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Abstract: In this paper Spinors of Euclidean spaces of Geometric Algebras over a real field are defined and 
their algebraic and rotational properties are discussed. The advantage of using Spinors in solving problems of 

Celestial Mechanics is illustrated by studying the tracking problem of near Earth objects. It is shown that this 

technique of using spinors can replace the conventional methods and also provide a richer formalism. 
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I. Introduction 
 Spinors are defined as a product of two vectors in i-plane or i-space (Hestenes, 1986). Spinors can also 
be viewed as elements of a minimal left ideal (Hestenes, 1966 & Lounesto, 2001). Rotations can be treated as 

group actions of Spinors on the vector space over which the Geometric Algebra is constructed. There are 

different parametrizations for Spinors in Geometric Algebra. Thus rotations also have different parametrizations 

depending upon the form of the Spinor considered. 

 Sequences of rotations play a key role in tracking near earth orbiting objects such as an aero plane or a 

spacecraft (Kuipers, 1999).  There exists a sequence of Spinors corresponding to every sequence of rotations. 

The purpose of the present paper is to compare our results with the results obtained by using Quaternions and to 

show that Geometric Algebra works as an efficient tool to study problems in Celestial Mechanics. 

 

II. Geometric Algebra 

 Let nE  be an n-dimensional vector space over R, the field of real numbers,   together with a 

symmetric, positive definite, bilinear form  →: nn EEg ×  R   denoted by  yxyxg


.),(  ,   nEyx ∈,∀


. 

There exists a unique Clifford Algebra ( )( ),nEC   which is a universal algebra in which nE  is embedded. 

Henceforth, we shall identify nE  with )( nE . We choose and fix an orthonormal basis  nn eeeB ,....,, 21
  

for nE . 

Let 0A  span  e = R
A1 R=  

1A  span  { } =ie nE

   And in general,       kA  
}{





ks
s

ssea
 

Then    ( ) kA⊕=nEC  

Clearly   dim kA  knC    and   dim ( ) n
nEC 2= . 

Geometric Algebra   is constructed by taking the geometric product of the vectors in the n - dimensional vector 

space nE , giving multivectors as its products. The ‘Geometric Product’ of vectors denoted by   ba


, as  

           bababa


∧. +=                      ………….. (1) 

    ba  -baababab


∧.∧. =+=     ………….. (2) 

As every element of ( )nEC   is in the form A = ⊕
0

A  ⊕
1

A  …. 
n

A⊕ , it is called a multivector.  A 

multivector is said to be even (odd) if   0=
r

A   whenever r   is odd (even).  A detailed construction was 

given by  Hasan (1987). 
  k-blade:    Outer product  of ‘k’ number of 1-vectors is called a k- blade.  

Note that  Se
miii eee .....

21
 is a  m  - blade. 

Define the set { }NSeG Sn ⊆/±= . Clearly nG  is a group with respect to the operation ‘Geometric Product’ of 

the elements defined by  TSTS eTSee ),(=   with  
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Se  
S

kk

e2

)1(

)1(




 
as the inverse of Se  and { }e  as the identity. nG   is a ‘free group’ with nB  as a finite 

basis. 
12 += n

nG .   

 

 2.1   Euclidean nature of Geometric Algebra 

2.1.1    Definition: Norm of a multivector   The concept of ‘norm’ of a multivector is very important to define 

division in Geometric Algebra.  

To every A∈ ( )nEC  the magnitude or modulus of A is defined as  A =
2

1

0

†AA . 

 With this definition of norm, ( )nEC   becomes a Euclidean algebra. The inverse of a non zero element of A of 

( )nEC , is also a multivector,  defined by  
1A

 = 
2

A

A†
.   

2.1.2   Definition : space-k      Every k- vector kA  determines a space-k  

2.1.3   Definition:   n – dimensional  Euclidean space  ( )nEC   : For a n-vector nA , designate a unit  n - vector ‘

i ’ proportional to nA . That is nn AA = i .   

‘ i ’ denotes  the direction of the space represented by nA .   

