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Abstract: Even and odd semi-coherent states have been introduced. Some of the nonclasscial properties of the 

states are studied in terms of the quadrature squeezing as well as sub-Poissonian photon statistics. The Husimi–

Kano Q-function and the phase distribution in the framework of Pegg and Barnett formalism, are also 

discussed. 
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I. Introduction 
Over the past four decades, various works were devoted to the study of coherent states (CSs) and their 

application in different branches of physics from both theoretical and experimental points of view. The concept 

of CSs was first introduced by Schrodinger as Gaussian wave-function that could be constructed from a 

particular superposition of the wave functions corresponding to the discrete eigenvalues of the harmonic 

oscillator [1]. These states prove a close connection between quantum and classical formulations of a given 

physical system. The importance of CSs was put forward by Glauber [2, 3] in quantum optics as eigenstates of 

the annihilation operator zzza ˆ , which he realized that these states have interesting property of 

minimizing the Heisenberg uncertainty relation, since the product of their uncertainties in the position and 

momentum saturates the Hiesenberg uncertainty relation with equal values in each quadrature. Moreover CSs 

were reintroduced by Klauder in [4, 5] by action of the Glauber displacement operator,   azazezD
ˆˆ  , on the 

vacuum states, where z is a complex variable. These states can be served as a starting point to introduce non-

classical states that have attracted considerable attention in quantum optics over the last decades. Over the last 

four decades there have been several experimental demonstrations of non-classical effects, such as photon anti-

bunching [6], sub-Poissonian statistics [7] and squeezing [8]. Also, significant progress was achieved in the 

development of practical realizable schemes of nonlinear quantum states, such as f-CS or nonlinear CS [9–15], 

even and odd CS [8, 16] and semi CS [17]. These states have attracted much attention in recent decades due to 

their helpful applications in various fields of research [10, 18–22]. 

For instance, the concept of the semi-CSs was introduced in [23] as the states of a harmonic oscillator 

which possess time-independent values of the quadrature variances x  and p , different from the vacuum (or 

coherent state) values. These  states  are  different  from  the  CSs  in  not having  the  minimum  value  2
1  for  

the  uncertainty  product px . . They have shown that the necessary and sufficient condition for such states is 

                                                                             
22 ˆˆ aa  ,                                                                   (1) 

Where   2/ˆˆˆ pixa  is the usual bosonic annihilation operator (using the units 1 m ). 

Condition (1) is obviously satisfied for the usual coherent states , for which  â . Another trivial 

example is the Fock state n , for which 0ˆ2 nan . 

An immediate consequence of equation (1) is the equality of the quadrature variances, x = p , and zero value 

of the covariance, 0ˆˆˆˆˆˆ
2
1  pxxppx . Thus ‘semi-coherent’ states cannot exhibit usual (second-order) 

squeezing.  

A nontrivial example of ‘semi-coherent’ states, only briefly discussed in [23], is a normalized superposition of 

two coherent states of the form 

                                                             

  2
1

2

1 







 .                                                       (2) 
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The notation 
 means that the state (2) is orthogonal to the state  : 

                                                            0 . 

Therefore, the state 
can be considered as an orthogonal projection of the coherent state  to another 

coherent state  . In the state (2) one has [23] 

                                                               
2

22

2
1

1 







 px

,                                               (3) 

so that, indeed, x = 2
1p . 

Later Another investigation have demonstrated that firstly, state (2) has the same average value of the 

annihilation operator â as the coherent state   â, .for any value of  , secondly,  a 

possibility of introducing a large family of ‘generalized semi-coherent states’, which satisfy property 

nnn aa  ˆˆ for an arbitrary operator Â ( All such states have the same structure as the superposition (2), 

where the components   and   should be understood as eigenstates of the operator Â  and thirdly semi-

CSs possess other nonclassical properties, in particular, the possibility of the fourth-order squeezing and sub-

