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Abstract: In the present work a general formalism for constructing the even (odd) non-linear pair coherent 

states has been introduced which in special case lead to the standard coherent states. Since the construction of 

nonclassical states is a central topic of quantum optics, nonclassical features and quantum statistical properties 

of the introduced states have been investigated. The second-order correlation function has been used to discuss 

some nonclassical properties of the photon distribution of the state. The quadrature variances has been used to 

examine the behavior of the phenomenon of squeezing. The discussion is extended to include the 

quasiprobability distribution functions (W-Wigner and Q-functions). Also the Pegg - Barnett phase is 

considered. 
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I. Introduction 
The generation of nonclassical fields of large quantum number is one of the most active fields in 

quantum optics. According to the fundamental principles of quantum optics many new types of nonclassical 

states have been designed [1]. Coherent states (CS's) of a simple harmonic oscillator with their variants and 

generalizations have been extensively studied over the last decades [2]. Coherent states [3, 4] are generally 

constructed by (i) using the displacement operator technique or defining them as (ii) minimum uncertainty states 

or (iii) annihilation operator eigenstates. A generalized class of the conventional coherent state, called the 

nonlinear coherent states (NLCS's) or the f-coherent state [5], has been constructed. These states, which 

correspond to nonlinear algebras rather than Lie algebras, are defined as the right eigenstates of an operator 

 nfa ˆˆ , which satisfy the eigenvalue equation   ffnfa ,,ˆˆ   , where  nf ˆ is an operator-valued 

function of the number operator, aan ˆˆˆ  , and they are nonclassical [6, 7]. Recently a diff erent type of finite-

dimensional pair coherent states (FPCS) has been introduced and studied, see refs. [8 - 10].This new state is 

constructed from the eigenstate of the pair operators
 

2

1

!

ˆˆˆˆ














q

ba
ba

q
q

and the sum of the photon number 

operators for two modes a and b. Another class of nonclassical states called the two mode nondegenerate 

entangled state. This state is constructed from the eigenstate of the pair operators 

  bbaababa ˆˆˆˆˆˆˆˆ     and the difference of the photon number operators  ba nn ˆˆ   for two 

modes [11]. 

On the other hand, two modes of a quantized electromagnetic field can become entangled showing many 

nonclassical effects compared to the decoupled modes. One of these two-mode optical cavities which involves 

strong entanglement is the pair-coherent states (PCS) [12]. Such states denoted by q,  are eigenstates of the 

operator pair  ba ˆˆ  and the number diff erence  ba nn ˆˆ   where the parameter q is an integer ,  may be a 

complex numbers, â  and b̂  are the annihilation operators of the field modes , aana
ˆˆˆ  and bbnb

ˆˆˆ   

These states satisfy 

                               qqqnnandqqba ba ,,ˆˆ,,ˆˆ                                                            (1) 

The experimental realization of such nonclassical states is of practical importance. Agarwal [12] 

suggested that the optical (PCS) can be generated via the competition of 4-wave mixing and two-photon 

absorption in a nonlinear medium. Another scheme the motion of a trapped ion in a two-dimensional trap has 

been used for generating vibrational pair coherent states [13]. Another type of correlated two-mode states is the 

finite-dimensional pair coherent state. This state has been introduced during the study of the statistical properties 

of a two-photon cavity mode in the presence of frequency converter [14 - 16]. Recently, a new type of a non-



Even and Odd Non-linear Pair-Coherent States and Their Nonclassical Properties 

DOI: 10.9790/4861-080603113122                                    www.iosrjournals.org                                    114 | Page 

linear entangled pair coherent state has been introduced.under a particular choice of the nonlinearity functions. 

The resulting recurrence relation has been solved, a feasible state was considered.  