2.1.4    Definition  i- space : The set of all vectors nEx∈


 which satisfy the equation 0∧ =ix


,  is said to be an 

i- space and is denoted by ( )iCn .  Such a  n - vector   ‘ i ’  is called the pseudoscalar of the plane as every other 

n -vector can be expressed as a scalar multiple of it. 

  Note   (a)  nnxxxx  +++= .....2211


   is a parametric equation of the i- space. nxxx ,...,, 21    are  called 

the rectangular components  of vector x


  with respect to  the basis  { }n ,......,, 21     (Hestenes, 1986). 

(b)  2211  xxx +=


   is a parametric equation of the i- plane. 21, xx    are  called the rectangular components  

of vector x


  with respect to  the basis  { }21, . 

  2.2    Spinors in ‘n’  dimensions 

2.2.1   Definition: Spinor    The product of two vectors in the  i- space  is called a Spinor. 

2.2.2   Definition:  Spinor i- space : The Spinor  i- space  ' S ’ is defined as  

{ }  space-iyxyxRRSn ∈,,/


==  

nS  = ( )i+
3C   if 3≤n . ' 2S ’ can be related to complex numbers  and ' 3S ’  can be related to Quaternion 

Algebra.    

Let x


= nnxxx  +++ ....2211  and  y


= nnyyy  +++ .....2211  .   

Then the elements in the Spinor   i- space   ' nS ’ are in the form  

( ) kjjkkj

n

kj
jj

n

j

yx-yxyxyxR ∑∑
1,1 ==

+==


   

R  can be written as  i +    if  n = 2 or 3 

Where 
jj

n

j

yx
1

∑
=

=   and ( )jkkj

n

kj

yx-yx∑
1, =

=     

  

 
Fig 1:   i- plane  of Spinors 
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2.3  Algebraic Properties of Spinors 

2.3.1  Theorem :       }  space-iyxyxRRSn == ∈,,/{
   

 (i) nS  is an abelian group  with respect to the operation ‘ ’defined as the addition of the coefficients of the 

like terms similar to addition of polynomials. 

 (ii) nS  is a vector space over R . 

(iii)   dim 12 -n
nS =   

Spinor spaces  nS  in  dimensions  n  > 2 do not satisfy commutative property. Hence they form division 

algebras or associative algebras. 

2.4   Euclidean space   ( )i3C   

For a trivector ( )i33 CA ∈ , designate a unit trivector ‘ i ’ proportional to 3A . That is 33 AA = i .   

‘ i ’ represents the direction of the space represented by 3A .   

The set of all vectors x


 which satisfy the equation 0∧ =ix


 , is called the Euclidean 3- dimensional vector 

space corresponding to ‘ i ’ and is denoted by  ‘ ( )i3C ’.   

( )i3C    can  also be called an  space-i ,  the trivector i   is called the pseudoscalar of the space as every other 

pseudoscalar is a scalar multiple of it. 

  332211  xxxx ++=


   is a parametric equation of the space-i where 21, xx  and 3x are  called the 

rectangular components  of vector x


 with respect to  the basis { }321 ,,  . 

 space -i  of vectors is a 3 – dimensional vector space with basis { }321 ,,  . 

2.4.1   Definition :  bivectors in ( )i3C  :          321  == ii1 ;  132  == ii2 ;  213  == ii3 . The set of 

bivectors in ( )i3C  is a 3-dimensional vector space with basis { }321 iii ,, .  

2.4.2   Spinors of Euclidean space  ( )i3C  

2.4.3    Definition: Spinor  space -i     The Spinor space -i   ' 3S ’ is defined as  

}∈,,/{3 == space -yxyxRRS i
  

3S   can also be denoted by ( )EC+
3  or ( )i+

3C .   ‘ nSR∈ ’ is a multivector, has a scalar part  

‘ ’ and a bivector part ‘ +1i 2i 3i+ ’. 

TABLE 1:  Comparison  between Spinors of Euclidean plane and Spinors of Euclidean space

 
 

2.5   Action of Spinors on Euclidean space, Rotations  

 Spinors of Euclidean space also can be treated as rotation operators on  space- i   of vectors that is 

the three dimensional vector space  3E  .    

 Unlike rotations in two dimensions, rotations in three dimensions are more complex as (i) the operation to be 

considered is the group action by conjugation, giving Similarity Transformations.  