Poissonian statistics [17]. Recently, it has been demonstrated that Semi-CSs as superposition of two coherent 

states, are suasible states for considering upper bounds for the relative energy difference with a fixed fidelity 

between them [24]. Also a new family of semi-CSs for a charged particle moving in a constant magnetic field 

have been introduced [25]. These states interpreted as a nonlinear coherent states (NLCSs) with a special 

nonlinearity function. Another investigation demonstrated that, the semi-CSs can be considered as a special case 

of nonlinear semi-CSs when f (n) = 1. Then, the nonclassical properties such as quadrature squeezing, 

amplitude-squared squeezing, fourth-order squeezing, number and phase squeezing and sub-Poissonian statistics 

for the introduced states in addition to their Pegg–Barnett phase distribution are generally studied [26]. 

The main goal of this paper is the introducing of even and odd semi-CSs. Our motivation is to search 

for more nonclassical properties in the obtained states, since, as reported in [17, 23], the semi-CSs only possess 

sub-Poissonian statistics and fourth-order squeezing. The paper is organized as follows. In section II, we 

introduce the even and odd semi-CSs. Certain nonclassical properties associated  with  these  states  are  

deduced,  in  section  III, such  as  the quadrature squeezing, sub-Poissonian distribution, the Husimi-Kano Q-

function and Phase distribution. Finally the conclusion is presented in section IV. 

II. Introducing Even and Odd Semi-CSs (ESemi-CSs and OSemi-CSs) 
The discrete energy values corresponding to motion of a charged particle on the infinite flat surface in 

the presence of a uniform external magnetic field perpendicular to this plane are called Landau levels [27]. The 

exact solvability of the symmetric-gauge Landau Hamiltonian,  

    32
1

2
1 LbbaaH      with  /3 iL  

have been considered. It includes an infinite-fold degeneracy on the Landau levels [28], i.e. 

                                                               mnnmnH ,,
2
1  ,                                                         (4) 

Where Landau cyclotron frequency, ω, is expressed in terms of the value of the electron charge, its mass, the 

magnetic field strength B and also the velocity of light as MceB / . The number m is an integer and n is a 

non-negative one together with mn   limitation. Each pair of creation and annihilation operators of the 

system,  aa,   and  bb, , form two separate copies of Weyl-Heisenberg algebra, 

                                           1],[ aa ,  1],[ bb ,  0],[],[],[],[   babababa ,                 (5) 

With the unitary representations as 

                                         1,1,  mnnmna      ,      mnnmna ,1,1 
,                     (6) 

                                          1,,  mnmnmnb   ,       mnmnmnb ,1, 
.                     (7) 

The creation and annihilation operators of the system are used to express the coordinates x and y and their 

conjugate momenta, i.e., xp  and  yp  , 
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                                      aabb
M

x
2


  ,     aabb

Mi
px

22


 ,     (8) 

                                     aabb
M

iy
2


  ,     aabb

M
py

22

1 
 ,    (9) 

Using the constructed the minimum uncertainty two variable CSs, , for a charged particle in the magnetic 

field as [28], 

                                                  
b

n
n

n
baa

n
ee 





 





 


0

2

0 !
,

2

                                 (10) 

where they satisfy following eigenvalue equations 

                                                                           ,, a , 

                                                                           ,, b .                                                  (11) 

Also, 
b

n
  are the normalized Glauber CSs, which are obtained by using the displacement operator  

  bbeD    acting on the Landau level nn , : 

                                                        
 

mn
mn

ennD
nm

mn
b

n
,

!
, 2

2










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




                     (12) 

By using the orthonormall relation of Landau levels, i.e., mmnnmnmn  ,, , one can deduce that 

coherent states 
b

n
  and 

a

m
 form two separate complete bases, that is, 

nn

b

n

b

n 
  and 

mm

a

m

a

m 
  . As mentioned in previous section, , satisfy the condition (1) and thus can be regarded 

as semi-CSs, which can be introduced by substituting state  
b

n
  (12) into (10) the state    can be 

rewritten in the Fock basis as 

                                                       n
n

ee

N n

nn













0

2

!