     Depending on the aforementioned review, the aim of the present work is to introduce new even 

(odd) nonlinear pair coherent states (ENLPCSs and ONLPCSs). Some statistical properties of these new 

correlated two mode states are presented. This paper is organized as follows. In section 2 we introduce the 

definition of NLPCSs with its even and odd states are fully expressed. Certain statistical properties associated 

with these states are deduced, in section 3,such as the correlation function as well as the phenomenon of 

squeezing, In section 4, the quasi-probability distribution functions, namely the Wigner and Q-functions are 

discussed. Also the phase properties are considered, in section 5. Finally the conclusions are presented in section 

6. 

 

II. Even and Odd Nonlinear Pair Coherent States 

The NLPCS can be defined as the eigenstate of a generalized pair annihilation operator    bbaa nfbnfaA ˆˆˆˆˆ 

for the two modes, and the photon number difference between the two modes 

qA ,ˆ     bbaa nfbnfa ˆˆˆˆ qq ,,   , 

  qqqbbaa ,,ˆˆˆˆ   
                                                                                                                        (2) 

Where   is a complex parameter of the state while the q parameter is an integer number. The  ii nf ˆ , (i= a, b), 

are well behaved operator valued functions of the operators
in̂ , the NLPCS takes the form, 
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By choosing the non-linear function to take the form  ii nf ˆ = in  the state is given by 
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in the Fock states of the two modes ba nn ,  and the normalization constant Nq is given by 

 
 

2
1

0
22

2

]

!!


















 


n

n

q

nqn

N


                                                                                       (5) 

The PCS can be obtained as a special case from equation (3) when fi(n)! = 1.The even and odd nonlinear pair 

coherent states can be constructed from equation (4), which are the symmetric and antisymmetric combination 

of the nonlinear pair coherent states. The general form of NLPCSs is given by 
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Where  
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For q 2qo; qo is integer , then the ENLPCSs are given when k=2, j=0 
 
 while theONLPCSs are given when k=2 

, j=1. 

 

III. Nonclassicality of the introduced states 
Motivations to introduce generalized coherent states theoretically and to produce them in the laboratory 

are mainly due to their nonclassical properties, which their usefulness in sensitive measurements, is a well-

known subject. The experimental feasibility of multi-mode models in a high-Q cavity has been considered by 

many authors [17]. To discuss the nonclassical properties of these states we shall consider two diff erent 

phenomena. The first is Poissonian and sub-Poissonian behavior which can be measured using the Glauber 
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second-order correlation function. The second is the squeezing phenomenon which can be quantified via the 

quadrature variances for the normal squeezing case. As is well known, the squeezing means reduction in the 

noise of an optical signal below the vacuum limit, in addition to the possibility of potential applications in 

optical detection in communications networks of gravitational waves  [18 - 23]. Thus, in the following 

subsections we will investigate the influence of the controlling parameters q on the nonclassical behavior of the 

cavity field where, in particular, the sub-Poissonian distribution and the squeezing phenomenon are emphasized. 
 

3.1. Auto - Correlation function  

Practicaly it's well known that, the photon distribution can be measured by photon detectors based on 

photoelectric eff ect. The importance of the study comes up as a result of several applications, e.g. quantum non-

demolition measurement, which can be generated in semiconductor lasers [18] and in the microwave region 

using masers operating in the microscopic regime [24]. Theoretically, for better understanding the nonclassical 

behavior of the system, examination of its second-order correlation function is needed. In fact the correlation 

function is usually used to discuss the sub-Poissonian and super-Poissonian behavior of the photon distribution 

from which we can distinguish between the classical and nonclassical behavior of the system. For this reason, 

behaviors of the correlation function for the present states under consideration are discussed. The sub-

Poissonian behaviour is characterized by the fact that the variance of the photon number  2ˆ
in  is less than 

the average mean photon number iii naa ˆˆˆ 
. This can be expressed by means of the normalized second-

order correlation function for the mode z in a quantum state 
k

j
q,  [25] as follows: 
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and 
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For the first mode qz  , while for the second mode 0z . For both modes the ENLPCSs are given when 

k=2, j=0  
 
while the ONLPCSs are given when k=2, j=1.The function 

  2

zg  given by (8) for the mode z 

serves as a measure of the deviation from the Poissonian distribution that corresponds to coherent states with 
   12 zg . If 

