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Abstract: The problem of thermal instability of an infinitely extending homogeneous self-gravitating partially-

ionized gaseous plasma, which is permeated by uniform magnetic field, has been investigated in this paper in 

the presence of radiative heat-loss functions, rotation, viscosity, thermal conductivity, electrical resistivity and 

Hall current of the medium. With the help of relevant linearized perturbation equations of the problem, a 

general dispersion relation is obtained for the considered medium and discussed in the longitudinal and 

transverse direction of propagation by using normal mode analysis method. The longitudinal mode is found to 

be modified by Alfven speed, rotation, viscosity and Hall current of the medium and it is also found that the 

condition of radiative instability is independent of the magnetic field, Hall current and viscosity but for the 

transverse mode of propagation it depends on the strength of the magnetic field. The damping effect is produced 

due to collision frequency, viscosity and Hall current. The curve shows the stabilizing effects of neutral 

component, rotation and magnetic field and destabilizing effect of thermal conductivity, electrical resistivity and 
density-dependent heat-loss functions on the growth rate of instability of the system. 

 Keywords: Jeans Instability; Thermal Conductivity; Radiative Heat-Loss Function; Interstellar Medium 

(ISM); Collision-Frequency.  

 

I. Introduction 
There has been a great deal of interest in studying various collective processes in gaseous plasma, 

which are ubiquitous in space, including diffuse and dense interstellar media, star envelops, accretion disks, 

circumstellar shells, chromosphere, dark interiors and the out flow of red giant star. Thus, in to the crucial 

phenomena of the interstellar medium (ISM), many body gravitating system play an essential role. The 

gravitational instability is of the fundamental concept of modern astrophysical plasma and it is connected with 
the fragmentation of interstellar matter in regard to star formations. James Jeans [1] first studied this instability 

problem and shows that an infinite homogeneous, self-gravitating fluid is unstable for all wave number which is 

less then critical Jeans wave number. Chandrashekhar [2] has given the comprehensive account of the effect of a 

magnetic field and rotation separately and simultaneously on the gravitational instability of an infinite 

homogeneous medium and observed that the Jeans criterion remains unaffected in each case. The Jeans 

instability has been extensively investigated under varying assumption.  

Along with this it is an established fact that magnetic fields play an important role in interstellar gas 

dynamics. In the interstellar medium (ISM), a large amount of energy is injected by stars, which leads to the 

formation of shock waves; but when these shocks waves weaken, they become large amplitude hydromagnetic 

Alfven waves. Langer [3] studied the importance of magnetic field in the stability of ISM molecular clouds and 

he suggested that the magnetic fields can provide pressure support and inhibit the contraction and fragmentation 
of interstellar clouds. The magnetic field interact directly only with the ions, electrons and charged grains in the 

gas. Collision of the ions with the predominantly neutral gas in the clouds is responsible for the incident 

coupling of the magnetic field to the bulk of the gas. The degree to which the magnetic pressure is important 

depends upon the field‟s strength and the fractional abundance. In addition ion would undergo contraction in 

one dimension until the density increases to a value sufficient to cause collapse the field lines. In this 

connection, many investigators have discussed the gravitational instability of a homogeneous plasma 

considering the effect of magnetic field incorporating various parameters. {Mestel and Spitzer [4], Mestel [5], 

Spitzer [6,7]}. 

In this way, the effect of Hall current on plasma stability has been extensively examined {Ariel [8], 

Bhowmick [9], Ali and Bhatia [10]} leading to the conclusion that the Hall currents are destabilizing in nature. 

Many researcher, like Kumar [11], Chhajlani and Vaghela [12] centered their studies on thermally conducting 

plasma under varying assumptions. Vyas and Chhajlani [13], Sharma and Chand [14], Khan and Bhatia [15] 
have investigated the influence of permeability of porous medium on plasma instability in view of the 

importance of such studied in geology and heavy oil recovery. Bhatia and Chhonkar [16] have studied the 

combined influence of Coriolis force and viscosity on plasma stability in the presence of Hall currents and 

concluded that viscosity has a stabilizing influence on the system. In all such investigations, carried out 
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separately under varying assumption, it was found that the condition of instability has been determined by Jeans 

criterion with some modifications. 

Recently, Lima et al. [17] have studied the problem of Jeans gravitational instability and non-extensive 

kinetic theory. Khan and Shaikh [18] have discussed the instability of thermally conducting self-gravitating 

system. The role of magnetic field in contraction and fragmentation of interstellar clouds has been studied by 

Pensia et al. [19]. Thus we find that the problem of Jeans gravitational instability is the important phenomena to 
understand gravitational collapse of the Protostar. Stiele et al. [20] have discussed clump formation due to 

thermal instability in weakly ionized plasma. Inutsuka et al. [21] have investigated the propagation of shock 

waves into a warm neutral medium taking into account radiative terms. Menou et al. [22] have shown the 

importance of radiative effects in the sun‟s upper radiative zone. Kim and Narayan [23] have discussed the 

thermal instability in clusters of galaxies with conduction taking on the role of the effect of radiative heat-loss 

function. Shadmeri and Dib [24] have discussed the thermal instability in a magnetized partially ionized plasma 

with charged dust particles and radiative cooling functions. Fukue and Kamaya [25] have explored the problem 

of thermal instability considering the effects of ion-neutral friction, radiative cooling functions and magnetic 

field. Shaikh et al. [26, 27] have explored the problem of gravitational instability of thermally conducting 

partially ionized plasma in a variable magnetic field, considering the effects of Hall currents, finite conductivity, 

ion viscosity, thermal conductivity and collision with neutrals.  

From the above studies, we find that thermal conductivity, interaction between two components of 
partially ionized plasma and radiative heat-loss functions are the important parameters to discuss the problem of 

gravitational instability. Thus in present problem, we investigate the effects of radiative heat-loss functions, 

rotation, viscosity, Hall current, thermal conductivity and electrical resistivity on the Jeans instability of partially 

ionized plasma 

 

II. Equations of the Problem 

Let us consider of a homogeneous composite partially ionized plasma including Hall current, radiative 

heat-loss functions, viscosity, finite electrical resistivity and thermal conductivity, rotation under the influence 

of uniform magnetic field 𝐻       (0, 0, H). We assume that the two components of the partially ionized plasma (the 
ionized fluid and the neutral gas) behave like a continuum fluid and their state velocities are equal etc. are 

considered, have the following form.  
𝑑v   

𝑑𝑡
− 2 v  × Ω    = −

𝛻   𝑝

𝜌
+ 𝛻  𝜙 +

1

4𝜋𝜌
 ∇   × 𝐻    × 𝐻   +

𝜌𝑑

𝜌
𝜈𝑐 v  𝑑 − v   +  𝜈∇2v  .       (1) 

𝑑v   𝑑

𝑑𝑡
= −𝜈𝑐(vd     − v  ).                                                                                (2) 

𝑑𝜌

𝑑𝑡
= −𝜌𝛻  v  .                                                                                    (3) 

∇2𝜙 = −4𝜋𝐺𝜌.                                                                                  (4) 
1

(𝛾−1)

𝑑𝑝

𝑑𝑡
−

𝛾

(𝛾−1)

𝑝

𝜌

𝑑𝜌

𝑑𝑡
+ 𝜌ℒ − ∇   .  𝜆∇   𝑇 = 0. (5) 

𝑝 −
𝑅

𝜇
𝜌𝑇 = 0.               (6) 

𝑑𝐻   

𝑑𝑡
= ∇   ×  v  × 𝐻      + η∇2𝐻   − 

𝑐

4𝜋𝑁𝑒
 ∇   ×   ∇   × ℎ   × 𝐻     .                                     (7) 

∇   .𝐻   = 0.                                                                                                 (8) 

where         (x, 0, z), vd, p, γ, 𝜙, ℎ     (ℎ𝑥,ℎ𝑦,ℎ𝑧), G, λ, R, c, N, 𝜌, 𝜌𝑑  T, 𝜂, 𝜈,  e, and v  (vx , vy , vz) denote 

the rotational frequency, neutral gas velocity, pressure, ratio of  specific heats, gravitational potential, magnetic 

field, gravitational constant, coefficient of thermal conductivity, gas constant, velocity of light, number density, 

density of ionized component, density of neutral components  𝜌 ≫ 𝜌𝑑 , temperature, finite electrical resistivity, 

kinematic viscosity, charge of electron, and the gas velocity, respectively. Operator 𝑑/𝑑𝑡 is the substantial 
derivative given by  

