          
                              

 

The inner product in  is given by: 

(1.9)                <  ,    e e e e       
                      

 

and that in '  is given by: 

                                
' ' ' ' ' '<  ,     ,e e e e        

 


  and 
' ' 



 

are related to each other as in (1.3-a,b). 

Invariance of volume element  dV  and that of star operator dX under LT. 

Explicit expressions for 
'

  and  '



  are as given below, [4]: 

'

0 0

0 0
(1.10)         

0 0 1 0

0 0 0 1

v

v


 

 
 

         

and          '

0 0

0 0

0 0 1 0

0 0 0 1

v

v


 

 
 

 

Using these and (1.2) we have: 

0 0' 1' 1 0' 1'(1.11)           ,  ,x x vx x vx x     
2 2' 3 3',   x x x x  ,

0x ct ,
2

1

1 v
 

    

 
where, c is assumed to be 1. We show that the volume element 1 2 3 0dV dx dx dx dx    is invariant under 

LT. We have from (1.11): 

 (1.12)                     1 0 0' 1' 0 ' 1'dx dx vdx dx dx vdx        

                                            
2 2 0 ' 1' 2 1' 0 'v dx dx dx dx      

                                            
 2 2 2 1' 0'v dx dx   

 

                                           
1' 0'dx dx  ,  since     2 21 1v    

Since   
2 2' 3 3',   x ,x x x 

       
2 3 2' 3'dx dx dx dx  

  

 and                   
1 2 3 0dV dx dx dx dx     

                               
2 3 1 0dx dx dx dx      using skew symmetric property of wedge product 
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2' 3' 1' 0'dx dx dx dx        using (1.12) 

                               1' 2' 3' 0' 'dx dx dx dx dV      

that is, the volume element is invariant under LT.  

                    Now we show that dX  is invariant, where   is Hodge’s star operator. For details of   operator 
see [3]. 

Let 
'

''X x e
  be the position vector of a point X x e

  which has undergone LT. 

Then 

(1.13)          dX dx e
   ,  

'
''dX dx e

  
      

We have [3] 

                                     
2' 3' 0' 3' 1' 0'

1' 2''dX dx dx dx e dx dx dx e              

                                                 

1' 2' 0' 1' 2' 3'

3' 0' dx dx dx e dx dx dx e         

From (1.2),(1.8) and (1.10) we have: 
0' 0 1(1.14)                   x x vx   ,  1' 0 1x vx x    , 

2' 2x x  , 
3' 3x x  

                                     0' 0 1e e ve    ,   1' 0 1e ve e  
       

 

 and 
2

2' 2' 2' 2 2(1.15)          e e e e
        , since      0, 1, 32' 0,     

    and
2

2' 1 
 

 

Similarly it is easy to see that
3' 3e e . From (1.12), (1.14) and (1.15) we have: 

(1.16)                                  

3' 1' 0' 3 1 0

2' 2dx dx dx e dx dx dx e    
         

and
 

                                           

1' 2' 0' 1 2 0

3' 3dx dx dx e dx dx dx e    
      

 

Now: 

a)                         
  2' 3' 0' 2 3 0 1

1' 0 1dx dx dx e dx dx dx vdx ve e           

                                                           
2 2 3 0 2 2 2 3 1

0 0vdx dx dx e v dx dx dx e      
   

                                                                  
2 2 3 0 2 2 3 1

1 1dx dx dx e vdx dx dx e     
 

 

and 

b)                           
   1' 2' 3' 0 1 2 3

0' 0 1dx dx dx e vdx dx dx dx e ve            

                                                              
2 0 2 3 2 2 0 2 3

0 1vdx dx dx e v dx dx dx e        

                                                                     
2 1 2 3 2 1 2 3

0 1dx dx dx e vdx dx dx e     
 

                                                              
2 2 3 0 2 2 2 3 0

0 1vdx dx dx e v dx dx dx e        

                                                                   
2 2 3 1 2 2 3 1

0 1dx dx dx e vdx dx dx e     
    

Adding the above expressions in a) and b) and observing that 
2 21 1( v )  

 
we get:

 
2' 3' 0' 1' 2' 3' 2 3 0 1 2 3

1' 0' 1 0(1.17)            dx dx dx e dx dx dx e dx dx dx e dx dx dx e            

From (1.16) and (1.17) we get ' .dX dX    Thus dX  is invariant under LT. 

 

II. Differential operators in Minkowski space 

Before we derive expressions for the differential operators, we give a few steps necessary for that 

purpose. From (1.13) we have 

2 1.           dX dX dx e dx e 
      dx dx e ,e 

     dx dx 
 

                 
 

Since 

                        
0 0 0 1 2 3 1 2 3 0

00dx dx dx dx dx dx dx dx dx dx dV             

or 

                            
0 0 00dx dx dV   

and 

                         
1 1 1 2 3 0 11

11dx dx dx dx dx dx dV       etc,                  
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We have 

2 2.                        dx dx dV       

 We have shown that both dV  and dX are invariant with respect to LT. We use these in the study of 

differential operators.  

