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Portfolio selection under different risk measures 
 

Jun Qi, Lan Yi 
 

Abstract：This paper reviewed and compared four different risk measures which are applied in portfolio 

selection problem, and analyzed the portfolio selection models when distribution of asset returns are not given. 

Specifically, EVT approach is used to analyzed the portfolio selection problem. 
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I. Introduction 
Portfolio theory deals with the question of how to find an optimal distribution of the wealth among 

various assets. Markowitz provides a fundamental basis for portfolio selection in a single period. Analytical 

expression of the mean-variance efficient frontier in single-period portfolio selection was derived in 

Markowitz(1952) and Merton(1972). Recently, a multi-period portfolio selection problem has been studied. This 

problem is more interesting as investors always invest their wealth in multi periods instead of only one period. 

Literatures in this problem has considered of maximizing expected utility function of the terminal wealth. Li and 

Ng (2000)have derived the analytical formulation of the frontier of the multi-period portfolio selection by 

embedding the assets-only multi-period mean-variance problem into a large tractable problem. 

Mean-Variance model is widely used in the practice of fund management. It is used for asset allocation 

to determine the basic policy of fund management as well as the management of individual funds including 

portfolio construction and risk control, etc. In the mean-variance framework, risk is defined in terms of possible 

variation of expected portfolio returns. The focus on standard deviation as appropriate measure for risk implies 

that investors weigh the probability of negative returns equally against positive returns. However, in the 

investment environment, various financial instruments with non-symmetric return distribution exist, such as 

options and bonds. In addition, recent statistical studies revealed that not all stocks follow normal distribution. 

So it is highly unlikely that the perception of investors to downside risk faced on investments is the same as the 

perception to the upward potential. Therefore some approaches have been taken to incorporate downside risk 

into the asset allocation model. 

Safety-first approach proposed by Roy(1952) is one idea of considering downside risk in portfolio 

selection. Roy define the shortfall constraint such that the probability that the value of the portfolio falling 

below a specified disaster level is limited to a specified disaster probability. Also some literatures extend the 

safety-first portfolio selection model to multi-period case. Recently, an analytical solution is achieved for the 

multi-period safety-first formulation in Li and Ng (1998). 

Risk measures such as VaR, C aR were also constructed in order to measure the downside risk of 

asymmetric return distributions. R. Tyrrell Rockafellar and Stanislav Uryasev (1999) provide an approach to 

optimizing a portfolio to reduce risk with CV aR as the risk measure. To measure the risk by VaR or C aR, we 

need to know the distribution of return, which we usually do not exactly know. Therefore, extreme value 

theory (EVT) was introduced. EVT provides a firm theoretical foundation on which we can build statistical 

models describing extreme events without knowing the distribution of returns. 

In this paper, we firstly introduced the risk measures. In section 2, the risk measures are used to build 

the portfolio selection model. These models are compared in section 3. Section 4 will gives some methodology 

to handle these models. Finally, we will give the conclusion. 

 

1. Risk Measures 

1.1 Risk measures with given distribution function 

Given a random variable X (e.g. the uncertain gain of invested risky asset) with density function )(xf  and 

continuous cumulative distribution function )(xF .   is the mean of X. The risk measures are given as 

follows: (1) Variance 



 dxxfx )()(: 22  ; (2)Value-at-Risk (VaR) which is the maximum expected 

loss on an investment over a specified horizon given some confidence level 1 , 

  )()(max: 1 
 FxFxVaR ; (3) Conditional Value-at-Risk(CVaR) which measures the 
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potential size of the loss exceeding VaR, 










VaR

dxxxfCVaRxxECVaR )(
1

)(: . 

1.2 Risk measures without given distribution function 

1.2.1 Extreme Value Theory (EV T) 

Let ,, 21  be a sequence of independent and identically distributed (i.i.d.) random variables 

(r.v.'s) and write nM  for the maximum of the first n, i.e. },,max{ 21 nnM   . 

Extreme value theory models the maximum of a random variable and tell us what the limiting distributions are. 

It states that a nondegenerate asymptotic distribution of nM  must belong to one of just three possible general 

families, regardless of the original distribution function F. 