𝑑

𝑑𝑡
 =  

𝜕

𝜕𝑡
+  v  . 𝛻   .         (I) 

 

III. Linearized Perturbation Equations 

 The space and time dependent physical quantities v  , p, 𝜌, 𝑇, 𝐻    and  𝜙 can be written as the sum of the 
equilibrium and perturbed part 

 𝜌 = 𝜌0 + 𝛿𝜌,      𝑝 = 𝑝0 + 𝛿𝑝,      𝐻   = 𝐻   0 + 𝛿ℎ,     𝑇 = 𝑇0 + 𝛿T,     𝜙 = 𝜙0 + 𝛿𝜙,    v   = v  0+𝛿 v  , (with v0 = 0),     

ℒ = ℒ0 + 𝛿ℒ, ( with ℒ0 = 0)                     (II) 

 The term with subscript „0‟ denotes the equilibrium part of the physical quantities. Using equation (I)-

(II) in equation (1)-(8), we can write the linearized perturbation equation of finite electrical conducting, rotating, 

viscous, partially ionized plasma with radiative effect, magnetic field and thermal conductivity, removing „0‟ 
from subscripts in the equilibrium quantities for simplicity. Thus we obtain 
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𝜕v   

𝜕𝑡
− 2 v  × Ω = −𝛻  

𝛿𝑝

𝜌
+ 𝛻  𝛿𝜙+

1

4𝜋𝜌
 ∇   × ℎ   × 𝐻   +

𝜌𝑑

𝜌
𝜈𝑐 v  𝑑 − v   +  𝜈∇2v  .        (9) 

𝜕v   𝑑

𝜕𝑡
= −𝜈𝑐(vd     − v  ).                                                                                      (10) 

𝜕𝛿𝜌

𝜕𝑡
= −𝜌𝛻  v  .                                                                                         (11) 

∇2𝛿𝜙 = −4𝜋𝐺𝛿𝜌.                                                                                       (12) 
1

(𝛾−1)

𝜕𝛿𝜌

𝜕𝑡
−

𝛾

(𝛾−1)

𝑝

𝜌

𝜕𝛿𝜌

𝜕𝑡
+ 𝜌 ℒρδρ + ℒTδT − λ∇2δT = 0.                           (13) 

𝛿𝑝

𝑝
=

𝛿𝑇

𝑇
+

𝛿𝜌

𝜌
.                                                                                              (14) 

𝜕ℎ   

𝜕𝑡
= ∇   ×  v  × 𝐻      + η∇2ℎ  − 

𝑐

4𝜋𝑁𝑒
 ∇   ×   ∇   × ℎ   × 𝐻     .                                         (15) 

∇   . ℎ  = 0.                                                                                                        (16) 

 Here ℒρ,T  are the partial derivatives of the density dependent  𝜕ℒ/𝜕𝜌 𝑇 and temperature dependent 

 𝜕ℒ/𝜕𝑇 𝜌  heat-loss functions respectively.  

 

IV. Dispersion Relation 
 In order to study the stability of the system we assume that all the perturbed quantities vary as 

exp 𝑖 𝑘𝑥𝑥 + 𝑘𝑧𝑧 + 𝜔𝑡  .                                               

where 𝑘𝑥(𝑧) represents the wave number in the perpendicular x, and parallel z direction to the magnetic 

field such that 𝑘𝑥
2 + 𝑘𝑧

2 = 𝑘2. The harmonic frequency of the perturbation is denoted by 𝜔. Combining equation 
(13) and (14), we obtain the expression for δp as. 

𝛿𝑝 𝜍 + 𝛽 =  𝛼 + 𝜍𝐶2 𝛿𝜌.                               (17) 

where σ = iω, 𝐶 =   
𝛾𝑝

𝜌
 

1/2

 is the adiabatic velocity of sound in the medium. The parameter αand  

are given by 

𝛼 =  𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 .   

𝛽 =  𝛾 − 1  
ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 .                                           (18) 

Using equation (10)–(18) in equation (9), we obtain the following algebraic equations for the amplitude 

components 

 𝑅1 +
𝑘2𝑉2𝑑

𝐴
 v𝑥 −  

𝑘𝑧
2𝑄𝑉2𝑘2

𝐴
+ 2Ωz v𝑦 +

𝑖𝑘𝑥

𝑘2 ΩT
2 s = 0.                          (19) 

 
𝑘𝑧

2𝑄𝑉2𝑘2

𝐴
+ 2Ωz v𝑥 +  𝑅1 +  

𝑘𝑧
2𝑉2𝑑

𝐴
 v𝑦 − 2Ωx v𝑧 = 0.                                (20) 

2Ωx v𝑦 + R1v𝑧 +
𝑖𝑘𝑧

𝑘2 ΩT
2 s = 0.                                                    (21) 

Taking divergence of equation (9) with addition of equation (10)–(18), we obtain 

 
𝑖𝑘𝑥𝑘

2𝑉2𝑑

𝐴
 v𝑥 −  𝑖𝑘𝑥

𝑘𝑧
2𝑄𝑉2𝑘2

𝐴
+ 2𝑖𝑘𝑥Ωz − 2𝑖𝑘𝑧Ωx vy −  𝜍𝑅1 + ΩT

2 𝑠 = 0.    (22) 

where  𝑠 =
𝛿𝜌

𝜌
 is the condensation of the medium, 𝑉 =

𝐻

 4𝜋𝜌  1/2 is the Alfven velocity, C2 = γC′2 where 

C and C′ are the adiabatic and isothermal velocities of sound. Also we have assumed the following substitutions  

𝑑 = 𝜍 + Ω𝑚 , Ω𝑚 = 𝜂𝑘2,  Ωv = 𝜈𝑘2, 𝑅1 = 𝜍 +
𝜍𝐵𝜈𝑐

𝜍+𝜈𝑐
+ Ωv , ΩI

2 = 𝑘2𝛼 − 4𝜋𝐺𝜌𝛽, 

 Ω𝑗
2 = 𝑘2𝐶2 − 4𝜋𝐺𝜌, Ω𝑇

2 =
𝜍Ω𝑗

2+Ω𝐼
2

𝜍+𝛽
, 𝑄1 =

𝑘𝑧
2𝑄𝑉2𝑘2

𝐴
, 𝑄 =

𝑐𝐻

4𝜋𝑁𝑒
,  𝐴 = 𝑑2 + 𝑘𝑧

2𝑄2𝑘2, 

Equation (19)-(22) can be written as  

[X] [Y] = 0.        (23) 

where [X] is the fourth order square matrix and [Y] is a single column matrix whose elements are vx ,  vy ,

vz  and 𝑠. For a non- trivial solution of the equation (23) the determinant of the matrix [X] should vanish, leading 

to the general dispersion relation. 

 −   𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝑅1 +  

𝑘𝑧
2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 𝑅1 − 4  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 𝛺𝑥
2 −  𝑅1 𝜍𝑅1 +

ΩT2𝑘𝑧2𝑄𝑉2𝑘2𝐴+2Ω𝑧2+𝑘𝑥2𝛺𝑇2𝑘24𝑅1𝛺𝑧2+𝑑𝑅1𝑘2𝑉2𝐴𝑅1+ 
𝑘𝑧2𝑉2𝑑𝐴+4𝑑𝑘2𝑉2Ω𝑥2𝐴+𝑅1𝑘𝑧4𝑄2𝑉4𝑘4𝐴2+4𝑘𝑧2𝑄𝑉2𝑘2Ω𝑧𝑅1𝐴 +4𝑘𝑧2 𝑘2𝑅1+𝑘2𝑉2𝑑𝐴𝛺𝑥2 
𝛺𝑇2−2Ω𝑥𝑘𝑥𝑘𝑧Ω𝑇22Ω𝑧𝑘2𝑅1+𝑘2𝑉2𝑑𝐴+𝑉2𝑘𝑧2𝑄𝐴𝑅1+𝑘2𝑉2𝑑𝐴−𝑑𝑘𝑧2𝑄𝑉4𝑘2𝐴2−2Ω𝑧𝑑𝑉2𝐴+𝑉2𝑘
𝑧2𝑅1𝑄𝐴+2𝑅1Ω𝑧𝑘2 = 0.                    (24) 

The dispersion relation (24) shows a general dispersion relation for wave propagation in an 

homogeneous self-gravitating partially ionized plasma incorporating the effect of rotation, thermal conductivity, 
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radiative heat-loss function, Hall current, electrical resistivity and viscosity of the medium. We find that in this 

dispersion relation the terms due to the Hall current have entered through the factor Q. Now, we will reduce the 

dispersion relation (24) in two different modes of propagation, parallel and perpendicular to the magnetic field 

for finding the effect of considered parameter, separately.  