  2

zg ˂ 1 (˃ 1), the distribution is called sub (super)-Poissonian, if 
   22 zg the 

distribution is called thermal and when 
  2

zg  > 2it is called super-thermal. In case of two-mode states 

(NLPCS), the physical content of the even (odd) NLPCS can be revealed by plotting 
  2

zg  against  . At 

q=0 or 1 the function
  2

zg = 0, i.e., the NLPCS reduces to the standard PCS.  This behavior may be 

attributed to the fact that, the states present are either vacuum or one photon and for both of them 
  2

zg is 

zero. For the first mode, to display the correlation function 
  2

zg  in case of even (odd) NLPCS against the 

parameter   at different values of q =2, 5 and 10. It can be observed that, generally, the function 
  2

ag  has 

similar sub-Poissonian behavior during all range of   whatever the value of the q -parameter, see Fig. 1 (a, b). 

However there is one main diff erence, at  = 0, the function starts depend on q -parameter, i.e., increasing q  

just changes the beginning of the function to higher values at  = 0. For both Even NLPCS and Odd NLPCS 

cases, Fig. 1 (a, b), the function starts at 0.5, 0.8 and 0.9 (0.66, 0.835 and 0.91)  respectively. From the above 

analysis we conclude that for all values of the q -parameter the correlation  function exhibits a sub-Poissonian 

behaviour for all range of . 
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( a )                                                          ( b ) 

         
( c )                                                           ( d ) 

Fig. 1 Second - order correlation function 
   2g against  for q  = 2, 5 and 10 for even NLPCS and odd 

NLPCS in case of first mode, (a, b) and second mode (c, d), respectively. 

 

On the other hand, the correlation function for even (odd) NLPCS behaves differently for the second 

mode case. From visual comparison, Fig. 1 (c), it can be found that in case of E NLPCS the function 
  2

bg  

has full super-poissonian behavior and reaches the thermal distribution whatever thevalue of the q  parameter at 

certain range of  . With more increasing of   full sub-poissonian behavior occur for all q  values. From the 

above analysis we conclude that for all values of the q -parameter the correlation function exhibits a sub-

Poissonian behavior for a large values of  Regarding ONLPCS, Fig. 1(d), the function 
  2

bg  has full sub-

poissonian for all  range considered whatever the value of the q  parameter. It can be noticed that thefunction 

starts to take different values at small range of and its behavior improves with increasing the q – parameter. 

 

3.2 The squeezing phenomenon 

The phenomenon of squeezing has wide applications in optical communication networks [26], to 

interferometric techniques [27], and to optical waveguide trap [28]. Generation of squeezed light has been 

observed in many optical processes [29]. Squeezing means reduction in the noise of an optical signal below the 

vacuum limit. It is well known that squeezed light is a radiation field without a classical analogue where one of 

the quadratures of the electric field has less fluctuations than those for vacuum at the expense of increased 

fluctuations in the other quadrature. In such case the Heisenberg uncertainty relation should be fulfilled. 

Mathematically the squeezing can be measured by calculating the Hermitian quadrature variances ̂  and ̂ . In 

the present subsection, the two-mode frequency sum squeezing defined by the quadrature operators ̂  and ̂  

[30] will be discussed. Therefore the variances of ̂  and ̂ takes the form 

,
2

ˆˆˆˆˆ



baba

              ,
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ˆˆˆˆˆ
i

baba 
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Which satisfy the commutation relation 

Ci ˆ]ˆ,ˆ[                with           ,1ˆˆ
2

1ˆ  ba nnC                                                                            (12) 

where the uncertainty relation 
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should be satisfied. To calculate the quadrature variances  2̂  and  2̂  the definition of the 

operators ̂  and ̂ will be used. The variance is given in terms of annihilation and creation operators 

expectation values by 
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The state would possess ̂ -quadrature frequency sum squeezing if the S-factor defined by 

S  
 

C

C

ˆ

ˆˆ2
2


                                                                                                                               (15) 

