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Abstract: In this paper Spinors of Euclidean spaces of Geometric Algebras over a real field are defined and
their algebraic and rotational properties are discussed. The advantage of using Spinors in solving problems of
Celestial Mechanics is illustrated by studying the tracking problem of near Earth objects. It is shown that this
technique of using spinors can replace the conventional methods and also provide a richer formalism.
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l. Introduction

Spinors are defined as a product of two vectors in i-plane or i-space (Hestenes, 1986). Spinors can also
be viewed as elements of a minimal left ideal (Hestenes, 1966 & Lounesto, 2001). Rotations can be treated as
group actions of Spinors on the vector space over which the Geometric Algebra is constructed. There are
different parametrizations for Spinors in Geometric Algebra. Thus rotations also have different parametrizations
depending upon the form of the Spinor considered.

Sequences of rotations play a key role in tracking near earth orbiting objects such as an aero plane or a
spacecraft (Kuipers, 1999). There exists a sequence of Spinors corresponding to every sequence of rotations.
The purpose of the present paper is to compare our results with the results obtained by using Quaternions and to
show that Geometric Algebra works as an efficient tool to study problems in Celestial Mechanics.

Il. Geometric Algebra
Let E, be an n-dimensional vector space over R, the field of real numbers, together with a

symmetric, positive definite, bilinear form g:E,xE, — R denoted by g(X,y) =Xy, WX, YVEE,.
There exists a unique Clifford Algebra (C(E,), p) which is a universal algebra in which E,, is embedded.
Henceforth, we shall identify E,, with p(E,,) . We choose and fix an orthonormal basis B, = {el,ez,....,en}
for Ej .
Let A, = span {e¢}= R1,=R
A =san {5} = E,
Andin general, A, —(Yae}

ik
Then C(E,)= @A,
Clearly dim A, =nC, and dimC(E,)=2".
Geometric Algebra is constructed by taking the geometric product of the vectors in the n - dimensional vector
space E,,, giving multivectors as its products. The ‘Geometric Product’ of vectors denoted by ab ,as

ab=a.b+a/Ab ... (1)
bi=b . d+bAd=a.b -aAb ... )

As every element of C(E,,) is in the form A = (A)g @ (A); ® ... ®(A),, itis called a multivector. A

multivector is said to be even (odd) if <A>r =0 whenever I' is odd (even). A detailed construction was

given by Hasan (1987).
k-blade: Outer product of ‘k” number of 1-vectors is called a k- blade.

Note that €5 = €; €; ....&; isa m - blade.
Define the set G, = {i es/SEN } Clearly Gy, is a group with respect to the operation ‘Geometric Product’ of
the elements defined by eger =7(S,T)egat Wwith
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. k(k-1)
es =(—1) 2 e as the inverse of e and {e¢} as the identity. G, is a ‘free group’ with By, as a finite

basis. ‘Gn‘ = 2n+1.

2.1 Euclidean nature of Geometric Algebra
2.1.1 Definition: Norm of a multivector The concept of ‘norm” of a multivector is very important to define
division in Geometric Algebra.

Toevery A& C(En) the magnitude or modulus of A is defined as |A| :<ATA>O% .

With this definition of norm, C(En) becomes a Euclidean algebra. The inverse of a non zero element of A of
C(En), is also a multivector, defined by A= ﬂ

A2

2.1.2 Definition: k- space Everyk- vector A, determinesa k- space
2.1.3 Definition: n—dimensional Euclidean space C(En) : For a n-vector A, designate a unit n - vector
i * proportional to A,,. Thatis A, =|An| i.
‘i denotes the direction of the space represented by A, .
2.1.4 Definition i- space : The set of all vectors X & E,, which satisfy the equation X /\i=0, is said to be an
i- space and is denoted by C,, (I) Sucha n-vector ‘i’ is called the pseudoscalar of the plane as every other
n -vector can be expressed as a scalar multiple of it.