The above dispersion relation is the modified form of the dispersion relation obtained by Dangarh et al. 

[28] due the consideration of Hall current, rotation, viscosity and electrical resistivity, excluding electron inertia. 
Also ignoring the effect of rotation, Hall current and neutral particles the above dispersion relation reduces to 

Kaothekar and Chhajlani [29] excluding permeability and FLR correction. Again equation (24) gives the same 

result as Bora and Talwar [30] by ignoring rotation and viscosity and adding the effect of electron inertia in that 

case. 

 

V. Analysis of Dispersion Relation 
 Now we will discuss the dispersion relation (24) for the following two modes of propagation, parallel 

and perpendicular to the magnetic field.  

 

5.1.  Longitudinal Mode of Propagation  

For this case we assume all the perturbations longitudinal to the direction of the magnetic field i.e. (kz = 

k, kx = 0). This is the dispersion relation reduces in the simple form to give. 

−  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝑅1 +  

𝑘2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 𝑅1 − 4  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 𝛺𝑥
2 −  𝑅1 𝜍𝑅1 +

ΩT2𝑄𝑉2𝑘4𝐴+2Ω𝑧2+4𝑅1+𝑘2𝑉2𝑑𝐴Ω𝑥2Ω𝑇2 =0.          (25) 

Equation (25) gives the general dispersion relation for an infinite homogeneous, uniformly magnetized 

self-gravitating viscous partially ionized plasma having Hall current, finite electrical resistivity and thermal 

conductivity incorporated rotation, radiative heat-loss function, when the disturbances are propagating parallel 

to the magnetic field. Again for simplicity, the dispersion relation (25) is discussed for axis of rotation is along 

and perpendicular to the magnetic field separately. 

 

5.1.1. Axis of rotation along magnetic field 

 When the axis of rotation is along the magnetic field, we put Ω𝑥 = 0 and Ω𝑧 = Ω, the dispersion 
relation (25) reduces to 

−𝑅1 𝜍𝑅1 + ΩT
2   𝑅1 +

𝑘2𝑉2𝑑

𝐴
  𝑅1 +  

𝑘2𝑉2𝑑

𝐴
 + 4Ω

2 +
𝑘4𝑄2𝑉4𝑘4

𝐴2 + 4Ω
𝑄𝑉2𝑘4

𝐴
 = 0.   (26)   

This is the reduced dispersion relation for a wave propagating in longitudinal direction when axis of 

rotation is along the magnetic field. We find that the dispersion relation (26) is modified due to the presence of 

neutral particles, thermal conductivity, radiative heat-loss functions, Hall current, viscosity of medium and 
electrical resistivity. This dispersion relation (26) has three independent factors; each represents the modes of 

propagation incorporating different parameters. The first factor of equation (26) equal to zero and putting the 

value of R1 we get.  

   𝜍2 + 𝜍𝐹 + Ωv𝜈𝑐 = 0.        (27) 

where 𝐹 =  𝜈𝑐 1 + 𝐵 + Ωv . Equation (27) cannot have a real positive root hence it satisfies the 

necessary and sufficient condition of stability. Thus equations (27) represents stable damped mode due to 

viscosity of medium, modified by the effect of collision frequency. This equation is same as Chhajlani and 

Parihar [31] and Kaothekar and Chhajlani [29].  It is evident from the equation (27) that the condition of 

stability of the fluid is independent of the magnetic field, electrical resistivity, thermal conductivity, self-

gravitation, radiative heat-loss function and Hall current. The second factor of equation (26) on simplifying, by 

putting the value of  ΩT
2
 , and  𝑅1gives. 

𝜍4 + 𝜍3 𝐹 + 𝛽 + 𝜍2 𝜈𝑐Ωv + Ωj
2 + 𝐹𝛽 + 𝜍 𝜈𝑐 Ωj

2 + 𝛽Ωv + ΩI
2 + 𝜈𝑐ΩI

2 = 0.   (28) 

   This dispersion relation for self-gravitating fluid incorporated effect of neutral particles, viscosity, 
thermal conductivity, Hall current and radiative heat-loss function. It is evident from equation (28) that the 

condition of instability is independent of magnetic field, rotation and electrical effects such as Hall current and 

electrical resistivity. The dispersion relation (28) is a fourth degree equation which may be reduced to particular 

cases so that the effect of each parameter is analyzed separately. If we neglect the effect of viscosity 𝜈 = 0 we 

get, 

𝜍4 + 𝜍3 𝜈𝑐 1 + 𝐵 + 𝛽 + 𝜍2 𝜈𝑐(1 + B)𝛽 + Ωj
2 + 𝜍 𝜈𝑐Ωj

2 + ΩI
2 + 𝜈𝑐ΩI

2 = 0.   (29) 

Equation (29) admits at least one positive root corresponding to the instability of the system. The 

constant term of this dispersion relation, thus the conditions of instability for this case is given as  

𝑘2 𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 − 4𝜋𝐺𝜌 𝛾 − 1  

ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.   (30) 
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 The above inequality can be solved to yield the following critical wave number  

𝑘𝑗1  =  
1

2
 𝑎1 ±  𝑎1

2 + 𝑏1 
1/2 .      (31) 

where 𝑎1 =  
4𝜋𝐺𝜌

𝐶 ′2 +
𝜌2ℒ𝜌

𝜆𝑇
−

𝜌ℒ𝑇

𝜆
 , 𝑏1 =  

16𝜋𝐺𝜌2ℒ𝑇

𝜆𝐶 ′2
 . and 𝐶 ′ =  𝑝/𝜌 is the isothermal velocity of the sound. It is 

evident from equation (31) the medium represented by equation (29) is unstable for all wave number 𝑘 <  𝑘𝑗1. 

It may be noted here that the critical wave number involves derivatives of temperature dependent and density 

dependent heat-loss function and coefficient of thermal conductivity of thermally conducting medium.  

 This condition of instability (30) is same as the condition of radiative instability earlier obtained by 
Bora and Talwar [30] and also Kaothekar and Chhajlani [29]. Again if we reduce equation (29) for fully ionized 

plasma  𝜈𝑐 = 0  as 

𝜍3 + 𝜍2𝛽 + 𝜍Ωj
2 + ΩI

2 = 0.      (32) 

From equation (32), it is clear that the system will leads to the instability, when  

𝑘2 𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 − 4𝜋𝐺𝜌 𝛾 − 1  

ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.        (33) 

This condition of instability (33) is same as the condition of instability (30) for a partially ionized 

system. Now on comparing equation (30) and (33) we notice that in both cases, for partially ionized plasma and 

for fully ionized plasma we get the same condition of instability, it means that the condition of radiative 
instability is independent of effect of collision frequency. Again the comparison of equation (29) and (32) 

reveals that the constant term of equation (32) is independent of the effect of collision frequency while the effect 

of collision frequency is multiplied with constant term of equation (29). It means that the presence of neutral 

particle does not contribute in the condition of instability but modified dispersion relation as well as the growth 

rate of instability for partially ionized medium. 
 

For non-radiating but thermally conducting, viscous and self-gravitating fluid having neutral particles, 

the dispersion relation (28) reduces to 

𝜍4 + 𝜍3  𝐹 +
𝜆𝛾 𝑘2

𝜌𝑐𝑝
 + 𝜍2  Ωv𝜈𝑐 + 𝐹

𝜆𝛾 𝑘2

𝜌𝑐𝑝
+ Ω𝑗1

2  + 𝜍  𝜈𝑐  Ωj1
2 + Ωv

𝜆𝛾 𝑘2

𝜌𝑐𝑝
 +

𝜆𝛾 𝑘2

𝜌𝑐𝑝
Ω𝑗1

2  + 𝜈𝑐Ω𝑗1
2 𝜆𝛾 𝑘2

𝜌𝑐𝑝
= 0. (34)  

where 𝐶 ′ =  
𝑝

𝜌
 

1/2

is the isothermal velocity of the sound. 