 

Theorem 1: Extreme Value Theorem 

Let },,max{ 21 nnM   , where nn boa ,
i  are  i.i.d. ramdom variables. If for some constants 

nn boa , , we have 

)(})({ xGxbMaP nnn   

for so  nondegenerrate G,  thhe G  is  one  of the three extreme value types: 

Type I: ;),exp()(   xexG x
 

Type II: 










 ,0),exp(

,00
)(

xx

x
xG


 for some ;0  

Type III: 










,00

,0),)(exp(
)(

x

xx
xG



 for some 0 . 

Conversely, each distribution function G of extreme value type may appear as a limited in 

)(})({ xGxbMaP nnn   

and appears when G itself is the distribution of each 
i . 

Jenkinson and von Mises suggested the following one-parameter representation 














.0),exp(

;0}))1(exp{(
)(

/1



 

xe

x
xG  

This generalization is known as extreme value distribution (GEV). In GEV, ξ is the shape parameter. 

When ξ > 0 (Type II), it means the distribution has the heavy-tailed distributions whose tails decay like power 

functions such as the Pareto, Student’s t, Cauchy, Burr, log-gamma, and Frchet distribution. 

When ξ=0 (TypeI), it means the tails of distributions decay exponentially and we can call them thin-tailed 

distributions. Some good examples are normal, exponential, gamma and log-normal distributions. 

When ξ<0 (TypeIII),  the distributions are called short-taile ddistributions with finite right end point like the 

uniform and beta distributions 

                  
          0                     0                                       0 

       TypeI                          Type II                      Type III 

 

1.2.2 The distribution of exceedances 

Now we consider estimating the distribution function uF  of values of x above a certain threshold u. 

The distribution function uF  is called the conditional function(cedf) and is defied as 

uxyuXyuXPyF Fu  0),()( , where X is a random variable, u is a given threshold,  

y=x-u are the excesses and Fx  is the right endpoint of F. We verify that uF  can be written in terms of 

F, i.e. 
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$$F_u(y)=\frac{F(u+y)-F(u)}{1-F(u)}=\frac{F(x)-F(u)}{1-F(u)}.$$ 
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)(1

)()(
)(

uF

uFxF

uF

uFyuF
yFu









 . 

           
            0             u         xF               0                     xF-u 

Figure 1                              Figure 2 

 

EVT provides us with a powerful result about the cedf which is stated in the following theorem: 

Theorem 2 (Pickands(1975), Balkema and De Haan(1974)): For a large class of underlying distribution 

functions F the conditional excess distribution function )(yFu , for u large, is well approximated by 

,),()( ,  uyGyFu   

where  









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
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y
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For )],0[ uxy F   if 0 , and ],0[



y  if 0 .  ,G  is so-called generalized Pateto 

distribution (GPD). 

 

1.2.3 Risk measures without given distribution function 

Given a random variable X (e.g. the uncertain loss of invested risk asset). We do not know the distribution of X. 

Following the extreme value theory, the limiting distribution of the random variable X above a threshold u is 

GPD. Now we will use above extreme value theory to derive analytical expressions for VaR  and CVaR . 

First we write F(x) in terms of uF , i.e.  

).()())(1()( uFyFuFxF u   

 Then replace uF  by the GPD, we have  

).()))(1(1))((1()( /1 uFuxuFxF   




 

 Given the confidence level 1 , 

).1)
)(1

(()1(1 


  









uF
uFVaR  

Here, we can give the value of  F(u) by the estimate nNn u /)(  , where n is the number of observations and 

uN  the number of observations above the threshold u. 

To value the condition value at risk, let us rewrite CVaR  as: 

),()(  VaRXVaRXEVaRVaRXXECVaR   

where the second term on the right is the mean of the excess distribution )(yFVaR
 over the threshold VaR . 
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It is known that the mean excess function for the GPD with parameter   < 1 is 

.0,
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There is still a problem, that is how to select the threshold u and how to estimate the parameters  , . One 

graphical tool called the sample mean excess plot is helpful for the selection of the threshold u (see Manfred 

Gilli, Evis Kellezi (2003)). Maximum likelihood estimation is used to estimate the parameters of GPD. 