Lemma 2.1    Let  f  be a differentiable real valued function and ,F a differentiable vectorfield on ( , )M   

Then     

(2.3)      0 1 2 30 1 2 3
( ))    df dX dV dV gradf dV

f f f ff
a e e e e e

x x x xx





     

               

             

0 1 2 3

0 1 2 3
 =(div ))  = =

F F F FF
dF dX dV dV F dVb

x x x xx





    
    

     

 

            

2 2 2 22

2 2 2 20 1 2 3
 ( )  ) = 

f f f ff
d gradf dX dV dV f dVc

x x x x x x



 


    
       

      


         

           

0
0 30

)    e ( )
FF

d curlF gradF curlFe e
xx




 


 
      

    

 

where                   
3

0 0
0 0

1

i

i
i

F F F F Fe e e


     

f is known as d’Alembertian of f [5] and   indicates dot product between vectors and   indicates cross 

product.

 
 

Proof:   a)  

                        

 = 
f

dXdf dx dx e
x

 



 

  

                                         

  
f

dVe
x










                      by making use of (2.2)            

                                         
( )gradf dV  

  

If we use primed coordinate system, we obtain  

                     

' '
''

'  ' ( ) ' '
f

df dX dV gradf dVe
x

 


 





 
Using the invariance of dV  and dX  we get  

                    
' ( ) ' ' ( )df dX gradf dV df dX gradf dV      

Since dV = 'dV  we have ( ) 'gradf gradf
                     

 
b) Let F F e

 be a differentiable vector field in ( , ).M 
 
Then   dF dF e

  and  

                   

,
F

dF dX dx dx e e
x


 

 



   


   

                                     

,  
F

dV
x





 





    

since    e ,e     

                                    
F

dV
x









               

since     
     

                                    
( )divF dV

 
where 

.  indicates dot product between two vectors. Following the procedure used in (a) above, it is easy to 

show that divF does not depend on any particular frame. 

 Further we have   

 c)       ( )
f

f dXd grad d e dx e
x

 
 


 

    
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2
f

dx dx
x x

  
  

 


 
 

 

                                                  

2

,
f

dV
x x

 
 

 



 

     

since     
   

 

                                                 

2 f
dV

x x



 





 
              

 

                                                  f dV   

Since c) is a special case of  b), it is clear that f  also does not depend on any particular frame. 

 To prove d) some details are given below:                                                                                                           

                                                                                                                       

Definition 2.1   Let F  be a differentiable vectorfield on ( , )M  . curlF  is given  by  

(2.4)                                             
( )curlF dV dF dX  

              
 

where the cross indicates the vector product between vectors.  

Lemma: 2.2 

We have  

(2.5)                  e                
F

curlF e
x




 


 
                                             

 

Proof                                

                                 
( )curlF dV  dF dX   

                                                  

e   
F

dx dx e
x


 

 


  


 

                                                  

    e  
F

dVe
x




 



 
                                    

 from which the result follows.                                                                                                                              

                                                                                                      

Invariance of curlF :  

If we use primed coordinate system, then since 

                                          
' 'F F  

  ,     ' ' ' '    
     

                                        

'
'

''

F F

x x

 
 
  

 
  

 
,        ' ' ' 'e e e e 

         
  

Using (2.5) we get
 

            
 

'
' '

' ''

F
curlF ' dV ' e e dV '

x


 

 



 


 

                                 

' ' '
' ''

F
e e dV '

x


   

    





     

  

                                 

F
e e dV

x


 

  
 


 


, since dV ' dV and

' '

' 'e e  , e e  , 
         using (1.8)  

                                

F
e e dV

x




 



 


 

                                
 curlF dV

         
or 

                  
 curlF ' curlF

    
This establishes the invariance, that is the expression for curlF  does not depend on a particular Lorentz frame. 

 

Corollary 2.3     We have  

                                    
( ) 0curl gradf   

for every differentiable real valued function f  defined on ( , ).M 
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Proof                             

                            

( )  ( )  e  curl gradf
f

e
x x

 
  

 
 

 
   

                                                 

2

  
f

e e
x x

 
  

 


 
 

          

Since 

                               

2 2

  
f f

x x x x   

 


   
 

we have  

                           

 
2

( )
1

e 0
2

f
curl gradf e

x x

   
  

   


   
 

                                                  



   
 

Corollary 2.4 

Let 
3

1

j
F F e

j
j

 


be the space component of a vectorfield F  on a ( , )M  .  

Then  
  

0
0 30

(2.6)                          ( )F
F

curlF gradF e curl
x

 
    

                      

 

where  3( )curlF  denotes the curl of Euclidean vectorfield  F   in 3E . 