Ω𝑗1
2 = 𝐶′2𝑘2 − 4𝜋𝐺𝜌.           (35) 

It is clear from the constant term of equation (34) that the system leads to instability if Ωj1
2 < 0, which 

gives 

𝐶′2𝑘2 − 4𝜋𝐺𝜌 < 0.          or  

 𝑘𝑗2 =  
4𝜋𝐺𝜌

𝐶 ′2
 

1/2

.                                                               (36) 

 where 𝑘𝑗2is the modified Jeans wave number for thermally conducting system. Again if the system is 

thermally non-conducting, non-radiating but self gravitating i.e. α = β = 𝜈𝑐= 0 then the dispersion relation (28) 

reduces to 

𝜍2 + 𝜍Ωv + Ωj
2 = 0.                                                                   (37) 

It is clear from equation (37) that when Ωj
2 < 0, the product of the roots of equation (37) must, 

therefore, be negative. This implies that at least one root of 𝜍 is positive. Hence, the system is unstable. Thus, 

for the cases of equation (37) the condition of instability is 

Ω𝑗
2 =  𝐶2𝑘2 − 4𝜋𝐺𝜌 < 0. 

𝑘 <  𝑘𝑗 =  
4𝜋𝐺𝜌

𝐶2
 

1/2

.                                                        (38) 

where kj is the Jeans wave number. Equation (38) is original Jeans expression for instability.  Now if 

ΩI
2 > 0 and Ωj

2 > 0, then all the coefficient of the equation (28) are positive, which is a necessary condition for 

the stability of the system. To obtain the sufficient condition, the principal diagonal minors of the Hurwitz must 

be positive. We calculate the minors and get  

∆1=   𝐹 + 𝛽 > 0.   as   𝛾 > 1    

∆2=   𝐹Ωv𝜈𝑐 + β𝜈𝑐Ωj
2 + Ωv Ωj

2 +  𝛽Ωj
2 + 𝐹𝛽2 + 𝐹2β−ΩI

2  >  0.  

∆3  =  𝐹𝛽Ωv
2𝜈𝑐

2 + 𝜈𝑐
2Ωv𝐹Ωj

2 + 𝐹Ωv𝜈𝑐ΩI
2 + 𝐹2𝜈𝑐Ωv𝛽

2 + 𝐹2𝜈𝑐𝛽Ωj
2 + 𝐹2ΩI

2
β + 𝐹𝜈𝑐Ωv𝛽

3 +

𝜈𝑐𝛽2Ωj2𝐹+𝜈𝑐Ωv𝛽2Ωj2+𝜈𝑐𝛽Ωj4+Ωj2ΩI2𝛽+𝐵𝛽𝜈𝑐2ΩvΩj2+𝛽Ωj2𝜈𝑐Ωv2+Ωj2ΩI2𝐵𝜈𝑐+Ωj2ΩI2Ωv
+𝜈𝑐𝐵Ωj4+𝜈𝑐ΩvΩj4+𝜈𝑐𝐵𝛽2ΩI2+Ωv𝛽2ΩI2−ΩI2𝜈𝑐Ωj2+ΩI2+Ωv𝜈𝑐𝛽+𝑟12𝜈𝑐+2𝑟1𝜈𝑐𝛽>0.  

∆4  =  𝜈𝑐ΩI
2∆3> 0.  

 These all Δ‟s are positive, thereby, satisfying the Routh-Hurwitz criterion, Hence, the system expressed 

by equation (28) is stable if Ωj
2 > 0  and  ΩI

2 > 0. Now equating zero the third factor of equation (26) and after 

solving we obtain dispersion relation as. 
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 𝜍8 +  𝜍7𝐸1 + 𝜍6𝐸2 + 𝜍5𝐸3  + 𝜍4𝐸4 + 𝜍3𝐸5 + 𝜍2𝐸6 +  𝜍 𝐸7 + 𝐸8 = 0.                (39) 

𝐸1 =  4Ω𝑚 + 2𝐹 .  

𝐸2 =  Ω𝑚  6Ω𝑚 + 8𝐹 + 2𝑄2𝑘4 + 2Ωv𝜈𝑐 + 𝐹2 + 2𝑉2𝑘2 + 4Ω
2 .  

𝐸3 =  Ω𝑚  12𝐹Ω𝑚 + 4Ω𝑚
2 + 4𝑄2𝑘4 + 4𝐹2 + 6𝑉2𝑘2 + 16Ω

2 + 8Ωv𝜈𝑐 + 𝜈𝑐 2Ωv𝐹 + 8Ω
2 + 2𝑉2𝑘2 +

4𝐹𝑄2𝑘4+2𝐹𝑉2𝑘2.  

𝐸4 =  Ω𝑚  8𝐹Ω𝑚
2 + Ω𝑚

3 + 2𝑄2𝑘4Ω𝑚 + 8𝐹𝑄2𝑘4 + 6Ω𝑚𝐹
2 + 6Ω𝑚𝑉

2𝑘2 + 6𝐹𝑉2𝑘2 + 24Ω𝑚Ω
2 +

Ω𝑚𝜈𝑐12Ω𝑚Ωv+8Ωv𝐹+32Ω2+6𝑉2𝑘2+𝜈𝑐2𝐹𝑉2𝑘2+4𝑄2𝑘4Ωv+Ωv2𝜈𝑐+2Ωv𝑉2𝑘2+4𝜈𝑐Ω2+𝑄2𝑘4𝑄2𝑘4+2
𝐹2+2𝑉2𝑘2+8Ω2+𝑉4𝑘4+4Ω𝑉2𝑘4𝑄.  

𝐸5 =  Ω𝑚  2𝐹Ω𝑚
3 + 4𝐹𝑄2𝑘4Ω𝑚 + 4𝐹2𝑄2𝑘4 + 4Ω𝑚

2 𝐹2 + 7𝐹Ω𝑚𝑉
2𝑘2 + 2Ω𝑚

2 𝑉2𝑘2 + 2𝑄2𝑘4𝑉2𝑘2 + 2𝑉4𝑘4 +

16Ω𝑚2Ω2+16Ω2𝑄2𝑘4+8Ω𝑄𝑉2𝑘4+Ω𝑚𝜈𝑐8ΩvΩ𝑚2+6Ω𝑚𝑉2𝑘2+8Ωv𝑄2𝑘4+12𝐹Ω𝑚Ωv+4Ωv2𝜈𝑐+6𝐹𝑉2
𝑘2+6Ωv𝑉2𝑘2+16𝜈𝑐Ω2+48Ω𝑚Ω2+𝜈𝑐4𝐹𝑄2𝑘4Ωv+2𝑉2𝑘2Ωv𝜈𝑐+2𝑄2𝑘4𝑉2𝑘2+2𝑉4𝑘4+16𝑄2𝑘4Ω2+8Ω𝑄
𝑉2𝑘4+𝑄2𝑘42𝐹𝑄2𝑘4+2𝐹𝑉2𝑘2.  

𝐸6 =  Ω𝑚𝜈𝑐 2ΩvΩ
𝑚
3 + 4Ωv𝑄

2𝑘4Ω𝑚 + 𝑄2𝑘4𝑉2𝑘2 + 8𝐹Ωv𝜈𝑐Ω𝑚 + 6𝐹Ω𝑚𝑉
2𝑘2 + 8𝐹𝑄2𝑘4Ωv + 6Ωv

2𝜈𝑐Ω𝑚 +

6𝑉2𝑘2𝜈𝑐Ωv+2Ω𝑚2𝑉2𝑘2+5ΩvΩ𝑚𝑉2𝑘2+4𝑉4𝑘4+𝑉2𝑘2𝑄2𝑘4+32Ω𝑚2Ω2+24Ω𝑚𝜈𝑐Ω2+32𝑄2𝑘4Ω2+16
Ω𝑄𝑉2𝑘4+Ω𝑚𝐹2Ω𝑚3+2𝐹2𝑄2𝑘4Ω𝑚+2𝐹Ω𝑚2𝑉2𝑘2+2𝐹𝑄2𝑘4𝑉2𝑘2+2Ω𝑚𝑉4𝑘4+4Ω𝑚2Ω2+8Ω2𝑄2𝑘4Ω𝑚
+4𝑄𝑉2𝑘4Ω𝑚Ω+𝜈𝑐2𝑄2𝑘4Ωv2𝜈𝑐+2Ωv𝑄2𝑘4𝑉2𝑘2+2𝐹𝑄2𝑘4𝑉2𝑘2+𝑉4𝑘4𝜈𝑐+2Ωv𝑄4𝑘8+8Ω2𝑄2𝑘4𝜈𝑐+4Ω

𝑄𝑉2𝑘4𝜈𝑐+𝑄2𝑘4𝐹2𝑄2𝑘4+𝑉4𝑘4+4Ω𝑄𝑉2𝑘4+4Ω2𝑄2𝑘4.  