Note (a) X=X 01+ Xp09 +.....+ X40p, is a parametric equation of the i- space. X, Xp,...,X, are called
the rectangular components of vector X with respect to the basis {0'1,0'2, ...... ,an} (Hestenes, 1986).
(b) X=X01+Xo0, isa parametric equation of the i- plane. Xj,Xo are called the rectangular components

of vector X with respect to the basis {0'1,0'2}.
2.2 Spinorsin ‘n’ dimensions
2.2.1 Definition: Spinor The product of two vectors in the i- space is called a Spinor.
2.2.2 Definition: Spinor i- space : The Spinor i- space 'S ’ is defined as
Sh ={R/R=>”<y, )“(,yEi-space}

Sp = Cé' (I) if n <3. 'Sy’ can be related to complex numbers and 'Sz’ can be related to Quaternion
Algebra.

Let X= X101 + Xo0p +....+ Xno, and Y = Y101+ Y202 +.....+ Y 0p -

Then the elements in the Spinor i- space 'S, ° are in the form

n n
R=X y= Exjyj+ > (ijk- Xij) Ojok
j=1 j,k=1

R can be writtenas o+ i if n=2o0r3

n n
Where ,, - 2XYj and p= X (x,—yk- Xkyj)
j=1 Jk=L

7=0x

(L
\

Fig 1: i- plane of Spinors
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2.3 Algebraic Properties of Spinors

2.3.1 Theorem: Sy= { RIR=X YV, X, V€ i-space}

(i) Sy, is an abelian group with respect to the operation ‘T *defined as the addition of the coefficients of the
like terms similar to addition of polynomials.
(i) Sy, isavector space over R .

(iii) dim s, =2""1

Spinor spaces S, in dimensions n > 2 do not satisfy commutative property. Hence they form division
algebras or associative algebras.

2.4 Euclidean space C3(i)

For a trivector Ag € Cslf), designate a unit trivector ‘i* proportional to Ag. Thatis Ag = |A3| i.

‘i” represents the direction of the space represented by Ag.

The set of all vectors X which satisfy the equation X /\i=0 , is called the Euclidean 3- dimensional vector
space corresponding to ‘i” and is denoted by ‘Cj (I) >

C3(i) can also be called an i- space, the trivector i is called the pseudoscalar of the space as every other
pseudoscalar is a scalar multiple of it.

X =X 01 + X0, + Xgog IS a parametric equation of the i- spacewhere X;, Xy and Xgare called the
rectangular components of vector X with respect to the basis {01,02,03}.

i - space of vectors is a 3 — dimensional vector space with basis {01, lop¥ 03}.
2.4.1 Definition : bivectors in Cgi) : i{ = oql = 0903; ip =09 =03071; i3 =031=070,. The set of
bivectors in Csi) is a 3-dimensional vector space with basis {i1,i2,i3}.
2.4.2 Spinors of Euclidean space C3(i)
2.4.3 Definition: Spinor i-space The Spinor i-space 'Sz’ is defined as

S3= {R/R=XYy, X,yEi-space }

S3 can also be denoted by C; (E) or C3 (I) ‘RES,,” is a multivector, has a scalar part

‘o’ and a bivector part ‘y iy +0 Iy + S i3’
TABLE 1: Comparison between Spinors of Euclidean plane and Spinors of Euclidean space

Spinors of Euclidean plane C) (I) Spinors of Euclidean space C3(i)
Itisa Field Itis an associative division algebra
Basis is isomorphic to the basis of i-plane of Basis is not isomorphic to the basis of
vectors i- space of vectors, as it contains one more

element

Reversion is analogous to Complex Reversion is anti-isomorphic to Quaternion
conjugation. conjugation.
Spinor basis is isomorphic to the basis of Spinor basis is anti-isomorphic to the basis of
Complex numbers Quatemionalgebra.

2.5 Action of Spinors on Euclidean space, Rotations
Spinors of Euclidean space also can be treated as rotation operators on i- space of vectors that is

the three dimensional vector space Eg .

Unlike rotations in two dimensions, rotations in three dimensions are more complex as (i) the operation to be
considered is the group action by conjugation, giving Similarity Transformations.

(i) The axis about which the rotation takes place is also to be specified. The resulting vector changes as the axis
of rotation changes. This can be shown in the following examples.