Satisfies the inequality  S1 ˂ 0.A similar expression for the second quadrature with ̂  replaced 

by ̂ .To exhibit the phenomenon of the squeezing and to illustrate the general features related to the present 

state, the function S ( ) was plotted against  ,for deferent values of the parameter q , see Fig. 2. In case of 

ENLPCS, Fig. 2 (a), generally the state shows squeezing in the second quadrature for the considered q  values 

0, 1 and 2. The squeezing persists until   = 0.48, 0.93 and 1.35 corresponding to different q  values 0, 1 and 2 

respectively. Increasing the values of q  more squeezing can be seen (even stronger) and the squeezing interval 

increases. This means that the squeezing for the present state is too sensitive to any variation in the value of the 

parameter q . In case of ONLPCS, Fig. 2 (b), the phenomenon of squeezing disappear for all the cases 

considered. 

 

      
( a )                                                              ( b ) 

Fig. 2 The squeezing function S ( ) as a function of the parameter for q  = 0, 1 and 2, (a) For the second 

quadrature of ENLPCS and (b) For the two quadratures of ONLPCS. 

 

IV. Quasiprobability Distribution Functions 
The quasiprobability distribution functions (QDF) is perhaps one of the most well-known important 

functions in quantum optics [31 - 34]. These functions are important tools to shed more of light on the 

nonclassical features of the radiation fields. There are three known types of these functions: the Glauber–

Sudarshan P function [35], the Wigner-Moyal W function [36] and the Husimi-Kano Q function [37]. These 

functions are corresponding to normally ordered, symmetric, and anti- symmetric. W-function can take on 

negative values for some states and this is regarded as an indication of the non-classical effects. Also, it is well 

known that Q function is positive definite at any point in the phase space for any quantum state.The s-

parameterized characteristic function (CF) for the two-mode states is defined as follows 
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Where 
k

j̂ is the density operator  ,,ˆ qq
k
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j  ,  


D is the displacement operator given by

   ,ˆˆexp *aaD   


and
 ie . Here, s is ordering parameter where s = (−1)1 means    (anti 

)normal ordering and s = 0 is symmetrical or Weyl ordering [38, 39].The s-parameterized QDF is the Fourier 

transformation of the s-parameterized CF [38, 40, 41]. 
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Where the real parameter s defines the corresponding phase space distribution and associated with the ordering 

of the field bosonic operators. We consider a phase space QDF for the present states. To begin the state (6) will 

be written in the form 

  ,,,,
0

jknjqknqBq
n

k

nj

k

j






                                                                                                 (18) 

Where 

 
 

   !!
,

jqknjkn
NqB

jkn

k

j

k

nj







                                                                                                        (19) 

It is clear that, the probability of finding  jqkn  photons  in the 1
st
 mode, and  jkn  photons in the 

2
nd

 mode in the state 
k

j
q,  is given by 
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After obtaining the parameterized characteristic function by using minor algebra and evaluating the integral in 

equation (17) for s = 0 and s = −1, corresponding to the Wigner and the Q-function, respectively. Therefore the 

Wigner, and Q-function will be discussed in the next subsections. 

4.1 The Wigner function 

The Wigner function  baW  ,  can be obtained by inserting s = 0 in equation (17) as follows 
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Where  xLq

n  are the associated Laguerre polynomials given by 
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To discuss the behavior of the Wigner function  baW  , for the even (odd) NLPCS, the function   

has been plotted in subspace   ba against e  (α) and the m  (α) for diff erent values of the q - 

parameter with keeping ξ parameter at constant value. For example, we have considered the cases in which q  

=0, 1, 2 and 3 with the parameter ξ = 0.75. For even (odd) NLPCS, in the absence of the q -parameter, i.e. q =0, 

the Wigner function shows Gaussian distribution with one positive peak for both states  but it has wide shape at 

the center in case of even state ( sharp peak with an  interference ring around it at the base with spreading over 

the plane in case of odd state). Also the positive peak has a symmetrical shape around zero, while its maximum 

reaches nearly the value 0.4 for both states, see Fig. 3 (a, b).When the value of the q -parameter increases, for 

example q  = 1, Fig. 3 (c, d), the Wigner function attained negative downward peak with a crater at its base 

which has symmetrical shape around zero for both states (in case of ONLPCS, the crater at the base has 

spreading over the plane.).This behavior for the Wigner function is a signature of the nonclassical eff ect. For q  