𝐸7 =  Ω𝑚𝜈𝑐 2𝐹Ωv Ω𝑚
3 + 4𝐹Ωv𝑄

2𝑘4Ω𝑚 + 2𝐹Ω𝑚
2 𝑉2𝑘2 + 2𝐹𝑄2𝑘4𝑉2𝑘2 + 4Ω𝑚

2
Ωv

2𝜈𝑐 + 6𝑉2𝑘2Ω𝑚𝜈𝑐Ωv +

4𝑄2𝑘4Ωv2𝜈𝑐+2Ω𝑚2Ωv𝑉2𝑘2+2𝑉2𝑘2𝑄2𝑘4Ωv+3Ω𝑚𝑉4𝑘4+2𝑉4𝑘4𝜈𝑐+16Ω𝑚2Ω2𝜈𝑐+16𝑄2𝑘4Ω2𝜈𝑐+8Ω𝑚
3Ω2+16𝑄2𝑘4Ω2Ω𝑚+8𝜈𝑐Ωv2𝑄𝑉2𝑘4+8ΩΩ𝑚𝑄𝑉2𝑘4+𝜈𝑐2𝐹𝑄4𝑘8Ωv+2Ωv𝜈𝑐𝑄2𝑘4𝑉2𝑘2+8Ω2𝑄4𝑘8+2𝑄2
𝑘8𝑉4+8Ω𝑄𝑉2𝑘4𝑄2𝑘4.  

𝐸8 =  Ω𝑚𝜈𝑐 𝜈𝑐Ωv
2
Ω𝑚

3 + 2𝑄2𝑘4Ω𝑚Ωv
2𝜈𝑐 + Ω𝑚

2 𝑉2𝑘2𝜈𝑐Ωv + 2𝜈𝑐Ωv𝑄
2𝑘4𝑉2𝑘2 + Ω𝑚

2 𝜈𝑐Ωv𝑉
2𝑘2 + 𝑉4𝑘4Ω𝑚𝜈𝑐 +

4Ω𝑚3Ω2𝜈𝑐+4Ω𝑄𝑘4𝑉2Ω𝑚𝜈𝑐+8Ω𝑚𝑄2𝑘4Ω2𝜈𝑐+𝜈𝑐𝜈𝑐Ωv2𝑄4𝑘8+4Ω2𝑄4𝑘8𝜈𝑐+4Ω𝑄𝑉2𝑘4𝑄2𝑘4𝜈𝑐+𝑄2𝑘8𝑉
4𝜈𝑐.  

The dispersion relation (39) consisted with the terms showing the effect of magnetic field, viscosity, 

finite electrical resistivity, rotation, Hall current and the effect of the neutral particles, but it does not involve 

terms of thermal conductivity, radiative heat-loss function and self-gravitation. Since the coefficients of the 

equation (39) are all positive including the constant term, therefore, this equation cannot have a positive root, 

which means that the system represented by equation (39) is stable. Thus, this equation gives Alfven modes 

modified by the dissipative effects of viscosity, finite electrical resistivity, Hall current and neutral particles and 

rotation. 

In the absence of neutral particle, Hall current, finite electrical resistivity i.e.  𝜈𝑐 = 𝑄 = Ωm = 0 , thus, 
the dispersion relation reduces to  

𝜍4 + 𝜍32Ωv + 𝜍2 Ωv
2 + 2𝑉2𝑘2 + 4Ω

2 + 𝜍 2Ωv𝑉
2𝑘2 + 𝑉4𝑘4 = 0.    (40) 

The necessary condition for stability of the system is that the equation (40) should have all coefficients 

positive, which is satisfied. The sufficient condition is that the Routh-Hurwitz criterion must be satisfied, 

according to which all the principal diagonal minors of the Hurwitz matrix must be positive for a stable system. 

For the fourth-degree equation (40) Hurwitz matrixes are as shown below. 

∆1= 2Ωv > 0.    

∆2=  2Ωv Ωv
2 + 2𝑉2𝑘2 + 4Ω

2  >  0.  

∆3  =   4Ωv
2𝑉2𝑘2 Ωv

2 + 4Ω
2 > 0.  

∆4  =  𝑉4𝑘4∆3> 0.  

 We find that all ∆‟s are positive, which shows that a magnetized viscous plasma with finite electrical 

conductivity is stable. Thus, the equation (40) represents a stable Alfven mode modified by the dissipative effect 

of viscosity, and finite electrical resistivity. It may be remarked that for non-rotating, the Hurwitz‟s criterion is 
also satisfied which means that non-rotating is also stable system. 

 

5.1.2. Axis of rotation perpendicular to the magnetic field 

In the case of a rotation axis perpendicular to the magnetic field we put x = , and z = 0 in the 
dispersion relation(25) and this gives. 

−𝑅1   𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝑅1 + 

𝑘2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 +  𝜍𝑅1 + ΩT
2  

𝑉4𝑘4  𝑘4Q2

A2
 + 4𝜍Ω

2  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  = 0.       (41) 

The above equation represents the longitudinal wave propagation through viscous, magnetized partially 

ionized Hall Plasma having the effect of rotation, electrical resistivity, radiation with self-gravitation, when the 
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axis of rotation is perpendicular to the magnetic field.  This dispersion relation is the product of two independent 

factors. These factors show the mode of propagations incorporating different parameters as discussed below. 

The first factors of equation (41) is obtained  

𝜍2  + 𝜍𝐹 + Ωv𝜈𝑐 = 0.        (42) 
We have been already discussed in equation (27). The second factor of (41) is equal to zero,  

  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  𝑅1 +  

𝑘2𝑉2𝑑

𝐴
  𝜍𝑅1 + ΩT

2 +  𝜍𝑅1 + ΩT
2  

𝑉4𝑘4 𝑘4Q2

A2
 + 4𝜍Ω

2  𝑅1 +
𝑘2𝑉2𝑑

𝐴
  = 0.  (43) 

On substituting the values of A, d, ΩT
2

 and 𝑅1gives, the following twelfth order polynomial equation 

𝜍12 + 𝜍11𝐶1 + 𝜍10𝐶2 + 𝜍9𝐶3 + 𝜍8𝐶4 + 𝜍7𝐶5 + 𝜍6𝐶6 + 𝜍5𝐶7 + 𝜍4𝐶8 + 𝜍3𝐶9 + 𝜍2𝐶10 + 𝜍𝐶11 + 𝐶12 = 0.  (44) 

The coefficient of dispersion relation is very lengthy its constant term of the last coefficients gives the 

condition of instability.  

Ω𝐼
2 𝜈𝑐

3Ωv Ω
𝑚
 ΩvΩ𝑚

3 + 2Ωv Ω
𝑚
𝑄2𝑘4 + 2𝑉2𝑘2Ω𝑚

2 + 2𝑉2𝑘2𝑄2𝑘4 + 𝜈𝑐
3 𝑄4𝑘8Ωv

2 +

𝑉4𝑘4Ω𝑚2+𝑉4𝑘8𝑄2=0.  

Equation (44) represents the general dispersion relation for an infinite homogeneous, thermally 

conducting, self-gravitating, viscous uniformly magnetized partially ionized plasma, incorporating Hall current, 

and radiative heat-loss function, when the disturbances are propagating along the direction of magnetic field and 

the axis of rotation is perpendicular to the direction of magnetic field. The condition of instability is obtained 

from constant term of equation (44) and gives as 

𝑘2 𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 − 4𝜋𝐺𝜌 𝛾 − 1  

ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.   (45) 

The above condition of instability is identical to the condition (30) we find that the condition of 

instability for this mode of propagations in both the cases of rotation is the same and there is no effect of the 

rotation on this condition of instability. Also we notice that the condition of instability for longitudinal mode of 

propagation is same and independent of Hall current, electrical resistivity, magnetic field and the effect of 

neutral-ion collision. Hence we conclude that for longitudinal direction of propagation the radiative instability 

criterion does not depend on Hall current, electrical resistivity and magnetic field, either axis of rotation taking 

along the magnetic field or perpendicular to magnetic field. 
 