Rotate the vector X about the axis oy, the axis perpendicular to the plane represented by the bivector

i1 =(71i =0203.
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Let X & i- space of vectors and X = o9 + X0 + X303 .

i1')? i1 = 030'2)_(.020'3 = O'302(X10'1 + X009 + X30'3)0203 =X01 - (X202 + X303)

Rotate the vector X about the axis o9, the axis perpendicular to the plane represented by the bivector
i2 = (Tzi =03071.

i27L7( io = 010301X 03071 = 0103 (Xlol +Xp0p + X303 )630'1 =Xp07 - (Xlal + X303) .
2.6 Diferent parametrizations for Spinors of C3(i)
2.6.1 Spinors of the i- space in half angle form

A unit bivector is treated as a representation of the direction of an area. It can also be treated as a

representation of an angle, which is a relation between two directions. Hence for X, VEC3(i), let X,V be
their directions which are elements of the i- space.
From the definition of a Spinor of the i - space, the Spinor,

R=Xy=X. §+XA¥.
1 A1 _ .
=C0s > |A|+ Asin > |A| is the half angle form of the Spinor R.
2.6.2 Spinorsof the i - space in exponential form

1 ~ .01
R =CO0S > |A|+ Asin > |A| can be written as e(l/2A |

Here A = R A y, the bivector representing the plane of rotation and |A| gives the magnitude of the angle through

which the rotation takes place.
2.6.3 Quaternion form

R=X y=a+ 10,03+ fr0301 + 30107

=a+ P+ Poio + fig=a+ f i

Where a=X . § and [ = fiop03+ o301 + P3010p =X/\ Y

It is the Quaternion form of a Spinor.

. . oA A
The relations between various parameters are, & = C0S 5 —
2.6.4 Euler Angle and axis form

R=e(1/2) 'a is the angle and axis form of the Spinor as & is the axis of rotation and |§| gives the

magnitude of the angle through which the given vector is rotated. This is called Euler parameterization of
rotations. The parameters angle and axis are called Euler parameters.
2.6.5 Spinor Matrix form of a rotation

We denote a rotation by ® or Q and rotation through an angle & by R, or Q. The use of Spinors to

represent a rotation gives the matrix elements directly by the formula e, =oj . e =0 .(Q{ak )

The advantages in using Spinors as a substitute for all the other forms for representing rotations are

(i) Spinors are coordinate free.

(ii) Spinors exists in every dimension, thus make it possible to perform rotations in higher dimensional spaces
also.

(iii) Spinors represent the orientation of the rotation but matrices do not.

(iv) It is easy to convert Spinors into the other forms as and when required.

2.7 Sequences of Spinors

Sequence or product of Spinors is also Spinor and hence a rotation. Spinors play an important role in the study
of the problems related to Celestial mechanics.

2.7.1 1-2-1 symmetric sequence of rotation

We consider the 1-2-1 symmetric sequence of rotations; the Spinor that represents the required rotation is given
as a sequence of three spinors about the base vectors is defined by

R = R 4QoR,, = Rs;QoR, R, QpRy »
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i . i 0 .0
Where R, = gl/2)ioy _ cos% + 0903 sm% . Q= gl/2iod Cos+ T30y 8in -

R :e(llz) i61"5:cos£+ sinﬁ
v 5 ¥ 02038IN%

The new set of axes after rotation are given by
€k =R0'k = R7LO'kR

= R¢ Qe Rl//o-k RWQ9R¢
This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as

ej =0 - &= Roy

e =Ro1 = RyQpR, 1R, QuRy
=RyQo (R;%Rw o} Ry

= R; (Q;Clee )R¢

= Ry[o1(c0s0+ o0 sin 0JR
= R; [0'1 cosé -o3sin 0]R¢

- [Ryo1R, cos- RjoR; kine

=01C0s80 -03 (cos¢+ o9035INn ¢)sin o

=01C0s0+0,sin@sing - o3Sin&cos¢g

similarly €, = R0 = RyQpR, o2R, QgR;

= oy (sin Osin )+ o5 (cosgcosy - sin gcosdsin )+ oglsin gcosy +cosgcosPsiny)

FoF

€3 =Ro3 = R¢Q9 Rl//O-3Rl//Q9R¢

= oy Sin@cosy + 0'2( -sin gcosfcosy  -cos@sin ://)+ 03(cos¢cosecosz// -sin gsin z//)
cosé (sin@siny) (sinocosy)

singsing  (cosgcosy -singcosdsiny)  (-sin gcosdcosy - cosgsiny)
-sin@cosg  (sin pcosy +cosgcosdsiny) (cosgcosdcosy - singsiny

11, An application of sequences of spinors
3.1 Tracking problem
Rotation sequences are used to track a remote object such as a spacecraft or an aero plane.

