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Abstract: Great Musayab projectwas chosen to assess spatial variability of some soil properties,and 

furthermore,to  investigate its implications for sampling design. Two hundred and forty composited soil samples 

werecollected acrossthe project and thesurrounding areas. Soil properties including electrolytic conductivity 

(ECe),calcium carbonate (CaCO3), cation exchange capacity (CEC),as wellas sand, silt, and clay were 

analyzed for each sample. Classic statistical analysis showed that ECe had the highest CVwhichwas caused by 

some unusually high measurements.  Semivariograms of allproperties were constructed,and compared to 

estimate thespatial variability of the soilproperties in the area. Thesemivariograms of soilproperties were best 
describedby aexponential  model. Geo-statistical analysis showed that all the soil properties had a moderate or 

strong spatial dependency. Ordinary kriged maps indicated soils with high ECe, CEC, CaCO3, sand, silt, and 

clay in the surface horizons were found in the southern parts of the project. Water flows may be the dominant 

driving force for the spatial variability of chemical properties and texture parameters,  implying more samples 

or analysis are required to achieve a similar level of precision. 

 

I. Introduction: 

Spatial dependence - the tendency for observations close together in space to be more highly correlated 

than those that are further apart.Also called spatial autocorrelation. Spatial dependence imputes that up to some 

distance apart from each other, two observations at different locations are not statistically independent (Chiles 

andDelfiner, 1999). 

Semi-variance is a measure of the spatial dependence between two observations as a function of the 
distance between them. Semivariogram- a graph of how semivariance changes as the distance between 

observations changes.Semivariograms are used for measuring the degree of dissimilarity between observations 

as a function of distance. Based on the “first rule of geography” that things close together are more similar than 

things far apart, semi-variance is generally low when two locations are close to each other (i.e. observations at 

each point are likely to be similar to each other:. Typically, semi-variance increases as the distance between the 

locations grows until at some point the locations are considered independent of each other and semi-variance no 

longer increases (Karl and Maurer, 2010).  

Geostatistics, as a rapidly evolving branch of applied statistics and mathematics that ofers a collection 

of tools, has been utilized extensively to illustrate the spatial variability of a variety of natural phenomena as 

well as spatial characteristics of soil attributes (Webster and Oliver, 2001; Hoover and WoIman, 2005; Jackson 

et al., 2007). Geostatistics takes into account both the structured and random characteristics of spatially 
distributed variables to provide optimal and unbiased estimations.This enables spatial relationships among 

sample values to be quantified and used for interpolation of values at unsampled locations (Zuo et al. 2008). 

Huang et al. (2001) showed that 

knowledgeofsoilspatialvariabilityandrelationshipsamongsoilpropertiesisimportantfortheevaluationofagriculturalla

ndmanagementpractices.Hisstudywastocharacterizethespatialvariationofselectedsoilpropertiesalongatransectacros

safieldthatwaspartiallygrassedConservationReserveProgram 

landfor10years(CRP)andpartiallycontinuouslycroppedland(CCL).SoilchemicalpropertiesincludingpH,availableph

osphorus(P),andsoiltotalcarboncontent(STC)werecomparedandgeostatisticallyanalyzedtoconstructsemivariograma

ndestimateunsampledvalues.ThesemivariogramofSTCandpHexhibitedsphericalmodel.One-

dimensionalpHforCRPandCCLshowedseparatepatterns.SoilpHforCRPwashigherthanpHinCCL,concentrationofP

wasobviouslyhigherintheCCLthaninCRP,andshowedincreasingstraightlinealongtransect.Soiltotalcarbonexhibiteda

periodicbehavioralongtransectdependingmainlyon field topographic positionand less on landuse.   
Iqbal et al. (2005) indicated that analysis and interpretation of spatial variability of soils is a keystone 

in site-specific farming. The objectives of his study were to determine thedegree of spatial variability of soil 

physical properties and variance structure, and to model the sampling interval of alluvial floodplain soils. 

Geostatistical analyses illustrated that the spatially dependent stochastic component was predominant over the 

nugget effect. Structured semivariogram functions of each variable were used in generating fine-scale kriged 

contour maps. The magnitude and spatial patterns soil physical property variability have implications for 

variable rate applications and design of soil sampling strategies in alluvial floodplain soils. 
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Weindorf and Zhu(2010) explained that Non-agricultural lands are surveyed sparsely in general. 