(ii) The axis about which the rotation takes place is also to be specified. The resulting vector changes as the axis 

of rotation changes. This can be shown in the following examples. 

  Rotate the vector x


 about the axis ,1  the axis perpendicular to the plane represented by the bivector   

321  == ii1 .  
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Let x
 ∈ space- i  of vectors   and   x


= 332211  xxx ++  . 

( ) ( )33221132332211233223
†   xx-xxxxxx +=++==


11 ii  

  Rotate the vector x


 about the axis ,2  the axis perpendicular to the plane represented by the bivector   

132  == ii2 .  

( ) ( )331122133322113113131   xx-xxxxxx† +=++==


22 ii . 

2.6    Diferent parametrizations for Spinors of ( )i3C  

2.6.1   Spinors of the space-i   in half angle form 

 A  unit bivector is treated as a representation of the direction of an area.  It can also be treated as a 

representation of an angle, which is a relation between two directions. Hence for ( )i3∈, Cyx


, let  yx ˆ,ˆ  be 

their directions which are elements of the  space- i . 

From the definition of a Spinor of the space- i , the Spinor,  

yxyxyxR ˆ∧ˆˆ.ˆˆˆ +== . 

AA A= +
2

1
sinˆ

2

1
cos  is the half angle form of the Spinor R . 

2.6.2   Spinors of the space- i   in exponential  form 

R  AA A= +
2

1
sinˆ

2

1
cos         can be written as  

( )A2/1e . 

Here yx ˆ∧ˆˆ =A , the bivector representing the plane of rotation and A  gives the magnitude of the angle through 

which the rotation takes place. 

2.6.3  Quaternion form 

211332ˆˆ  321 +++== yxR  

iiii 332211  +=+++=  

Where  yx ˆ.ˆ=  and  yx ˆ∧ˆ211332 =++=  321  

It is the Quaternion form of a Spinor. 

The relations between various parameters are,  ,
2

cos=
A

      =
2

sinˆ
A

A


 

2.6.4    Euler Angle and axis form      

( ) aeR


i2/1=    is the angle and axis form of the Spinor as  â  is the axis of rotation and  a


  gives the 

magnitude of the angle through which the given vector is rotated. This is called Euler parameterization of 

rotations. The parameters angle and axis are called Euler parameters. 

 2.6.5   Spinor Matrix form of a rotation  

We denote a rotation by R or Q and rotation through an angle    by R  or Q . The use of Spinors to 

represent a rotation gives the matrix elements directly by the formula   ( )kjkjjk ee  R.. == . 

The advantages in using Spinors as a substitute for all the other forms for representing rotations  are 

(i) Spinors are coordinate free. 

(ii) Spinors exists in every dimension, thus make it possible to perform rotations in higher dimensional spaces 

also. 

(iii) Spinors represent the orientation of the rotation but matrices do not.  

(iv) It is easy to convert Spinors into the other forms as and when required. 

2.7  Sequences of Spinors 

 Sequence or product of Spinors is also Spinor and hence a rotation. Spinors  play an important role in the study 
of the problems related to Celestial mechanics. 

2.7.1         1-2-1 symmetric sequence of rotation 

We consider the 1-2-1 symmetric sequence of rotations; the Spinor that represents the required rotation is given 

as a sequence of three spinors about the base vectors is defined by 

  RQRRQR k

†††

== RR QR  , 
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Where
( )

2
sin

2
cos 32

2/1 1





 +== i
eR ,

( )
2

sin
2

cos 13
2/1 2





 +== i

eQ , 

( )
2

sin
2

cos 32
2/1 1





 +== i

eR  

The new set of axes after rotation are given by 

R†R kkke  ==R  

  RQRRQR k

†††

=  

This can be converted into the matrix form by calculating the elements of the matrix ( )jke  given as  

kjjke ke  R== .  