Fig 2 Tracking Problem
In the figure 3, OXYZ is the frame of reference rigidly attached to the Earth. The origin ‘O’ is a point
on Earth from which we are observing the spacecraft.
XY plane is the Tangent plane to the Earth pointing towards North and East directions respectively. Z
axis points towards the centre of the Earth (NED frame of reference). ‘A’ indicates the direction of the

spacecraft and ‘P’ is the projection of A in XY plane. & is the angle between the projection of the position
vector of the spacecraft and the X axis.
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F is the angle between the projection of the position vector of the spacecraft and the position vector of the
spacecraft. « is called the ‘Heading angle’ and g is called the ‘Elevation angle’

To locate the spacecraft we use Rﬁﬁa sequence of coordinate frame transformations where R,
rotates the XY plane through an angle & about Z axis in such a way that the X axis coincides with the
projection vector OP, and R p rotates the XZ plane through an angle £ about new y axis in such a way that

the newest ‘X’ axis coincides with the direction vector OA. The final direction of the X axis represents the
direction of the spacecraft.

R=RpRq

3.2 Spinor Matrix form of the Tracking Transformation
The new set of axes after rotation are given by

ek = Rok =Q{'3Ra0k = RﬂRaO-kRaRﬂ

_ e(l/ 2) io,a

WhereR,, = cos% + 0109 sin% . Rg = e(1/2) oo _ cosg + 0'30'18in§

This can be converted into the matrix form by calculating the elements of the matrix (ejk) given as

ejk =0j - €K =Q{gk

Let the final set of coordinate axes be {ek k= 1,2,3}.
&1 =RI1 =R gR ;01

=R 01 [cosar + 0107 8N a)

=Rp (01 COSa + o5 Sin a)

=0yC0Sa - al(cosﬂ +030¢Sin ,B)sin a
=0,(cos f+0,0,sin B)cos a + o, sina

=0,C0S oS f+0,Sina—0, cosasin S
Similarly

e, =R, = qu{aoz

= -0¢SinaCosSf+0,Cosa +a3sin Asina

e3=R03 =R sR ;073
=03C0Sp+0oqsin B
Hence the corresponding matrix for the tracking transformation is
cosa cosf3 -sinacosf sin g
sina cosa 0
-cosasinf  sinasinf cospf
3.3 Euler angles
Rotations transform one coordinate frame XYZ into another coordinate frame Xyz preserving the
angle between them. Hence it preserves the orthogonality property of the basis vectors. There is another widely
used system to represent rotations is the system of Euler angles. Euler stated that every rotation can be expressed
as a product of two or three rotations about fixed axes of a standard basis in such a way that no two successive
rotations have the same axis of rotation. This theorem is known as ‘Euler’s theorem’. Thus every rotation can be
divided further into two or three rotations about the fixed axes of the standard basis.
3.4  Theorem Every rotation can be expressed as a sequence of Euler angles.
Proof:  We shall prove this by establishing the relation between spinor sequence of Euler angles and the angles
of any arbitrary spinor sequence that represent the same rotation. As an example for an arbitrary rotation, let us
choose the symmetric 1-2-1 sequence of Euler angles obtained above. Equating the matrix representations of
both we get the Euler angles in terms of « and £ .

R5Ry =RyQpR,,
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cosé (sin @siny) (sin @ cosy)
sin@sing  (cosgcosy -singcos@siny) ( -singcosdcosy -cosgsiny
-sin@cosg  (sin gcosy +cosgcosdsiny)  (cosgcosdcosy  -sin gsiny)

cosa cosf8 -sinacosf  sin g
sina cosa 0

-cosasin g sinasinf3  cosp
C0S@ = cosa cosf
tana
sin g

sina

“tan i
These relations establish the existence of Euler angles and these relations can also be obtained using other

methods also. We shall prove this by using Spinor half angle method.
35 Spinor half angle method
a By