Meanwhile, soils in these areas usually exhibit strong spatial variability which requires more samples for 

producing acceptable estimates. Semivariograms ofall properties were constructed, standardized, and compared 
to estimate the spatial variability of the soil properties in the area. Based on the similarity among standardized 

semivariograms, they found that the semivariograms could be generalized for physical and chemical properties, 

respectively. Optimal sampling density (OSD), which is derived from the generalized semivariogram and 

defines the relationship between sampling density and expected error percentage, was proposed to represent, 

interpret, and compare soil spatial variability and to provide guidance for sample scheme design. OSDs showed 

that chemical properties exhibit a stronger local spatial variability than soil texture parameters. 

The purposes of this study was to describe and interpret the spatial distribution patterns of some soil 

properties in an area of Great Musayab, central of Iraq  project based on geostatistics. 

 

II. Materials and Methods: 

Description of the study site: 
The project is located within the lands ofthe governorate ofBabilbetweentheTigris 

andEuphratesriversontheleftbankoftheEuphrates River,justtenkilometersfromtheHindiyahdam and the 

boundaries ofthe project end about80kilometerseastofthe Euphrates river (Fig.1). The land sloping of the project 

rises towards the south35m abovesea level, and has a hot arid climate with subtropical influence. Summer 

temperatures frequently exceed 48 °C. Winter temperatures infrequently exceed 21 °C. Typically precipitation is 

low. Because of very high rates of evaporation, soil and plants rapidly lose the little moisture obtained from the 

rain, and vegetation could not survive without extensive irrigation. The land of the projectis naturally vegetated 

withAgool(Alhagimaurorum), but most of area is cultivated barley. The major soil families of the study area are 

(fine,Smectitic, superactive, calcareous, hyperthermic, VerticTorrifluvents) and (fine,Smectitic, active, 

calcareous, hyperthermic, TypicTorrifluvents) (Soil Survey Staf, 2010).  

 

Soil sampling and laboratory analysis 
Two hundred and forty soil samples were randomly selected,from0to 25cmdepthfor chemical and 

physicalpropertyanalyses. Soil properties including electrolytic conductivity (ECe),calcium carbonate (CaCO3), 

cation exchange capacity (CEC),as wellas sand, silt, and clay were analyzed for each sample by 

DepartmentofSoilInvestigationsLaboratory/Ministry of Irrigation (Muhammad et al., 2001). 

 

Statistical analysis 

Means, standard deviations, standard error, coefficients of variation(CV), skewness and kurtosis for 

each variable were analyzed using classical statistical methods. Data distributions were tested for normality.If 

data were not normally distributed, they were transformed using natural logarithmto a nearly normal 

distribution. 

 

 
Figure1.Location of the study site at Musayab, Babil, Iraq. 

 

http://en.wikipedia.org/wiki/Arid
http://en.wikipedia.org/wiki/Subtropical
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Skewness and kurtosis Measurements 
Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data 

set, is symmetric if it looks the same to the left and right of the center point.  
Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, 

data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy 

tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform 

distribution would be the extreme case.  

Definition of skewness 
For univariate data Y1, Y2, ...,YN, the formula for skewness is:  

 

 
 

Where: 

is the mean; 

𝑆is the standard deviation; 

andNis the number of data points. 

The skewness for a normal distribution is zero, and any symmetric data should have a skewness near 

zero. Negative values for the skewness indicate data that are skewed left and positive values for the skewness 

indicate data that are skewed right(Hosking, 2006). 

Definition of Kurtosis 

For univariate data Y1, Y2, ...,YN, the formula for kurtosis is:  
 

 
Where: 

is the mean; 

𝑆is the standard deviation; 

andN is the number of data points. 

The kurtosis for a standard normal distribution is three.In addition, positive kurtosis indicates a 

"peaked" distribution and negative kurtosis indicates a "flat" distribution (Hosking, 2006).  

 

Geostatistical Analyses 

Semivariance analysis using ArcGIS (v 9.3 – ESRIInc.) was used to quantify spatial 

autocorrelationbetween neighboringobservations, and to facilitate subsequent mapping of soil properties 

(Boerner et al, 1998). This analysis calculates an index of autocorrelation among groups of paired samples 

separated by increasing distances. 