1

2

2

2







.                               (13) 

2 (a) ESemi-CSs: 

From equation (13) ESemi-CSs is given as 

                                                      nC
N n

n

e
e

2
1

0

2




                                                                   (14) 

Where, 

                                                             
!2

1
2222

2

22

n

ee

N
C

nn

e

n







                                      (15) 

and the normalization constant eN is given by 

                                                              

   
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





 
 (16) 

Where 

                                                         
22 




 e  
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2 (b) OSemi-CSs: 

From equation (13) OSemi-CSs is given as 

                                                        12
1

0

12  




 nC
N n

n

o
o

                                                        (17) 

Where, 
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                              (18) 

The normalization constant oN is also given by 
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        (19) 

 

III. Nonclassical Properties of Even and Odd Semi-CSs 
Nonclassical properties may be established through investigating quadrature squeezing, Sub-Poissonian 

distributions, The Husimi Q-function and phase distribution of the quantum states. In this section, we express 

these quantities with respect to even and odd semi-CSs which have been introduced in (14) and (17), 

respectively. Recall that a common feature of all of the mentioned criteria is that the Glauber–Sudarshan P-

function [29] of the corresponding field state is not positive definite, i.e. it cannot be illustrated as a (classical) 

probability distribution. But, as a well-known fact, we would like to imply that finding this function is ordinarily 

a hard task. Altogether, each of the above signs, which will be considered in this paper, is indeed sufficient (not 

necessary) for a state to belong to nonclassical states. It should be mentioned that the necessary and sufficient 

criterion for the nonclassicality of a state is the subject of a recent research work [30]. 

 

3.1. Quadrature Squeezing 

In order to study quadrature squeezing [31], we consider the following quadrature operators: 

                                                      2/ˆˆˆ  aax  and   iaap 2/ˆˆˆ  .                                             (20) 

From which we have 

  Cipx ˆˆ,ˆ  ,     with    
2

1ˆ C  

Then the uncertainty relation holds    
2

22 ˆ
4

1
ˆˆ Cpx  where   222

ˆˆˆ
iii xxx  , xxi

ˆˆ   or p̂

. A state is squeezed if any of the following conditions holds: 

                                                      
4

1
ˆ

2
x       or      

4

1
ˆ

2
p .                                                (21) 

Now by using Eqs. (20) and (21) the quadrature variances are given in terms of annihilation and creation 

operators expectation values by 

   nax ˆˆRe
2

1

4

1
ˆ 22

 , 

                                                            nap ˆˆRe
2

1

4

1
ˆ 22

                                                    (22) 

The state would possess x̂ or p̂  quadrature frequency sum squeezing if the S -factor defined by 

                                 

 

C

Cx
SX ˆ

ˆˆ2
2


  ,          or           

 

C

Cp
S p ˆ

ˆˆ2
2


                             (23) 



Nonclassical Properties of Even and Odd Semi-Coherent States 

DOI: 10.9790/4861-0901035967                                           www.iosrjournals.org                                   63 | Page 

Satisfies the inequalities 01  XS    or  01  pS . For even or odd semi-CSs 0ˆˆ  aa . Also 

the expectation values of the square annihilation operator and the mean photon number for even and odd semi-

CSs are respectively given by 

                                                      122ˆ
0

2

2

2 




nnCa
n

n
e

,                                                   (24) 

                                                         nCn
n

ne
2ˆ

0

2

2




 ,                                                                 (25) 

                                                       122ˆ
0

2

12

2 




 nnCa
n

n
o

,                                               (26) 

                                                          12ˆ
0

2

12 




 nCn
n

no
.                                                      (27) 

In Fig. 1, the squeezing function corresponding to states
e

 and 
o

  versus the parameters α and β 

have been plotted. These figures show that for both states, xS  are always negative, and pS  are always positive 

for all values of α and β, see Fig. 1 (a, c) and (b, d) respectively. This means that squeezing occurs, for both 

states, only in the x quadrature and so nonclassicality feature of these states is revealed. 

