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Abstract: In this paper we consider Weibull Fréchet distribution and study its properties. The Marshall-Olkin
Weibull Fréchet distribution is developed and studied in detail. AR(1) models with Weibull Fréchet marginal
distribution are introduced. As a further extension general theory of Max-Min AR(1) processes are also
developed and generalized it to Kth order. Max-Min process with Weibull Fréchet marginal distribution is
introduced and studied. Applications are also discussed.
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. Introduction

Weibull-Fréchet distribution was introduced recently by Afify et al. (2016). It has applications in
engineering, medicine, and other areas of research.Both Weibull and Fréchet distributions play a significant role
in extreme value theory and can be used to model accelerated life times, earth quakes, floods, rainfalls, wave
heights, usual speeds etc.

Marshall and OIlkin(1997) introduced a generalized family of distributions and applied the results to
extend exponential and Weibull distributions. Many researchers have recently studied Marshall-Olkin family of
distributions and applied in various contexts such as reliability analysis, time series modeling etc. For details see
Jayakumar and Thomas (2008), Sankaran and Jayakumar (2006), Krishna et al.(2013a,b), Jose et
al.(2010,2011,2014).These distributions offer wide flexibility and can be used to model data from various areas.

Autoregressive processes with non-Gaussian marginal distributions have received much attention in
recent years. Lewis and McKenzie(1991) introduced minification processes and their general theory. Alice and
Jose(2004), Seethalekshmi and Jose(2004,2006), Jose and Naik(2010), Jose and Remya(2015) etc are some
recent works in this respect.

This paper is organized as follows. In section 2,Weibull fréchet distribution is reviewed. In section 3,
we introduce the Marshall-Olkin Weibull Fréchet distribution and studied its important properties. AR(1)
models with Weibull Fréchet marginal distribution are introduced in section 4. As a further extension, general
theory of Max-Min AR(1) processes are also developed in section 5 and generalized it to the kth order. In
section 6, Max-Min process with Weibull Fréchet marginal distribution is introduced and studied. Applications
are discussed in section 7.

I1. Weibull Fréchet Distribution

The cdf of four parameter WFr (Weibull Fréchet) distribution is given by

Fix)=1— E.‘l'p[—ﬂ{(‘.‘l‘p[[&.,".‘l'}ﬁ — 1])"’) (1)
It is a generalization of many distributions like exponential Fréchet Weibull-inverse expo-
nential Weibull-inverse Rayleigh etc.
The pdf is
fix) = abBoPexp[—b(o/x)P][1 — exp—(o/x)P] P lexp(—a(exp(o/x)P — 1)) (2)

The HRF is given by

)

hit) = Fti} = abPoPexp[—b(o/t)P][1 — f.l'p[—{tx;’f]p']]_b_1 (3)
J

where o is a scale parameter representing the characteristic life and . a and b are shape
parameters representing the different patterns of the WFr distribution.
The CHR({Cumulative Hazard Rate function) of X is

Hx)= a[c:t;;l:(a_,-".t)ﬁ'] —1)h (4)

Now we introduce a generalization called Marshall-Olkin WFr distribution.
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3. Marshall- Olkin WFkr (MOWFT) Distribution and its Proper-
ties

In this section a new probability model known as Marshall-Olkin WFr (MOWEFr) dis-
tribution is devloped. Various properties of the distribution and hazard rate functions are
considered. The corresponding time series models are developed to illustrate its application
in time series modeling.

Let F(x) be the survival function of a given distribution. The survival function of the
Marshall-Olkin distribution obtained by introducing a new parameter p is given by

G(x) =L¥}_ —o < x<oo, )< p<on,
1—(1-p)F(x)
Clearly when p = 1, we get the standard form of the survival function. Corresponding pdf
is given by
_ pfix)
(1= (1=p)Fx)]?"

glx) —o < x <o, D p<oo

and the hazard rate function is given by
) .Ii!;.' (f;l
.Iii | =
T
where /i (t) denote the hazard rate function of the original model with distribution function
F. The survival function of the Marshall-Olkin distribution obtained by introducing a new
parameter p is given by
6x) = pexp(—alexp|(a/x)F] —1)"b)
 1-(1-plexp(—a(exp(o/x)P] —1)7)"
Clearly when p = 1, we get the standard form of the survival function. Corresponding pdf
is given by
: _ -1
_ pabBoferplb(a/x)P)[1 — expl—(o/0)P] " exp(alexpl(a/n)f] - 1))
[1—(1— p)exp(—a(expl(ot/x)F] — 1)~?)]?