In order to interpolate surface maps of measured soil properties, the data was fitted to theoretical 

models. Data was fit to Exponential semivariogram models for the data that was ordinarykriged(Kriging is a 

geostatistical estimator that infers the value of a random field at an unobserved location) (Strano, 2008). 

 

Characteristics of the Semivariogram 
A number of parameters were extracted from the fitted models including the nugget (the semivariance 

at distance zero), the sill (the y-value at which the semivariance reaches an asymptote), and the range (the 

distance [x-value] at which this leveling occurs)(Fig.2). We used a system proposed by Cambardella et al. 

(1994) to define different classes of spatial dependence for the soil properties measured in this study that are 

based on the ratio of the nugget to the sill. If the nugget to sill ratio was ≤ 25%, the soil property was considered 

to be strongly spatially dependent, or distributed in patches; if the ratio was between 26% and 75%, the soil 

property was considered to be moderately spatially dependent; and if the ratio was >75% the soil property was 

considered to be weakly spatially dependent (Cambardella et al. 1994). 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
http://en.wikipedia.org/wiki/Geostatistics
http://en.wikipedia.org/wiki/Random_field
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Figure 2.Characteristics of the Semivariogram. 

 

Semivariance 
The geostatistical measure of semivariance for interpolation of unsampled locations was determined 

using the general equation for semivariograms as presented below: 

 
Where: 

is the semivariance at lag distance h; 

𝑛(ℎ)is the number of observation pairs separated by h; 

𝑧 𝑥𝑖 is a measured variable atspatial location𝑖; 
𝑧 𝑥𝑖 + ℎ is a measured variable at spatial location𝑖 + ℎ(Bachmaier and Backes, 2008). 

 

III. ResultsandDiscussion 
Explanatory statistics 

Descriptive statistics of measured soil propertieswere presented in Table 1.As the sampling scheme 

adopted in this study is almost evenly distributed, classic statisticscould be utilized to reveal the spatial 

variability of the soil properties. 

Soil ECeranged from 1.10 to 210.00 dS m-1. Distribution of ECe was positively skewed, indicating that 
there were some extreme high values in this area ofGreat Musayab.ECehad the highestpositivekurtosis value 

indicating a "peaked" distribution.The CV is the ratio of the standard deviation(SD)to the mean values times 

100.ECehad the highest CV(158.12)which was the only one over 100.The extremely high CV of ECein this 

study wascaused by some unusually high measurements. The reason for such high measurements may be 

geological,climatic trends, or human activities. 

Cation exchange capacity (CEC)ranged from6.50 to 29.50cmolckg-1.Distribution ofCECwas 

negativelyskewed,indicating that there were someextreme low values of CECin this area. On the other 

handdistribution of CEC was kurtotic. Soil calcium carbonate (CaCO3)ranged from194.00 to 340.00 g kg-1. 

Distribution ofCaCO3was negativelyskewed but was positivelykurtotic. 

Descriptive statistics of soil texture parameters were: Sand varied from 1.00 to 85.00 g kg-1. Distribution 

of sand was positively skewed and also was kurtotic. Silt varied about 7 times from 11.00 to 70.00 g kg-1. 
Distribution of silt was negatively skewed but was positively kurtotic. Clay varied about 4 times from 4.00 to 

46.00 g kg-1. Positive kurtosis values of clay and silt were similar. 

Mean values of the soil properties except  electrolytic conductivity (ECe) were similar with median 

values. This similarity was also noted by Emadi et al. (2008). Soil properties are often distributed normally in 

space.Only two of soil properties studied had a high skewness value greater than one (Table 1), implying that the 

frequency distributions were highly skewed. Special care should therefore be taken in applying the natural-

logarithmic transformation to stabilize the variance (Grunwald et a1., 2007). 

Correlation coefficients between the soil properties are given in Table 2. Correlations were found to be 

significantly high between all variables as generally reported, e.g., sand and silt (r2 = 0.725**), sand and clay (r2 = 

0.819**), silt and clay (r2 = 0.946**). High significant correlations can also be identified between soil chemical 

properties, i.e., ECe and CEC (r2= 0.788**), ECe and CaCO3 (r
2 = 0.708**), CEC and CaCO3 (r

2 = 0.960**). 
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Table 1.DescriptivestatisticsofselectedsoilpropertiesatMusayab, Iraq. 