 

 
( a )                                                      ( b ) 

 
                                                  ( c )                                                        ( d ) 

Fig. 1 The squeezing function xS  and pS  as a function of the parameters α and β (a and b) for the even semi-

CSs and (c and d) for the odd semi-CSs. 

 

3.2. Sub-Poissonian Distributions 

In this subsection we shall investigate the sub-Poissonian distributions for the even and odd semi-CSs. The 

distribution can be measured by using photon detectors based on photoelectric effect [32; 33]. The second-order 

correlation function, denoted  02g , takes the following simple form [34],  

 
2

22

2
ˆ

0
aa

aa
g





  

This expression is easily rewritten in terms of the photon number operator and can then be evaluated for even 

and odd semi-CSs using Eqs. (25,) and (27) as 
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                                                                             
2

2

2

ˆ

ˆˆ
0

n

nn
g


 .                                                     (28) 

If 
    1102 g , then the light field exhibits sub(super)-Poissonian distribution; if 

   102 g the 

distribution is called Poissonian; if 
    2202 g the distribution is referred to as thermal (super-thermal).  

Fig. 2 (a, b) represents the second order correlation function for the even and odd semi-CSs 

respectively. As shown in this figure, for even semi-CSs  02g  ˃ 2 in a specific regions of α and β indicating 

super-thermal-Poissonian distribution then with increasing both α and β the function becomes super-Poissonian. 

In case of the odd semi-CSs,  02g > 1, in a specific regions of α and β, this means that it shows super-

Poissonian distribution. With increasing both α and β parameters the function changes gradually to sub-

Poissonian distribution. This means that both states has nonclassicality feature. 

 
( a )                                                         ( b ) 

Fig. 2 Plot of the second order correlation function as a function of α and β, (a) for the even semi-CSs and (b) 

for the odd semi-CSs. 

 

3.3. The Husimi – Kano Q-function  

In this subsection we shall consider the Husimi - Kano Q-function associated with the even and odd semi-CSs. 

The Q-function is positive-definite at any point in the phase space for any quantum state and can be also 

calculated in terms of the following formula [35]  

                                                                           1Q  ,                                                         (29) 

where  is the density matrix for the even and odd semi-CSs and   is the usual coherent state.[2] Thus the Q-

function for light fields in the even and odd semi-CSs will be given respectively, by  

 

3.3 (a) For the ESemi-CSs 

                                                                       
221 


 eGQ ee                                                         (30) 

where 

                                                                         n

n

n

e C
n

G 2

0

2*

!2

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




 

  
                                          ( a )                                                          ( b ) 
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                                            ( c )                                                          ( d ) 

Fig. 3 The eQ - function against γ for even semi–CSs at fixed β = 2 (a) α = 0, (b) α = 1, (c) α = 2 and (d) α = 3. 

Since the maximization or minimization of the  eQ -function depends on the parameter α. 

Therefore, our main task is to examine the behaviour of the  eQ -function due to the variation in the α-

parameter. For this reason we plot  eQ in Fig. (3) for different values of the α-parameter keeping β parameter 

unchanged. For fixed β = 2 and for instance when we consider α = 0, the function exhibits one peak but with 

squeezing apparent on the contours of the base, see Fig.3 (a). For α = 1, we note that more squeezing occur on 

the contours of the peak base where it is elliptically shaped, see Fig.3 (b). For α = 2, we note that the peak splits 

into two peaks but they are joined near of the base and each base has a crescent like shape as shown in Fig.3 (c). 

More increase in the value of α = 3 leads to a complete separation of the two peaks, see Fig. 3 (d). It is also 

noted that there is a slight difference between the heights of the peaks. This means that there is a slight 

asymmetry in the function shape which reflects the effect of the squeezing. 