5.2.  Transverse Mode of Propagation  

For this case we assume all the perturbations are propagating perpendicular to the direction of the 

magnetic field, for, our convenience, we take kx = k, and kz = 0, the general dispersion relation (24) reduces to  

− 𝜍𝑅1
4 + 𝜍𝑅1

3 𝑉2𝑘2

𝑑
+ 𝑅1

3Ω𝑇
2 + 𝜍4𝑅1

2Ω𝑥
2 + 4Ω𝑥

2𝑅1Ω𝑇
2 +

𝑉2𝑘2

𝑑
4𝜍𝑅1Ω𝑥

2 + 4𝑅1
2Ω𝑧

2𝜍 =  0.  (46) 

The dispersion relation (46) shows the influence of viscosity, rotation, on self-gravitating partially-

ionized plasmas with radiative heat-loss function, electrical resistivity and thermal conductivity. In the absence 
of viscosity, rotation, partially-ionized plasmas, (46) reduces to that of Bora and Talwar [30] in dimensional 

form. Now we discuss this dispersion relation (46) in the case of rotation axes parallel and perpendicular to the 

magnetic field. 

 

5.2.1. Axis of rotation along magnetic field 

When the axis of rotation is along the magnetic field, we put x = 0, and z =  in the dispersion 
relation (46) and this gives. 

𝑅1
2  𝜍𝑅1

2 + 𝜍𝑅1
𝑉2𝑘2

𝑑
+ 𝑅1Ω

𝑇
2 + 4𝜍Ω

2 =  0.             (47) 

This equation represents the effect of thermal conductivity, magnetic field, radiative heat-loss function, 

rotation, gravitational attraction and finite electrical resistivity on the presence of neutral particles. Equation (47) 

has two independent factors, each representing a different mode of propagation. The first factor of equation (47) 
gives, on substituting the values of R1 gives, 

𝜍2 + 𝜍𝐹 + Ωv𝜈𝑐 = 0.        (48) 
Equation (48) is identical with equation (27) and represents a viscous type of damped stable mode 

modified by the effects of viscosity and collision frequency. The second factor of equation of (47) equal to zero 

gives  

𝜍7 + 𝐴1  𝜍6 +  𝜍5𝐴2 + 𝜍4𝐴3 + 𝜍3𝐴4  + 𝜍2𝐴5 + 𝜍𝐴6 + 𝐴7 = 0.         (49) 

where  

𝐴1 =  Ω𝑚 + 2𝐹 + 𝛽 .  

𝐴2 =  Ω𝑚  2𝐹 +  𝛽 + 2Ωv𝜈𝑐 + 𝐹 𝐹 + 2𝛽 + 𝑉2𝑘2 + Ω𝐽
2 + 4Ω

2 .  

𝐴3 =  Ω𝑚  Ω𝐽
2 + 𝐹2 + 2𝐹𝛽 + 4Ω

2 + 2Ωv𝜈c 𝐹 + 𝛽 + 𝛺𝑚  + 𝐹 Ω𝐽
2 + 𝐹𝛽 + 𝑘2V2 𝐹 + 𝛽 +

            𝜈c+Ω𝐼2+𝜈cΩ𝐽2+4Ω2𝛽+8Ω2𝜈c.  
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𝐴4 =  Ω𝑚  Ω𝐼
2 + 𝐹2𝛽 + 𝐹Ω𝐽

2 + 𝜈cΩ𝐽
2 + 4Ω

2𝛽 + V2𝑘2 𝐹𝛽 + 𝛽𝜈c + 𝐹νc + 𝜈cΩv Ωv𝜈𝑐 +
            2𝐹𝛽+2𝐹𝛺𝑚+2𝛽𝛺𝑚+𝑘2V2+Ω𝐽2+𝐹Ω𝐼2+𝜈c𝐹Ω𝐽2+Ω𝐼2+4Ω2𝜈𝑐+8Ω2𝛽+            8Ω2Ω𝑚.  

𝐴5 =  Ω𝑚  𝜈𝑐Ω𝐼
2 + 𝐹𝜈𝑐Ω𝐽

2 + 𝐹Ω𝐼
2 + Ωv𝜈𝑐 Ωv𝜈𝑐Ω𝑚 + Ωv𝜈𝑐𝛽 + 2𝐹𝛽Ω𝑚 + 𝛽𝑉2𝑘2 + 𝜈𝑐𝑉

2𝑘2 +

            Ω𝐼
2 + Ω𝑚Ω𝐽

2 + 𝜈𝑐  Ωv𝜈𝑐Ω
𝐽
2 + 𝐹𝛽𝑉2𝑘2 + 𝐹Ω𝐼

2 + 4Ω
2𝜈𝑐Ω𝑚 + 4Ω

2𝛽𝜈𝑐 + 8Ω
2𝛽Ω𝑚  .  

𝐴6 =  Ωv𝜈𝑐  Ω𝑚𝛽Ωv𝜈𝑐 + 𝜈𝑐𝑉
2𝑘2𝛽 + Ω𝑚Ω𝐼

2 + 𝜈𝑐Ω𝐼
2 + Ω𝑚𝜈𝑐Ω

𝐽
2 + 4Ω𝑚Ω

2𝛽𝜈𝑐 + 𝐹𝜈𝑐Ω
𝑚

Ω𝐼
2 .  

𝐴7 =  𝜈𝑐
2Ωv Ω

𝑚
Ω
𝐼

2
 .    

Equation (49) seventh degree equation, where the constant term A7 is given as  

  𝐴7 = Ω𝐼
2 𝜈𝑐

2Ωv Ω
𝑚
 .         

Equation (49) represents the dispersion relation for transverse waves propagating through infinite 

homogeneous, self-gravitating, viscous and magnetized plasma having finite electrical resistivity, thermal 
conductivity, rotation, and radiative effects with neutral particles. The above equation (49) admits at least one 

real positive root which leads to the instability of the system as  

𝑘2 𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 − 4𝜋𝐺𝜌 𝛾 − 1  

ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.   (50) 

The above condition of instability is same as Bora and Talwar [30] and Kaothekar and Chhajlani [29] 

for electrical conducting partially ionized plasma in transverse direction of propagation and also same as 
condition of instability (30). In the absence of viscosity and collision frequency the above dispersion relation 

reduces in the form 

𝜍4 + 𝜍3 Ω𝑚 + 𝛽  +  𝜍2 Ω𝑚𝛽 + 𝑉2𝑘2 + Ω𝐽
2 + 4Ω

2 + 𝜍 Ω𝑚  Ω𝐽
2 + 4Ω

2 + 𝑘2V2𝛽 + Ω𝐼
2 +

4Ω2𝛽+Ω𝑚Ω𝐼2+4Ω2𝛽=0.       (51) 

The condition of instability for such case is obtained from the constant term of equation (51), is given as 

𝑘2  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 +  4Ω

2 − 4𝜋𝐺𝜌  
ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.     (52) 

On comparing equation (50) and (52) we note that there is an extra term added in (52), represents the 

effect of rotation for non-viscous fluid. It means that the presence of viscosity parameter removes the effect of 

rotation from the condition of instability. Thus we conclude that the contribution of rotation in the condition of 

radiative instability is only observed when the fluid is in-viscid. Also we notated that effect of collision 

frequency does not affect the condition of instability but modifies the growth rate of the present system. 