 

a)
Standard error; 

b)
Standard deviation;

c)
Coeficien ofvariation. 

 

Table 2.Correlation coeficients between selected soil properties at Musayab, Iraq. 

**
Significant at P = 0.01. 

 

Geostatistics 

The geostatistical parameters describing soil properties from adata set were listed in Table 

3.Regression coefficients (R2)suggested that all models were best fitowing to the R2 value (greater than 0.5) of 

the best-fitted model (Duffera et al., 2007). 

Thesemivariogramsof soilproperties were best describedbyaexponential  model (Fig. 3).Except soil 

texture parameter of sand, nuggets for all models were equal to zero.Smaller nugget indicates thesampling 

intervalis proper to reflect the variance.The sill value for soil ECe(917.982) was approximately twice as high 

thanthe sill value of soil CaCO3 (460.251), this implies that ECe had greater variation. 

Table 3 shows thatall the soil properties have a moderate or strong spatial dependency (Cambardella et 

al. 1994).The effective ranges of CEC, CaCO3, silt, and clay are greater than 2000 m, indicating a large-patched 

distribution pattern (Fig. 4, 5).Given variables with similar nugget/sill ratios, related effective ranges may differ 
substantially.For instance, Soil ECe and siltin this study have similar ratios (0.00) but they have effectiveranges 

of 1753.487 and2539.616 m, respectively.Apparently,ECe reached its maximumvariance level within a 

shorterlag distance,implying a stronger local variability than silt. 

Thecross-validation value is thedetermination coefficient (r2) of the correlation between the measured 

valuesand the cross-validation values, which were predicted based on thesemivariogram and neighbor 

values(Robertson, 2008).Despite strong spatial dependency forsoil ECe,the  prediction efficiency (r2) waslow, 

and for all  the other variables the efficiency of spatial predictionranged from 0.346 to 0.640. 

 

Table 3.Semivariogram models and model parameters for selected soil properties atMusayab, Iraq. 

 

Variabl

e 
Mean 

Media

n 
Min. Max. 

Skewne

sscoef. 

Kurto

siscoef. 

Varian

ce 
SE

a)
 SD

b)
 CV

c)
 

ECedS 

m
-1 

24.967 5.200 1.100 
210.00

0 
2.890 12.935 

1558.51

2 
2.548 

39.47

8 
158.121 

CEC 

cmolckg
-1 

19.088 18.600 6.500 29.500 -0.226 4.124 16.483 0.262 4.060 21.270 

CaCO3g 

kg
-1 

280.75

0 

279.00

0 

194.00

0 

340.00

0 
-0.440 2.969 

1219.19

7 
2.254 

34.91

7 
12.437 

Sand g 

kg
-1 

21.125 17.000 1.000 85.000 2.036 7.191 300.780 1.119 
17.34

3 
82.100 

Silt g kg
-1 49.250 53.500 11.000 70.000 -1.088 3.582 179.747 0.865 

13.40

7 
27.222 

Clay g 

kg
-1 

29.625 30.000 4.000 46.000 -0.635 3.853 83.229 0.588 9.123 30.795 

Clay Silt Sand CaCO3 CEC ECe Variable 

      ECe 

     0.788
**

 CEC 

    0.960
**

 0.708
**

 CaCO3 

   0.813
**

 0.848
**

 0.945
**

 Sand 

  0.725
**

 0.957
**

 0.926
**

 0.599
**

 Silt 

 0.946
** 

0.819
** 

0.986
**

 0.953
**

 0.705
**

 Clay 

Variable Transf.
a) 

Model
b) 

Model 

R
2 

Nugget Sill Nugget/Sill
c) 

% 
Spatial 

dependency
d) 

 

Effective 

Range
e)

 

Cross 

validation
f)
 

ECe Yes Exp 0.589 0.000 917.982 0.000 Strong 1753.487 0.176 

CEC No Exp 0.500 0.000 6.712 0.000 Strong 2082.485 0.522 

CaCO3 No Exp 0.527 0.000 460.251 0.000 Strong 2718.658 0.604 

Sand Yes Exp 0.605 91.233 183.212 49.796 Moderate 5987.276 0.346 

Silt No Exp 0.500 0.000 69.912 0.000 Strong 2539.616 0.640 

Clay No Exp 0.611 0.000 42.320 0.000 Strong 2406.116 0.479 
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a)
Transformationoforiginalmeasurementsisappliedusingnaturallogarithm 

ifthecoefficientofskewnessisgreaterthanone;
b)

Semivariogrammodel: 

Exp(exponential);
c)

Nugget/sill(%)=(nugget/sill)x100; 
)
Spatialdependencywasdefinedasstrong,moderate,weakorpurenuggetbased  

onnuggettosill ratios;
e)

The effective range is the model range;
f)
Thecross-

validationvaluesforagivenvariablearecoefficientsofcorrelationbetweenobservedv

alueandvaluescross-validatedbyGS + 9.3. 