  RQRRQRe
†††

111 ==R  

( )   RQRRQR
†††

1=  

( )   RQQR
††

1=  

( )[ ]   RR
†

sincos 131 +=  

[ ]   R -R
†

sincos 31=  

( ) ( )   sincos 31 RR-RR
††

=  

( )  sinsincoscos 3231 += -   

 cossinsinsincos 321   -+=  

Similarly    RQRRQRe
†††

222 ==R  

( ) ( ) ( ) sincoscoscossinsincossincoscossinsin 321 +++= -

  RQRRQRe
†††

333 ==R  

( ) ( ) sinsincoscoscossincoscoscossincossin 321  --- ++=  

( ) ( )
( ) ( )
( ) ( )+ 





sinsin-coscoscossincoscoscossincossin-

sincos-coscossin-sincossin-coscossinsin

cossinsinsincos

 
 

III. An application of sequences of spinors 
3.1  Tracking problem 

Rotation sequences are used to track a remote object such as a spacecraft or an aero plane. 

 
Fig 2 Tracking Problem 

 In the figure 3, OXYZ is the frame of reference rigidly attached to the Earth. The origin ‘O’ is a point 

on Earth from which we are observing the spacecraft. 

 XY plane is the Tangent plane to the Earth pointing towards North and East directions respectively. Z 

axis points towards the centre of the Earth (NED frame of reference). ‘A’ indicates the direction of the 

spacecraft and ‘P’ is the projection of A in XY plane.   is the angle between the projection of the position 
vector of the spacecraft and the X axis. 
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  is the angle between the projection of the position vector of the spacecraft and  the position vector of the 

spacecraft.   is called the ‘Heading angle’ and   is called the ‘Elevation angle’  

  To locate the spacecraft we use  RR  sequence of coordinate frame transformations where R

rotates the XY plane through an angle   about Z axis in such a way that the X axis coincides with the 

projection vector OP, and R  rotates the XZ plane through an angle   about new y axis in such a way that 

the newest ‘x’  axis coincides with the direction vector OA. The final direction of the X axis represents the 

direction of the spacecraft. 

RRR =  

3.2 Spinor Matrix form of the Tracking Transformation 

The new set of axes after rotation are given by 

kσ RRR == kke   RRRR k

††

=  

Where
( )

2
sin

2
cos 21

2/1 3





 +== i
eR , 

( )
2

sin
2

cos 13
2/1 2





 +== i

eR  

This can be converted into the matrix form by calculating the elements of the matrix ( )jke  given as  

kkejjke  R== .  

Let the final set of coordinate axes be  { }3,2,1, =kek . 

11 σσ RRR ==1e  

( ) sincos 21+= 1σ R  

( ) sincos 2+= 1σR  

( )  sinsincoscos 1 132 σσσ +=  -  

   sincossincos 2 131 σσσ
 
 sincossincoscos 2 31 σσ 

 
Similarly 

22 σσ RRR 2e
 

 sinsincoscossin 2 31 σσ ++=  -  

                                            

  33  RRR ==3e  

  sincos 13 +=  

Hence the corresponding matrix for the tracking transformation is 







cossinsinsincos

cossin

sincossincoscos

-

o

-
 

 3.3      Euler angles 

  Rotations transform one coordinate frame XYZ into another coordinate frame xyz preserving the 

angle between them. Hence it preserves the orthogonality property of the basis vectors. There is another widely 

used system to represent rotations is the system of Euler angles. Euler stated that every rotation can be expressed 

as a product of two or three rotations about fixed axes of a standard basis in such a way that no two successive 

rotations have the same axis of rotation. This theorem is known as ‘Euler’s theorem’. Thus every rotation can be 

divided further into two or three rotations about the fixed axes of the standard basis. 

3.4      Theorem     Every rotation can be expressed as a sequence of Euler angles. 

Proof:    We shall prove this by establishing the relation between spinor sequence of Euler angles and the angles 

of any arbitrary spinor sequence that represent the same  rotation. As an example for an arbitrary rotation, let us 

choose the symmetric 1-2-1 sequence of Euler angles obtained above. Equating the matrix representations of 

both we get the Euler angles in terms of    and  . 