= 2 the function changes the direction of its peak again to become a positive peak upward at the center with 

attaining negative values at the base and the peak gets less broadening compared with the case in which q  = 0 

for both states even (odd) NLPCS. Furthermore, the maximum value of the function decreases for both states, in 
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addition an interference ring around the peak starts to appear in case of ENLPCS (spreading of Wigner over the 

plane is clear as q  increases, in case of odd state), as shown in Fig. 3 (e, f). This indicates that, for both states 

there is a reduction in the nonclassical eff ect and the oscillatory behavior starts to appear for even values of the 

q -parameter. Finally when we consider the case in which q  = 3, the Wigner function shows similar behavior 

to that of q  = 1 for both states, where the crater at the base of downward peak gets more clear with smaller 

diameter and an interference ring around it in case of ENLPCS. Also the oscillations increases around the center 

with spreading of Wigner over the plane is clear as q  increases in case of ONLPCS, see Fig. 3 (g, h). 

Generally, from the above results it is clear that the Wigner function for the even (odd) NLPCS, attains positive 

values at q  = 0 in addition to symmetrical behavior around the origin. Also the function shows a negative peak 

at the center for odd q and positive peak for even q . This means that the nonclassical eff ect behavior appears 

only for the odd numbers of the q -parameter while it disappears for even numbers. The function gets more 

sensitive to the variation in the q-parameter for both states. 

         
( a )                                     ( b ) 

        
( c )                                     ( d ) 

       
( e )                                      ( f ) 

    
( g )                                        ( h ) 

Fig. 3 The W-Wigner function against e  (α) and m  (α) for fixed value of ξ = 0.75, for even and odd NLPCS 

(a) and (b) q  = 0, (c) and (d) q  = 1, (e) and (f) q  = 2, (g) and (h) q  = 3, respectively. 

 

4.2. The Q-function  

By setting s = -1 in equation (17), then the Q-function will has the form 
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Where Cba  , , with ba and   being the usual coherent states. Since there are four variables 

associated with the real and imaginary parts of a  and b . Therefore, by taking a subspace determined by, 

  ba  [42]. In this subspace the Q-function for the state (6) is expressed in the equivalent form 
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                                                (24) 

Where iyx  . 

 

To display the behavior of the Q-function from equation. (23) for the even (odd) NLPCS, has been 

plotted against    and  Im using the same values of the parameters of the Wigner function. From Fig. 4 

(a, b) and for q  =0 it is easy to observe that the Q-function shows, in case of ENLPCS Fig. 4 (a), almost 

Gaussian shape with a single positive peak centered at the origin. The peak shows symmetry around zero. In 

case of ONLPCS, Fig. 4 (b), the function has crater at the origin. Increasing the value of the q-parameter, q  = 

1, both states even (odd) displays the crater shape with a reduction in their maximum value but the crater radius 

in the odd state is greater than that of the even case, see Fig. 4 (c, d). With more inceasing of q -parameter the 

crater radius increases for both states even (odd) NLPCS, see Fig. 4 (e, f, g and h). The obtained results reveal 

the non-classical nature of the even (odd) NLPCS. 