 

II. Portfolio Selection Models 

We consider a market with n available securities. An investor with initial wealth 0W  seeks to improve 

his wealth status by investing his wealth into these n risky securities at the beginning of time 0. The investment 

lasts for a period time T. Let oiTi PP ,, ,  be the price of the ith asset at time T and 0. Also let iR  be 

the random rate of return of the ith security (i = 1, . . . , n) and 
T

nRRR ),( 1  T the returns’ vector. 

Therefore, oiTioioiTii PPPPPR ,,,,, lnln/)(  . The mean and covariance of the returns are assumed 

to be known, )( ii RE , and .,1,),,(, njiRRCov jiji   

Let ix  be the proportion of wealth the investor invests in the ith security, and  


n

i ix
1

1 . 

Denote the decision vector in portfolio selection by 
T

nxxx ),( 1  , mean of returns vector by 

T

n ),( 1    . Then, the random rate of return from holding securities is  


n

i ii Rx
1

 . The mean 

and variance of   are 

xE T ][  

And 

,)(
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CxxxxVaR
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We will introduce four different portfolio selection models as follows, 

Model I: Mean-Variance Model can be formulated as 





 



)(..

)(min

Ets

Varx
 

where 0  is a lower bound of the expected return of portfolio. 

Model II: Safety-first Model can be formulated as 

)(min dP
x

  

where d is the upper disaster level. Following the Bienayme-Tchebycheff inequality, 

2))((

)(
))()(()(

dE

Var
EdEPdP







 . Therefore, this optimization problem is equivalent 
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to 

)(

))((
max

2





Var

dE

x


. 

Model III: Mean-VaR Model is introduced to allocate financial assets byminimizing VaR of the portfolio with 

the confidence level 1  and restrained the expected rate of return above a lower bound  . The focus on 

VaR as the appropriate measure of portfolio risk allows investors to treat losses and gains asymmetrically. 





 



)(..

)(min

Ets

VaRx
. 

Here )(VaR  is determined by the distribution of return of the portfolio i

n

i i Rx 


1
 , i.e. 

)()( 1

, 
 RxFVaR . We can verify that )(, RxF  is determined by the decision variable x and random 

variable R. 

Model IV: Mean-CVaR Model is to minimize CVaR with a constraint of the expected return of portfolio. 





 



)(..

)(min

Ets

CVaRx
. 

Similar to the  VaR  in the mean-VaR model, here CVaR  is the conditional 

mean of loss of portfolio, i.e. − , given that −  is bigger than VaR , i.e. 

).()(   VaRECVaR   

 

2. Potential and limitation of using different risk measures in portfolio selection   

2.1 Potential and limitation of Mean-Variance model 

Mean-Variance model have some good properties which make it popular: 

(i) It is consistent with the principle of ‘maximization of expected utility’ if the rate return of assets follows 

multi-variate normal distribution, which was usually considered to be a valid assumption for common stocks; 

(ii) Quadratic programming problems, which is formulated from the singleperiod mean-variance model, can be 

simply solved by mathematical programming; The limitation of mean-variance model is that the assumption of 

normal distribution in this model is not suitable for some non-symmetric distributed instruments, such as option, 

bond, and some stocks. This limitation lead tothe mean-variance model underestimates the risk of portfolios. 

 

2.2 Potential and limitation of Safety-first model 

Safety-first model has some good properties compared with mean-variance model: 

(i) It measures the downside risk, and put the risk of portfolio in a crucial rule, which is helpful to the investors 

who are principally concerned with avoiding a possible ‘disaster’; 

(ii) Minimizing the chance of disaster in the safety-first model can be interpreted as maximizing expected utility 

if the utility function has only two values, i.e. one if disaster does not occur and zero if it does; 

(iii) In the special case where d is equal to the gross return on riskless investment, safety-first model and the 

mean-variance model lead to the same results, i.e., the optimal unlevered portfolios constructed under each of 

the rules are identical (see Hain Levy and Marshall Sarmat (1972)). 

 

2.3 Potential and limitation of VaR 

VaR (value-at-risk), a relatively new lower partial risk measure, is widely used for the measurement of market 

risk. The following are its good properties: 

(i) It is regardless of the distribution of the underlying assets, so that it is more consistent with the 

‘maximization of expected utility principle’ than mean-variance model; 

(ii) When assume that the distribution of the underlying assets are normal distribution, the mean-VaR model has 

the same result with the meanvariance model, i.e., a mean-VaR efficient portfolio is mean-variance efficient (see 

Jin Wang (2000)). 