Proof                   

                           Let    
0 0

0 0
j

jF F e F e F e F     

                             

0

 j=1,2,3.0     e    e         
j

j

F F
curlF e e

x x

 
  

 
 

   
 

 

                                      

0
0 00

( )    e
j j

k
j jk

F F
gradF e e e e

x x




 
     

 
 

                                     

0
00

j
kl

l jk

F F
gradF e e e

x x


  
     

  
   since 0k = 0,   1,2,3k  

                                     

0
0 30

( )
F

gradF curlFe
x

 
    

 
                                                                             

Note 2.1 3( )
j

kl
l jk

F
curlF e e

x



 


 

                                11 22 33
1 2 31 2 3

j j j

j j j

F F F
e e e e e e

x x x
  

  
     

  
      

                              

2 3 1 3 1 2

1 2 1 3 2 1 2 3 3 1 3 21 1 2 2 3 3

F F F F F F
e e e e e e e e e e e e

x x x x x x

     
           
     

        

                                             

                              

2 1 3 2 1 3

1 2 2 3 3 11 2 2 3 3 1

F F F F F F
e e e e e e

x x x x x x

          
             

          
 

This is the usual expression for Fcurl  in 3E , and 

 

03
0

0 00 0
1

(2.7)                    
i

i ii
i

F F F
gradF e e e e

x x x

    
                                    
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Remark 2.1. 

Since 
0e  is in the direction of time the pattern 

1 2 3e e e   etc does not apply to the vector product of 
ie  with 

0e  . This, perhaps, is the reason why the coefficient of 
0ie e  is not skew-symmetric.

 
Expressions for gradf, divF and CurlF in terms of spherical polar coordinates. 

                   

0
0

   
1 1

)  
sin

r

f f
gradf

x

f f
a e e e e

r r r
 

  

   
    

     

                    

0
2

0 2 2 2
div

1 1 1
)     = ( ) (sin )

sin sin
r

F F
F F Fb r

x r r r r




   

   
  

               
      

(2.8)      )      =c f  d’Alembertian of f            

 

                                     

2 2
2

2 2 2 2 2 20

1 1 1
= sin

sin sin

f ff f

x
r

rr r r r


   

       
             

 

                0
0

0
 

1 1
)     ( ) ( )

r

r

F F
curlF gradF Fd e r e e

x r r r





    
            

 

                                          
1

( sin )  
sin

F
F e e

r




 
 

  
     

1 1
( )

sin

r

r

F
Fr e e

r r r



 

  
     

 

where        

               

0
0 1 2 3

 sin cos  sin sin  cos  X x e r e r e r e        and     

              

0
0

r
rF F e F e F e F e 

     , 1 2 3re sin cos  e sin sin  e cos  e       ,  

              1 2 3e cos cos  e cos sin  e sin  e         and 1 2e sin  e cos  e      

                     The expression for f given here may be compared with the formula for d’Alembertian given in 

[1] on p.76.  For details of derivation of these formulas see [ 2 ]. 

                    The motivation for using this new method of deriving expressions for differential operators was 

from such a derivation available in 3-dimensional Euclidean space. This is briefly indicated in the appendix. 

 

Appendix:    Differential operators in 3-dimensional space 

Let 
i

iX x e  be the position vector of a point in
3E . Then 

i
idX dx e    where  is Hodge’s operator.  

                       
1 2 3dx dx dx   , 

2 3 1dx dx dx    , 
3 1 2dx dx dx    

                         
1 1dV dx dx  … etc., where dV is the volume element. 

Let f be a real valued function on 
3E and 

1 2 3 i
iF ( F ,F ,F ) F e  be a vector valued function. Then  

               

i j

ji

f
df dX dx dx e

x



 


 , 

i j ijdx dx dV   

                              

 1 2 31 2 3

f f f
e e e dV gradf dV

x x x

   
    

   
 

           

i
k l

i lk

F
dF dX dx dx e e

x


  


 

                             

*
i

k l

il k

F
dx dx

x
 





 

                             

( )
i i

kl

il k i

F F
dV dV divF dV

x x
 

 
   

 
 

         

 
i

j k

i kj

F
dF dX dx dx e e

x
 





  

                            

i
jk

i kj

F
dV e e

x






  



Differential Operators Invariant under Lorentz Transformation 

DOI: 10.9790/4861-0806020411                                           www.iosrjournals.org                                   11 | Page 

                            

1 2
22

1 2 2

11

2 1 1 ...
F F

e e e V
x x

dV e d    





 
 

                            

2 1 2

1

1

2

...
F F

e e
x x

dV
 

   
 

 


 
 

                             curlF dV   

             In these, dX  and dV  depend on a coordinate system and are not invariant under a transformation of 

coordinate axes. This does not apply to df and dF .  Under Lorentz transformation it has been possible to show 

that both dV  and dX  are invariant.  This has helped us to define differential operators in an invariant way. 
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