 Assuming  𝜌 ≫ 𝜌𝑑  so that B<<1 and dividing the dispersion relation (49) by  4𝜋𝐺𝜌 1/2, then the 

dispersion relation can be written in non-dimensional form as  

𝜍∗7 + 𝜍∗6 Ω𝑚
∗ + 2Ωv

∗ + 4𝜈𝑐
∗ + 𝛽∗   

+𝜍∗5 Ω𝑚
∗  2Ωv

∗ + 4𝜈𝑐
∗ + 𝛽∗ + 2𝜈𝑐

∗ 3Ωv
∗ + 2𝜈𝑐

∗ +  2𝛽∗ + 𝑉∗2𝑘∗2 + Ω𝐽
∗2 + 4Ω

∗2 + 2𝛽∗Ωv
∗ + Ωv

∗2  

+𝜍∗4  Ω𝑚
∗  Ω𝐽

∗2 + 2𝛽∗Ωv
∗ + 4𝛽∗𝜈𝑐

∗ + 4Ω
∗2 + 4𝜈𝑐

∗2 + Ωv
∗2 + 4Ωv

∗𝜈𝑐
∗ + 2Ωv

∗𝜈𝑐
∗ Ω𝑚

∗ + Ωv
∗ + 2𝜈𝑐

∗ + 𝛽∗ +

 𝑉∗2𝑘∗2Ωv∗+3𝜈𝑐∗+𝛽∗+𝜈𝑐∗3Ω𝐽∗2+4𝛽∗Ωv∗+4𝛽∗𝜈𝑐∗+8Ω∗2+Ω𝐼∗2+4Ω∗2+Ωv∗Ω𝐽∗2+Ωv∗𝛽∗ 

+ 𝜍∗3  Ω𝑚
∗  Ω𝐼

∗2 + 4𝜈𝑐
∗2𝛽∗ + Ωv

∗𝛽∗ + 4𝛽∗𝜈𝑐
∗Ωv

∗ + 2𝜈𝑐
∗Ω𝐽

∗2 + Ωv
∗
Ω𝐽
∗2 + 𝜈𝑐

∗Ω
𝐽
∗2 + 4Ω

∗2𝛽∗ + V∗2𝑘∗2 𝛽∗Ωv
∗ +

 
3𝛽∗𝜈𝑐∗+2𝜈𝑐∗2+Ωv∗𝜈𝑐∗+Ωv∗𝜈𝑐∗𝜈𝑐∗Ωv∗+2𝛽∗Ωv∗+4𝜈𝑐∗Ω𝑚∗+4𝛽∗𝜈𝑐∗+2Ω𝑚∗Ωv∗+2𝛽∗Ω𝑚∗+2𝛽∗Ω𝑚∗+
𝑘∗2V∗2+Ω𝐽∗2+𝜈𝑐∗2𝜈𝑐∗Ω𝐽∗2+Ωv∗Ω𝐽∗2+Ω𝐼∗2+4Ω∗2𝜈𝑐∗+8Ω∗2𝛽∗+ 8Ω∗2Ω𝑚∗+2𝜈𝑐∗Ω𝐼∗2+Ωv∗Ω𝐼∗2. 
+ 𝜍∗2  Ω𝑚

∗  2𝜈𝑐
∗2Ω

𝐽

∗2
+ Ωv

∗𝜈𝑐
∗Ω𝐽

∗2 + 3𝜈𝑐
∗Ω𝐼

∗2 + Ωv
∗
Ω𝐼
∗2 + Ωv

∗𝜈𝑐
∗ 𝜈𝑐

∗Ω𝑚
∗

Ωv
∗ + Ωv

∗𝜈𝑐
∗𝛽∗ + 4𝜈𝑐

∗𝛽∗Ω𝑚
∗ + 2Ωv

∗𝛽∗Ω𝑚
∗ +

𝛽∗𝑉∗2𝑘∗2+𝜈𝑐∗𝑉∗2𝑘∗2+Ω𝐼∗2+Ω𝑚∗Ω𝐽∗2+𝜈𝑐∗Ωv∗𝜈𝑐∗Ω𝐽∗2+2𝜈𝑐∗𝛽∗𝑉∗2𝑘∗2+Ωv∗𝛽∗𝑉∗2𝑘∗2+2𝜈𝑐∗Ω𝐼∗2+
Ωv∗Ω𝐼∗2+4Ω∗2𝜈𝑐∗Ω𝑚∗+4Ω∗2𝛽∗𝜈𝑐∗+ 8Ω∗2𝛽∗Ω𝑚∗ 

+𝜍∗  Ωv
∗𝜈𝑐

∗Ω𝑚
∗  Ω𝑚

∗ 𝛽∗Ωv
∗𝜈𝑐

∗ + 𝜈𝑐
∗𝑉∗2𝑘∗2𝛽∗ + Ω𝑚

∗
Ω𝐼
∗2 + 𝜈𝑐

∗Ω𝐼
∗2 + Ω𝑚

∗ 𝜈𝑐
∗Ω

𝐽
∗2 + 4Ω𝑚

∗
Ω
∗2𝛽∗𝜈𝑐

∗ +   2𝜈𝑐
∗2Ω

𝐼

∗2
Ω𝑚
∗ +

Ωv∗𝜈𝑐∗Ω𝑚∗Ω𝐼∗2  

 + 𝜈𝑐
∗2Ωv

∗
Ω𝑚
∗

Ω
𝐼

∗2
 .          (53) 

 where the various non dimensional parameters are defined as  

𝜍∗ =
𝜍

 4𝜋𝐺𝜌  1/2,    𝜈𝑐
∗ =

𝜈𝑐

 4𝜋𝐺𝜌  1/2,    𝑘∗ =
𝑘𝑐

 4𝜋𝐺𝜌  1/2,    𝜈∗ =
𝜈 4𝜋𝐺𝜌  1/2

𝐶2 ,    𝜆∗ =
 γ−1 Tλ 4𝜋𝐺𝜌  1/2

𝑝𝐶2 ,   𝜂∗ =
𝜂 4𝜋𝐺𝜌  1/2

𝐶2 ,    

Ω
∗ =

Ω

 4𝜋𝐺𝜌  1/2,     V∗ =
v 4𝜋𝐺𝜌  1/2

𝐶
,      ℒ𝜌

∗ =
 𝛾−1 𝜌ℒ𝜌

𝐶2 4𝜋𝐺𝜌  1/2,      ℒ𝑇
∗ =

 𝛾−1 𝜌𝑇ℒ𝑇

𝜌 4𝜋𝐺𝜌  1/2,     Ωv
∗ = 𝑘∗2𝜈∗,     Ω𝑚

∗ = 𝜂∗𝑘∗2, 

𝛼∗ =
1

𝛾
  ℒ𝑇

∗ + 𝜆∗𝑘∗2 − ℒ𝜌
∗ ,    𝛽∗ =  ℒ𝑇

∗ + 𝜆∗𝑘∗2 ,     Ω𝐼
∗2 =  𝑘∗2𝛼∗ − 𝛽∗ ,     Ω𝑗

∗2 =  𝑘∗2 − 1 . 
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The variation of the growth rate 𝜍∗ with wave number 𝑘∗ are shown in fig 1-6 

 

 
 

The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized magnetic effect 𝑉∗ = 0.0, 0.5, 1.0, 1.5 and the value of other parameter are fixed * = 𝜈 *= 𝜈𝑐
∗=  

𝜂∗ = Ω
∗ = 1, ℒ𝑇

∗  = 0.0 and ℒ𝜌 
∗ = 0.5.  

From figure (1), we notice that the growth rate of the instability for non-magnetized medium (V* = 0) is 

higher in comparison with magnetized medium (V* > 0). It is also noted that the value growth rate is decreased 

with increasing magnetization of medium. Hence, we conclude that the increasing magnetic field tends to 

stabilize the system. 

 

 
 

The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized rotational effect Ω∗
 = 0.0, 1.0, 2.0, 3.0 and the value of other parameter are fixed * = 𝜈 *= 𝜈𝑐

∗ =  V∗ 

= 𝜂∗ = 1, ℒ𝑇
∗  = 0.0 and ℒ𝜌

∗  = - 0.5.   

Figure (2), depicts that the growth rate of the instability decreased with increasing values of rotation 

parameter, for non-rotating medium (Ω* = 0) the growth rate of the instability is maximum while for higher 

values of rotation it tends to minimize. Thus, we conclude that rotation parameter reduces the growth rate of the 

instability and maintain the stability of system.  
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The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized resistivity effect  𝜂∗ = 0.0, 1.0, 2.0, 3.0 and the value of other parameter are fixed * = 𝜈 *= 𝜈𝑐
∗ =  V∗  

= Ω
∗ = 1, ℒ𝑇

∗ = 0.0 and ℒ𝜌
∗  = 0.5.   

In figure (3) the growth rate of the system is increased with increasing values of electrical resistivity. It 

means that for the higher values of electrical resistivity, the system tends to get instability. In other words, an 

infinitely conducting system will be more stable than finitely conducting medium.  

 

 
 

The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized thermal conductivity effect 
∗ = 0.0, 1.0, 3.0, 5.0 and the value of other parameter are fixed  𝜂∗ = 𝜈 * 

= 𝜈𝑐
∗ = V∗ = Ω

∗ = 1, ℒ𝑇
∗  = 0.5 and ℒ𝜌

∗  = 0.0.   