There are three shortcomings, 

(i) VaR measures are lack of coherence, e.g. it lacks the sub-additivity property. So it has difficulties to aggregate 

individual risks, and sometimes discourage diversification (see Artzner et al (1998)); 

(ii) It is only focusing on controlling the probability of loss, rather than its magnitude. Hence, the expected 

losses, conditional on the states where there are large losses, may be higher sometimes; 

(iii) the VaR of a portfolio x, xVaR  is not a convex function of x, so that it is very difficult to minimize xVaR  



Portfolio selection under diff erent risk measures 

DOI: 10.9790/487X-181103138146                   www.iosrjournals.org                143 | Page 

over x ∈  X. We thus rely on a genetic algorithm or a heuristic approach (see Larsen, Mausser and Uryasev 

(2001)). 

 

2.4 Potential and limitation of CvaR 

Compare with VaR, CVaR has nice properties both theoretically and computationally as following: 

(i)As same as VaR, it is regardless of the distribution of the underlying assets, so that it is more consistent with 

the ‘maximization of expected utility principle’ than mean-variance model; 

(ii) CVaR is a coherent measure of risk, and minimizing xCVaR  can be converted to minimizing a convex 

function (we will introduce the methodology latter). Therefore, we can use convex minimization algorithms to 

solve the mean-CVaR model. 

 

2.5 Potential and limitation of EVT 

EVT (extreme value theory) is currently in the focus of interest in quantitative risk management. It can be used 

to analysis rare events and value VaR, CVaR without the assumption of original distribution function. It gives a 

methodological toolkit for issues like skewness, fat tails, rare events, etc, and makes the best use of whatever 

data we have about extreme phenomena. At the same time, its limitations are pointed out as belows: 

(i) In order to estimate way in the tails, one has to verify the tail model, which is very difficult; 

(ii) For a EVT-VaR estimation, one has to set appropriate thresholdabove which the data are to be used for tail 

estimation. There is no canonical choice; 

(iii) Handling extremes for high dimensional portfolios is difficult. 

 

III. Methodology 
The most difficult part of portfolio selection is to find a useful optimization method to solve it, get the 

optimal investment policy and derive the efficient frontier. 

With knowing the distribution function, the mean-variance model and safety-first model can be handled 

by quadratic programming. To handle the mean-VaR model, there are three methods. Mostly, approaches to 

calculating VaR rely on linear approximation of the portfolio risks and assume a joint normal distribution of the 

underlying market parameters. Also, historical or Monte Carlo simulation-based tools are used when the 

portfolio contains nonlinear instruments such as options. As to mean-CVaR model, R.tyrrell Rockfellar, 

Stanislav Uryasev (1999) provide an approach to convert the original problem to a linear convex programming. 

The first part of this section will introduce this approach. 

Without the assumption of the distribution of underlying assets, we use EVT to measure these risks, so as to 

handle the portfolio selection models. This approach will be introduced in the second part of this section. 

 

3.1 CVaR minimization approach 

Let f(x, y) be a loss function (i.e. the loss of the portfolio) depending upon a decision vector 
),,( 1 nxxx 

 

(i.e. the amount of wealth invested in assets 1,… , n) and a random vector 
),,( 1 myyy 

 (i.e. the 

uncertain returns ofassets). 

For each x, we denote by ),(  x  on   the resulting distribution function for the loss f(x, y), i.e., 

}.),({),(   yxfyPx  

The α-VaR of the loss associated with a decision x is the value }),(min{)(    xx . 

The α-CVaR of the loss associated with a decision x is the value )(x =mean of the α-tail distribution of f(x, 

y), where the distribution in question is the one with distribution function ),(  x  defined by 
















).(,

1

),(

);(,0

),(
x

x

x

x










  

We assume that the random vector y has a probability density function p(y). Therefore, the resulting distribution 

function of the loss f(x, y) is  





),(
)(),(

yxf
dyypx . Also we assume that the probability distributions 

are such that no jumps occur, or in other words, that ),( x  is everywhere continuous with respect to α. 