_ 2 U A
R,BRa=R¢Q6’Rl//:> Let p= > ,q= 2 = 5 ,S = 2,t— 5 to avoid half angles

(cosq+o-zo-3sin q) (cos p+0q09psin p): (cost+o-zo-3sint) (coss+o3alsin s) (cos r+o9pogsin r)

tang =

tany =

.".€0SQCOoS p + 0107 Sin pcos +o307SiNQCosp -opogsingsin p

=(cost + 0,0, sint COSS COST + 5,0, COSSSIN I + 0,0, SiN SCOSF + 0,0, sinrsins)
=C0StCOSSCOST + 0,0, COStCOSSSINT + 0,0 COSt, SINSCOST + 0,0, costsinrsins
+0,0,8intcosscosr —sintcosssinr + 0,0, SiNtsiNscosr + o,o; sintsinrsins
=costcosscosr —sintcosssinr + o,o0, costcosssinr + 0,0, Sintcosscosr

+ 0,0, sintsinscosr + 0,0, costsinrsins + oo, sintsinrsins + o,o, cost, sinscosr
= cos s(cost cosr —sintsinr)+o,o, coss(costsinr +sintcosr)
+0,0,sins(costsinr —sintcos r)+o,o, sins(sintsinr +costcosr)

= c0s 5 C0s(r +1)+a,0, cos ssin(r +t)+ o,0, sinscos(r —t )+ o,0, sinssin(r —t)

.. €0SCOS p + 0,0, Sin pcosq + o,0,SiN g Cos p —o,0,SiNgsin p

= 00s5C0s(r +t)+ gy, sinssin(r —t)+ o,0, cosssin(r +t)+ o0, sinscos(r —t)
Equating the coefficients of like terms we get

cosqcos p=cosscos(r+t) 3)
sinpcosq=sinssin(r—t) @)
sinqcos p=sinscos(r—t) )
—singsin p=cosssin(r+t) ©)

Squaring (3) and (6) and adding

(cos qcos p)2 +(singsin p)2 = (cosscos(r +t))2 +(cosssin(r +t))2

— 0082 qcos2 p+sin2 qsin2 p= 0s2's

- (1+cos2q) (1+cos2p) . (L—cos2q) (L—cos2q) _ (L+cos2s)

2 2 2 2 2

:%(1+ COS 2 p + C0S 2q + €0S 2q cos 2 p +1—cos 2q — oS 2q + COS 2 C0S 2]

) (1+cos2s)

2
(1+cos2s)

:%(2+2cos2qc052p): >
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—1+c0s2qcos2p =1+cos2s

= €0S2(C0S2p =C0S2S

= C0SH = COSx COS 3

Let r+t=a andr -t=Db

=a+b=2r=y and a -b=2t=¢

Dividing (6) by (3) we get tanptanq= -tan(r+t)= -tana
Dividing (4) by 5) 2P _tan(r - t)=tanb
tanq

tana+tanb
tany = tanfa+b) = — o a0
1 -tanatanb

tan p
tanq

1—(~tan ptan q)[tanp]

tanq

—tan ptanq+

_ —tanptan’g+tanp
~ (t+tan® pltang
_tan pll—tan®q)

~ [1+tan? p)tang
_sin2p _ sina

_tan2q tan g
tan _sina
v tan g
tan p—tanq
tang=tan(p—-q)=————
¢ (p q) 1+tan ptanq
—tanptanq—taﬂ
_ tanqg
1+ (~tan ptan q)(tanpj
tanqg

tan ptan®q+tan p
- (L—tan® p)tanq
_tan p(L+tan’q)

(L—tan? p)tang
_tan2p  tana

sin2q sin g
stang = —t?na
sin g

v. Discussion
There is a difference in sign of the ‘sine’ function in the conventional matrix method and the one used
by us that is the Spinor method due to the difference in the handedness of the basis. Quaternions form a left
handed coordinate system where as Spinors form a right handed coordinate system.
And also the matrix obtained for a frame rotation is different to that of vector rotation. For example

) is the matrix used to rotate a vector about o5 through an angle & where as | cos? sin¢ 0

cos@ -sin@ O .
sin @ cos® O -sin@ cosfd 0
o) o 1 0 0 1]

is the matrix used to rotate the coordinate frame about o3 through an angle & .
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V. Conclusions:
We conclude that Spinor methods can replace the conventional methods and it is better formalism as
they can be converted into any other convenient form as per the available data. When compared to the other

methods, the number of parameters in the Spinor notation R =« + £ i reduce further as  and f are not
independent of each other.
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