 RQRRR =  
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( ) ( )
( ) ( )
( ) ( )+ 





sinsin -coscoscossincoscoscossincossin-

sincos-coscossin-sincossin-coscossinsin

cossinsinsincos

 







cossinsinsincos-

cossin

sincossin-coscos

o  

 coscoscos =  






sin

tan
tan =  






tan

sin
-tan =  

These relations establish the existence of Euler angles and these relations can also be obtained using other 

methods also. We shall prove this by using Spinor half angle method. 

3.5  Spinor half angle method 

⇒ RQRRR =  Let 
2

,
2

,
2

,
2

,
2


===== tsrqp  to avoid half angles 

( ) ( ) ( ) ( ) ( )rrssttppqq sin32cossin13cossin32cossin21cossin32cos  +++++ =  

pqpqqppq sinsin-cossincossincoscos∴ 321321  ++  

  srrsrsrstt sinsincossinsincoscoscos
21133232

sincos   
 

srtrstrstrst

srtrstrstrst

sinsinsincossinsinsincossincoscossin

sinsincoscossincossincoscoscoscoscos

131232

211332









 

rstsrtsrtrst

rstrstrstrst

cossincossinsinsinsinsincoscossinsin

coscossinsincoscossincossincoscoscos

113132112

3232









   

   rtrtsrtrts

rtrtsrtrts

coscossinsinsincossinsincossin

cossinsincoscossinsincoscoscos

1321

32









 

       trstrstrstrs  sinsincossinsincoscoscos 211332 
 

       trstrstrstrs

pqpqqppq





cossinsincossinsincoscos

sinsincossincossincoscos

133221

321321





 
Equating the coefficients of like terms we get   

 trspq  coscoscoscos
      ……….  (3) 

 trsqp  sinsincossin
        ………. (4) 

 trspq  cossincossin
      ……….(5) 

 trspq  sincossinsin
     ……….(6) 

Squaring (3) and (6) and adding   

         2sincos
2

coscos
2

sinsin
2

coscos trstrspqpq 
 

spqpq 2cos2sin2sin2cos2cos 
 

         
2

2cos1

2

2cos1

2

2cos1

2

2cos1

2

2cos1 sqqpq 








 

 
 

2

2cos1
2cos2cos2cos2cos12cos2cos2cos2cos1

4

1 s
qqqqpqqp




 
 

2

2cos1
2cos2cos22

4

1 s
pq



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spq 2cos12cos2cos1 
 

spq 2cos2cos2cos 
 

 coscoscos 
 

Let  atr =+   and bt -r =  

==+ rba 2⇒   and   == tb -a 2  

Dividing (6) by (3)  we get  ( ) atrqp tan-tan-tantan =+=   

Dividing (4) by (5)   ( ) bt-r
q

p
tantan

tan

tan
==  

( )
ba

ba
ba

tantan-1

tantan
tantan

+
=+=  

  













q

p
qp

q

p
qp

tan

tan
tantan1

tan

tan
tantan

 

  qp

pqp

tantan1

tantantan
2

2






 

 
  qp

qp

tantan1

tan1tan
2

2






 





tan

sin

2tan

2sin


q

p

 






tan

sin
tan 

 

 
qp

qp
qp

tantan1

tantan
tantan






 

  













q

p
qp

q

p
qp

tan

tan
tantan1

tan

tan
tantan

 

  qp

pqp

tantan1

tantantan
2

2






 

 
  qp

qp

tantan1

tan1tan
2

2






 





sin

tan

2sin

2tan


q

p

 






sin

tan
tan 

 
IV. Discussion 

 There is a difference in sign of the ‘sine’ function in the conventional matrix method and the one used 

by us that is the Spinor method due to the difference in the handedness of the basis. Quaternions form a left 

handed coordinate system where as Spinors form a right handed coordinate system. 

 And also the matrix obtained for a frame rotation is different to that of vector rotation. For example   

100

0cossin

0sin-cos




  is the matrix used to rotate a vector about 3 through an angle  where as  

100

0cossin-

0sincos



   

is the matrix used to rotate the coordinate frame about 3 through an angle  .  
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V. Conclusions: 
 We conclude that Spinor methods can replace the conventional methods and it is better formalism as 

they can be converted into any other convenient form as per the available data. When compared to the other 

methods, the number of parameters in the Spinor notation i +=R  reduce further as  and   are not 

independent of each other. 
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