 

3.3 (b) For the OSemi-CSs 

                                                                
221 


 eGQ oo                                                           (31) 

where 

                                                                       
  12

0

12*

!12











 n

n

n

o C
n

G


 

Where nC2  and 12 nC  are given by Eqs.(15) and (18), respectively.  

       
( a )                                                    ( b ) 

 
                                                     ( c )                                                     ( d ) 

Fig. 4 The  oQ - function against γ for odd semi–CSs at fixed β = 2 (a) α = 0, (b) α = 1,        (c) α = 2 and (d) 

α = 3. 
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In order to visualize the behaviour of  oQ -function we plot the  oQ -function in Fig. (4) for the 

same values of the α and β –parameters as in  eQ . The function exhibits two peaks but with squeezing 

apparent on the contours of the base at α = 0, see Fig.4 (a). In Fig.4 (b), for α = 1, we note that the function 

shows a two-peak squeezed structure with pattern of interference at the base. From Fig. 4 (c), it is seen that, for 

α = 2, the function has the same behavior as in the case α = 0 with a decrease in the peak height. More increase 

in the value of α = 3 leads to a complete separation of the two peaks, see Fig. 4 (d). Generally, a slight 

difference between the heights of the peaks has been observed with changing α value. Also, the slight 

asymmetry in the function shape may be due to the effect of the squeezing. 

 

3.4. Phase distribution 
Phase distribution of a quantum state of the electromagnetic field provides information about 

uncertainty in the phase of the field. This, in turn, imposes a lower limit on the fluctuations in the number of 

photons. A useful approach to define phase distribution is the Pegg-Barnett formulation [36]. Phase distribution 

of an arbitrary state of the field is obtained by the overlap of the state with the phase state. Pegg and Barnett 

defined a complete set of s + 1 orthonormal phase states 
p by  

                                                                    nin
s

s

n

pp 



0

exp
1

1
 ,                                           (32) 

Where 
1

2
0




s

p
p


 with sp ,.....,1,0  and an arbitrary value of 0  based on these phase states, the 

Hermitian phase operator is defined as  

                                                         pp

s

p

p  



0

ˆ                                                            (33) 

Henceforth, the Pegg–Barnett phase probability distribution of an arbitrary state   may be defined as 
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Now inserting the introduced states (14) and (17) into (34), the respective phase distributions for the states 

e
 and 

o
  are, 
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Fig. 5 The phase distribution  PBP  against θ for a fixed value β= 1 and different values of the parameter α = 

1, 2 and 3, for even semi-CSs. 

 

In Fig. 5, we have plotted the Pegg–Barnett phase distribution for even semi-CSs for various values of 

α = 1, 2 and 3 keeping β fixed at 1. Generally, for even semi-CSs, the figure show that all of the graphs have 

single peaks at 0  and the distribution is symmetric around this peaks with two lateral wings at  
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developing. As α increase, the distribution  PBP peaks become sharper and higher. In fact, the same results 

and behavior have been seen also for odd semi-CSs. 

 

IV. Conclusion 

In this article we have introduced and discussed some nonclassical properties of  even and odd semi-

coherent states. The quadrature squeezing is investigated. It shows that both even and odd semi-CSs exhibit 

quadrature squeezing in x component. The second order correlation function for even and odd semi-CSs is 

studied. It shows that even and odd semi-CSs exhibits super-thermal-Poissonian and super-Poissonian 

distribution in a specific regions of α and β respectively. On the other hand even and odd semi-CSs with 

increasing α and β parameters changes to super and sub-Poissonian distribution respectively. The Husimi - Kano 

Q-function associated with the even and odd semi-CSs reveals that Q-function for both states are positive-

definite at any point in the phase space with a slight asymmetry in the function shape which reflects the effect of 

the squeezing. Also Q-function for both states tends to split up into two peaks as α-parameter increases. Finally 

the phase properties using the Pegg–Barnett formalism are studied for even and odd semi-CSs. For both states 

the phase distribution function has one central peak at 0  with two lateral wings at   developing and 

as α increase, the distribution  PBP peaks become sharper and higher.  
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