From figure (4) we observe that the growth rate is minimum for non thermally conducting medium 

while the higher values of thermal conductivity increased the instability growth rate. In other words we can say 

that the thermal conductivity has destabilizing influence on the system.  
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The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized neutral particle effect 𝜈𝑐
∗  = 0.1, 0.2, 0.3, 0.4 and the value of other parameter are fixed  𝜂∗ = 

𝜈*= V∗  = Ω
∗ = 

∗ = 1, ℒ𝑇
∗  = 0.0 and ℒ𝜌

∗  = 0.5.     

From the curves, we can analyze that increasing values of collision frequency decreases the growth rate 

of the system. In other words we can say that the role of neutral particles is to stabilize the plasma system. 

 

 
 

The growth rate is plotted against the non-dimensional wave number k* with variation in the 

normalized density dependent heat-loss function ℒ𝜌
∗  = 0.5, 1.0, 1.5, 2.0.  and the value of  other parameter are 

fixed  V∗ = 𝜂∗ = Ω
∗ = 

∗ = 𝜈∗ = 𝜈𝑐
∗ = 1 and  ℒ𝑇

∗  = 0.0.   

From figure (6) we analyze that the density dependent heat-loss function plays a same role as thermal 

conductivity and electrical resistivity play to destabilize the system. It means that the increasing values of 

density dependent heat-loss function increases the growth rate of instability. 

             

5.2.2. Axis of rotation perpendicular to the magnetic field  
We now analyze the wave propagation in transverse direction of external magnetic field considering 

the rotation of the magnetic field, we put Ω𝑥 = Ω and Ω𝑧 = 0, the dispersion relation (46) reduces to 

− 𝑅1   𝑅1
2 + 4Ω

2  𝜍𝑅1 + 𝜍
𝑉2𝑘2

𝑑
+ Ω𝑇

2  =  0.        (54) 
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Equation (54) represents the dispersion relation for rotating, self-gravitating, viscous, partially ionized 

plasma incorporating the electrical resistivity, Hall current, thermal conductivity and radiation in transverse 

mode of propagation with axis of rotation perpendicular to the magnetic field. Equation (54) has three 

independent factors, each representing a different mode of propagation. The first factor of equation (54) 

equating to zero, gives 

𝜍2 + 𝜍𝐹 + Ωv𝜈𝑐 = 0.      (55) 
 Equation (55) is identical with equation (27) and represents a viscous type of damped stable mode 

modified by the effects of viscosity collision frequency. The second factor of equation (54) equating to zero, 
gives 

𝜍4 + 𝜍32𝐹 + 𝜍2 2𝜈cΩv + 𝐹2 + 4Ω
2 + 𝜍𝜈c 2Ωv𝐹 + 8Ω

2 + 𝜈𝑐
2 Ωv

2 + 4Ω
2 = 0.  (56) 

This dispersion relation (56) is independent of finite electrical resistivity, self-gravitation, radiative 

heat-loss function, thermal conductivity, and magnetic field. This equation (56) represents a purely stable 

damped system due to the combined damping effects of rotation, collision frequency and viscosity of the 

medium. The third factor of equation (54) equating to zero gives.  

𝜍5 + 𝜍4 Ω𝑚 + 𝜈𝑐 + 𝜈𝑐𝐵 + Ωv + 𝛽 + 𝜍3 Ω𝑚  𝜈𝑐 + 𝜈𝑐𝐵 + Ωv +  𝛽 +  𝜈𝑐 + 𝜈𝑐𝐵 + Ωv 𝛽 + Ωv𝜈𝑐 +
𝑉2𝑘2+Ω𝑗2+𝜍2Ω𝑚Ω𝐽2+𝜈𝑐+𝜈𝑐𝐵+Ωv𝛽+Ωvνc𝛽+𝛺𝑚+𝑘2V2𝛽+𝜈𝑐+Ω𝐼2+𝜈𝑐Ω𝑗2+𝜍Ω𝑚Ωv𝜈𝑐𝛽+Ω

vΩ𝑗2+Ω𝐼2+V2𝑘2𝛽𝜈𝑐+𝜈𝑐Ω𝐼2+𝜈𝑐Ω𝑚Ω𝐼2=0. (57) 

Equation (57) represents the dispersion relation for transverse wave propagating through finite 

homogeneous, self-gravitating, viscous magnetized partially ionized plasma having finite electrical resistivity, 

rotation, radiative effects, and thermal conductivity with the effect of neutral particles.  

In the absence of collision frequency between two components of plasma, viscosity and electrical resistivity i.e. 

𝜈𝑐= 0, 𝜈 = 0 and 𝜂 = 0. with assumption that the fluid is non-magnetized (H = 0), the dispersion relation (57) 

reduces to as 

 𝜍3 + 𝛽𝜍2 + 𝜍Ω𝐽
2 + Ω𝐼

2 = 0.                (58) 

Equation (58) represents a dispersion relation for infinite homogeneous, non-magnetized, self- 

gravitating, thermally conducting plasma with radiative heat-loss effects. The condition of instability for such 

case is obtained from the constant term of equation (58), is given as 

𝑘2 𝛾 − 1  ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝜆𝑘2𝑇

𝜌
 − 4𝜋𝐺𝜌 𝛾 − 1  

ℒ𝑇𝑇𝜌

𝑝
+

𝜆𝑘2𝑇

𝑝
 < 0.  (59) 

This condition is same as condition (30) for longitudinal mode propagation. If fluid expressed by 

equation (57) is assumed magnetized i.e. H  0 then the dispersion relation becomes for such case as 

 𝜍3 +  𝛽𝜍2 + 𝜍 𝑉2𝑘2 + Ω𝐽
2 + V2𝑘2𝛽 + Ω𝐼

2 = 0.     (60) 

This is the dispersion relation for infinite homogeneous magnetized, self-gravitating, thermally 

conducting, and radiative effect. Condition of instability for this case is given as 

 𝑉2𝑘2𝛽 + 𝑘2𝛼 − 4𝜋𝐺𝜌𝛽 < 0.         (61) 
This is the modified condition of radiative instability due to the effect of magnetic field. This condition 

of instability (61) is identical to that of obtained by Aggrawal and Talwar [32], in the transverse mode of 

propagation. The effect of magnetic field comes through the term V2𝑘2𝛽 of magnetic field, there is an upward 
shift in the instability threshold i.e. the magnetic field decreases the value of critical wave number. Thus, we 

conclude that the magnetic field stabilizes the medium for transverse propagation. 

 

VI. Conclusion 
In the Present analysis, we have studied the problem of an infinite homogeneous self-gravitating 

viscous and magnetized partially ionized fluid incorporating thermal conductivity, electrical resistivity, Hall 

current, rotation and radiative heat-loss functions. The general dispersion relation is obtained using linearized 

perturbation of the problem, which is modified due to the presence of these parameters. This general dispersion 

relation is reduced for longitudinal and transverse modes of propagation. We find that the Jeans condition 

remains valid but the expression of the critical Jeans wave number is modified due to presence of thermal 

conductivity and radiative heat-loss function. It is found that the viscosity parameter maintains the system 

stability in both, longitudinal and transverse direction of propagation.  

The discussion of dispersion relation for longitudinal propagation, reveals that the viscosity, collision 
of neutrals with ionized gases, electrical resistivity, and Hall current modify the Alfven mode. The effect of the 

collision with neutrals does not affect the condition of instability of the considered fluid. It is also found that the 

effect of rotation does not contribute in the condition of radiative instability in both the direction parallel and 

perpendicular to the magnetic field.   

In the transverse mode of propagation, we find that for an infinitely electrical conducting medium the 

condition of radiative instability is modified due to the presence of magnetic field and it shows a stabilizing 

influence. It is obtained that the gravitating thermal mode is affected by thermal conductivity and radiative heat-
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loss functions. We also found the condition of instability and the expression of critical Jeans wave number both 

are modified due to the presence of thermal conductivity, magnetic field, radiative heat-loss function and 

rotation. The effect of rotation in the condition of instability is observed only when the fluid is in-viscid and the 

axis of rotation is parallel to magnetic field. From the curves it is observed that thermal conductivity, electrical 

resistivity and density dependent heat-loss function have destabilizing influence on the instability of the fluid. It 

is also observed that the contribution of rotation and collision frequency it to reduce the growth rate and 
stabilize the system. 
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