Following the definition of V aR and CVaR, we know that the VaR function )(x , which is the percentile of 

the loss distribution with confidence level α, is the smallest number such that   ))(,( xx . CVaR, 
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denoted by )(x , can be expressed by 

dyypyxfx
xyxf

)(),()1()(
)(),(

1

 




  . 

The key to the approach is a characterization of )(x  and )(x  in terms of the function F , which is 

defined by 

dyypyxfxF
my

)(]),([)1(),( 1

 

   . 

Theorem 3: As a function of  , ),(  xF  is convex and continuously differentiable. The α-CVaR of the loss 

associated with any x ∈  X can be determined from the formula 

).,(min)(  


 xFx


  

In this formula the set consisting of the values of   for which the minimum is attained, namely 

).,(minarg)( 


 xFxA


 , 

is a nonempty, closed, bounded interval (perhaps reducing to a single point), and the α-VaR of the loss is given 

by )(x =left end point of )(xA . In particular, one always has 

),(minarg)(  


 xFx


 and ))(,()( xxFx    . 

Theorem 4: Minimizing the α-CVaR of the loss associated with x over all x ∈  X is equivalent to minimizing 

),(  xF  over all  Xx ),(  , in the sense that 

),(min)(min
),(

 


 xFx
XxXx 

 . 

where moreover a pair *)*,( x  achieves the second minimum if and only if x∗  achieves the first minimum 

and *)(* xA  . In particular, therefore, in circumstances where the interval *)(xA  reduces to a single 

point, the minimization of ),( xF  over  Xx ),(   produces a pair *)*,( x , not necessarily 

unique, such that x∗  minimizes the α-CVaR and *(  gives the corresponding α-VaR. 

Furthermore, ),(  xF  is convex with respect to ),( x , and )(x  is convex with respect to x, when f(x, 

y) is convex with respect to x, in which case, if the constraints are such that X is a convex set, the joint 

minimization is an instance of convex programming. 

Let us consider the case in which an analytical representation of the density function p(y) is not available, but 

we have J scenarios, Jjy j ,1,  , sampled from the density p(y). In this case, the function ),(  xF  can 

be calculated approximately as follows 

 

 
J

j jyxfJxF
1

1 ),(())1((),(
~

 . 

If the feasible set X is convex, the optimization problem with the CVaR performance function can be solved 

using non-smooth optimization techniques. Moreover, if the function f(x, y) is linear to x, these problems can be 

solved using LP techniques. By replacing the terms 
 ),(( jyxf  by auxiliary variables jz , and imposing 

constraints 0,,(  jjj zyxfz  , we can reduce optimization of the portfolio problem to the 

following LP problem and solve it by CPLEX: 
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5.2 EVT approach 

First, we consider the Safety-first model min )( dP  . Given )(
~

1)()( dFdFdP   , where F 

is the cumulative distribution function of gain 
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  and F
~

 is the cumulative distribution function of loss − . Following EVT, )()(
~









x
GxF , where 

  and   are normalized parameters. Given m observations of mj

j

ii rR ,1}{,  , we can solve the model in 

the following two steps. 

Step 1. ))(log();,,(max ,, jj gL   , where  
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Step 2. ));(*),(*),(*(max dxxxGx  or ))
)(*

)(*
1(exp(max )*(/1 x

x
x

x 




 

 . 

Then we consider Mean-VaR model and Mean-CVaR model. As we know that 

)1(
~

)()( 11     FFVaRx , where F is the cumulative distribution function of gain   and F
~

is 

the cumulative distribution function of loss − . Given a preselected threshold u, uF
~

 is the conditional excess 

distribution function of F
~

. Following EVT, it has a limited distribution GPD, )()(
~

, yHyFu  . 

Suppose mj

j

ir ,,1}{  are m observations of − iR above the threshold u. W can handle the above two models in 

two steps. 

Step 1 );,(max , yL   where  
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IV. Conclusion 
EVT techniques make it possible to concentrate on the behavior of the extreme observations. It does not 

assume a particular model for returns but lets the data speak for themselves to fit the distribution tails. However, 

until now, only approximation procedures with EVT method has been used to allocating assets because of the 

difficulty in forming the optimization problem (see Younes Bensalah 2002)). We have built a set of complex 

optimization problems for portfolio selection with EVT. Solving these problems may be a contributed work, and 

it may be more interesting to extend this problem to a multi-period case. 
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