 

     
( a )                                 ( b ) 

      
( c )                                 ( d ) 

      
( e )                                 ( f ) 

       
( g )                                 ( h ) 

Fig. 4 The Q-function against    and  Im with the same parameters as in Fig. 3, for even and odd 

NLPCS (a) and (b) q  = 0, (c) and (d) q  = 1, (e) and (f) q  = 2, (g) and (h) q  = 3, respectively. 
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V. Phase properties 
In this section the phase distribution for the present states has been discussed using the Pegg-Barnett 

formalism [43 - 45]. It is well known that the phase operator is defined as the projection operator on a particular 

phase state multiplied by the corresponding value of the phase. Therefore the Pegg-Barnett phases distribution 

function  21,PBP  for the present state will take the form [44, 45] 

        }exp{,,
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, 21
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mniqBqBP k
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njPB                                               (25) 

Where 21  and  are the phases related to the two modes a and b with the normalization condition 

 

 

 

The phase distribution will depend on the sum of the phases of the two modes, due to the correlation 

between them. Therefore, we consider in equ. (25) 21   . The Pegg-Barnett phases distribution function 

 PBP  is plotted against the angle θ for a fixed value q  = 5 and diff erent values of the parameter   = 2,5 and 

10, for even (odd) NLPCS, see Fig. 5 (a). In case of ENLPCS, the phase distribution shows a center peak at 

0  with two symmetric wings around the peak center at   . Also, there is a reduction in the maximum 

value of the peak and wings when the parameter   decreases from the value 10 to 5 and there is no phase 

distribution for more lower  . Fig. 5 (b) display the function behavior in case of ONLPCS. Generally the phase 

distribution function has the same behavior as the case for ENLPCS with decreasing the value of  . However, 

the function is shifted upward in the positive values with a reduction in the maximum value of the peak and the 

wings when the parameter   decreases. This means that the parameter   plays the crucial role of controlling 

the positivity of the phase distribution. 

       
( a )                                                                ( b ) 

Fig. 5 The phase distribution  PBP  against θ for a fixed value q  = 5 and diff erent values of the parameter   

= 2,5 and 10, (a) For even NLPCS and (b) for odd NLPCS. 

 

VI. Conclusion 
Based on the well-known nonlinear pair coherent states approach in quantum optics filed, the present 

work proposed a formalism is to introduce new even (odd) nonlinear pair coherent states (ENLPCS and 

ONLPCS). Certain statistical properties associated with these states are deduced. Regarding the second-order 

correlation function, in the first mode, for both even (odd) NLPCS the system exhibits a sub-Poissonian 

behavior for all values of the q -parameter and ranges of .However, for the second mode in case of ENLPCS 

the function has full super-poissonian behavior and reaches the thermal distribution whatever the value of the q 

parameter at certain range of  . For all values of the q -parameter the correlation function exhibits a sub-

Poissonian behavior  for  a large  values  of . Regarding ONLPCS, the function has full sub-poissonian for all 

  range considered whatever the value of the q parameter. Also the squeezing phenomenon has been 

investigated for which we found that ENLPCS shows squeezing in the second quadrature for the considered q  

values while for ONLPCS the phenomenon of squeezing disappearance of for all the cases considered. For both 

even and odd NLPCS, the Wigner function behavior reports nonclassical properties for the odd values of the q -

parameter. That means the function gets more sensitive to the variation in the q -parameter for both states. In 

the meantime the Q-function displays Gaussian behavior in case of ENLPCS with a single positive peak 
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centered at the origin. The peak shows symmetry around zero. In case of ONLPCS, the function has crater at the 

origin. Increasing the value of the q -parameter, q  = 1, both states even (odd) displays the crater shape with a 

reduction in their maximum value but the crater radius in the odd state is greater than that of the even case. With 

more inceasing of q -parameter the crater radius increases for both states even (odd) NLPCS. The obtained 

results reveal the non-classical nature of the even (odd) NLPCS. Finally the properties of the present states have 

been examined in terms of the phase distribution function introduced by Barnett and Pegg. Generally the phase 

distribution function has the same behavior for both even (odd) NLPCS with decreasing the value of ζ. 

However, the odd function is shifted upward in the positive values with a reduction in the maximum value of the 

peak and the wings when the parameter ζ decreases. This means that the parameter ζ plays the crucial role of 

controlling the positivity of the phase distribution.We hope that the even (odd) nonlinear pair coherent states 

have been introduced in the present work may be also find their applications in various physical fields, as well as 

the standard pair coherent states. 
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