 

 
Figure 3.Generalizedsemivariogrammodelsforchemicalpropertiesand soiltexture parameters 

atMusayab, Iraq. 

 

 
Figure 4.Interpolationmapsofselectedsoil c he m i c a l properties usingordinarykriging atMusayab, 

Iraq. 
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Figure 5.Interpolationmapsofsoiltexture parametersusing ordinarykriging atMusayab, Iraq. 

 

Generalized semivariogram models 

General patterns can be identified forsoil chemical properties and soiltexture parameterswhich can be 

fitted byexponential models(Fig. 3).The soil  propertiescorrelograms was reflected ina positive spatial 

autocorrelationstructure. The autocorrelation for soil texture parameter of sand at zero lag  was 0.88, and for all 

the other variables was 0.00.It begins to increase as the lag distance increases, when the  autocorrelation does 
not change significantlywith increasing lag distance, the plateau reached, called thesill, reflects the magnitude of 

random variation (Nielsen, 1998).   

Soils in the Great Musayab project,especiallyalong the Tigris and Euphratesrivers,minimally 

developedEntisols showing little evidence ofpedogensis, therefore differences inspatial autocorrelation extent 

are notlikely related to pedogenic processes,such as eluviation andilluviation.These alluvial floodplainsoils have 

different stratificationextents for the soil properties,Thissuggests that the degree ofcumulization and the extent 

ofstratification during deposition of thealluvial materials is the most importantfactor in explaining the 

significantextent of spatial autocorrelation. 

Ordinary kriged maps indicated soils with high ECe, CEC, CaCO3 in the surface horizons were found 

in the southern parts of the project (Fig. 4). Similarly, high sand, silt, and clay cotents were found in the same 

spatial pattern (Fig. 5). 

The distinctness between the generalized semivariograms of chemical properties and texture 
parameters may be attributed to the different driving forces during soil formation. The waters of the Tigris and 

Euphrates are heavily siltladen, irrigation and fairly frequent flooding deposit large quantities of silty loam in 

much of the project area. Windborne silt contributes to the total deposit of sediments. By the time, the flow of 

the rivers is substantially reduced, and the surface area of the resulting sediment volume increases. The Tigris 

and Euphrates also carry large quantities of salts. These, too, are spread on the land by sometimes excessive 

irrigation and flooding. A high water table and poor surface and subsurface drainage tend to concentrate the 

salts near the surface of the soil. Most soils of Iraq are located in arid and semi-arid regions with high amount of 

calcium carbonate which results in higher calcification rate.Extensive leaching may have removed the CaCO3 

from soil of the northern parts of the project area, but often the amount of CaCO3 in soils derived from 

calcareous parent material is considerable.   

Water flows may be the dominant driving force for the spatial variability of texture parameters, soil 
particles can move with water and tend to deposit and accumulate on the areas where water flows slow down. 

 

IV. Conclusions 

 Classic statistical analysis showed that ECe had the highest CV which was the only one over 100. 

Mean values of the soil properties except  electrolytic conductivity (ECe) were similar with median values. 

However, soil properties are often distributed normally in space. 

 Geo-statistical analysis showed that all the soil properties had a moderate or strong spatial dependency. 

General patterns can be identified for soil chemical properties and soil texture parameters which can be fitted by 

exponential models. Ordinary kriged maps indicated soils with high ECe, CEC, CaCO3 as well as sand, silt, and 

clay in the surface horizons were found in the southern parts of the project. Except soil texture parameter of 
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sand, nuggets for all models were equal to zero. Smaller nugget indicates the sampling interval is proper to 

reflect the variance. 

It should be noted that the generalized semivariogram models enables soil scientists to use measured 
soil chemical and physical data over greater distances to estimate attributes in the unsampled locations. 
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