—se<t<ee, D p<on

—oo <X < oo, )< p<oo,

2(x)

—sex<oo, D p<oe
and the hazard rate function (HRF) is given by
abBofexp|—b(a/x)P][1 — exp|—(a/x)F]] "

1— (1 p)exp(—a(exp[(c/x)F —1))~P)
Figure 1 shows the pdf and HRF of MOWFr distribution.

hix)=

,—o =X <o, Dp<e
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4. AR(1) models with MOWEFT distribution

Two stationary Markov processes with similar structural forms which is useful in hy-
drological applications was introduced by Tavares(1977.1980). The various aspects on first
order autoregressive minification was discussed in Lewis and Mc Kenzie(1991). In this
section we develop autoregressive minification processes of order one and order & with
minification structures are discussed with MOWFr distribution as stationary marginal dis-
tribution. We call the process as MOWFr AR(1) process. Now we have the following
theorem.

Theorem 4.1 Consider an AR(1) structure given by

|

where w.p. denotes “with probability’, 0 < p; < 1 and {&,} is a sequence of i.i.d. random
variables independently distributed of X,. Then {X,} is a stationary Markovian AR(1)
process with MOWFr marginal if and only if {en} is distributed as WFr distribution.

En, w.p. pi

min(X,1,&), wp. 1—p

Proof: From the given structure it follows that
FXH(I} = p] Fém [I} +(] _pI}FXn l(IJ Ffﬂ [I)'
Under stationary equilibrium, it reduces to

Fi (1_} o P FE{I)

T (- Bl )
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On substituting the survival function of error €, for 0 << g < 1, we get

p1 exp(—alexp[(o/x)? —1))7")
- (1 pr)exp(—alexp[(o/x)P —1])-7)
which resembles the survival function G (-) of the MOWEFr distribution. Conversely, if we

take the survival function of the above form, we get the corresponding survival function of
€ as

Fx(x) =

Fe(x) = exp(—a(exp|(a/x)F —1]) ") (6)
which is WFr distribution under stationary equilibrium.

Theorem 4.2 Consider an AR(1) structure given by

X1, w.p. pa
Xn=1{ &a, wp. pi(1—pa)
min(Xp—1,8a), WP (l_p”(]_pi}
where {€,} is a sequence of i.i.d. random variables independently distributed of Xn. Then

{Xn} is a stationary Markovian AR(1) process with MOWFr marginal if and only if {€,} is
distributed as WFr distribution.

Proof: From the given structure it follows that
Fx,(x) = paFx, (x)+ p1(1 — p2)Fe, (x) + (1 — p1)(1 — p2) Fx, () Fe, (x).

On simplification we get, the same expression as in equation (6) under stationarity. Then
the result is obvious.
The following theorem generalizes the results to a k'™ order autoregressive structure.

Theorem 4.3 Consider an AR(k) structure given by

;

En, w.p. Po
I’I’li]'l(X,E_],En]_. wp. py
X,={ min(X, 2.8;), wp. p2

| min(X, p.e,). wp py

where {en} is a sequence of i.i.d. random variables independently distributed of Xy, 0 <
pi<l pi+p2+---+pr=1—py. Then the stationary marginal distribution of {X,} is
MOWFr if and only if {€,} is distributed as WFr distribution.

Proof: From the given structure the survival function is given as follows:
Fi, () = po Fey (¥) + Pt Fi (0)Fe, (v) + -+ + i Fr, ,(1)F (x).
Under stationary equilibrium, this yields
Fx(x) = po Fe(x) + p1 Fx (x)Fe(x) + -+ + py Fx (x)Fe(x).
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This reduces to B
Po Felx)
(1 po)Fe(x)’
Then the theorem easily follows by similar arguments as in Theorem 4.2.

Fx(x) =

5. The max-min AR(1) processes

We introduce a new model called the max-min process which incorporates both maxi-
mum and minimum values of the process. This has wide applications in atmospheric and
oceanographic studies. The structure is given in the following theorem.

Theorem 5.1 Consider an AR(1) structure given by
max (X, 1.8,), Wwp. pi
Xp= min(Xp—1.€n)., WP P2
Xn—1, w.p. 1 —pi—p

subject to the conditions 0 < py,p: < 1,p2 < py and py +p2 < 1, where {g,} is a sequence
of i.i.d. random variables independently distributed of X,. Then { Xn} is a stationary Marko-
vian AR(1) max-min process with stationary marginal distribution Fx (x) if and only if {g,}
follows Marshall-Olkin distribution.

Proof: From the given structure it follows that
Fy (x) =P(X, >x) = p;P(max(X,_1.8,) >x)+ py P(min(X,_;.&,) > x)
+(1—p1—p2) P(Xn-1>x)
= pi|l1—(1—Fx, (x))(1—F,(x))| +p2 Fx,  (x)Fe, (x)
+(1—p1—p2)Fx, (x).
Under stationary equilibrium, we get

. p2 Fx (x) p'Fx (x)
Fo(x) = _ __ _ (7
Y Y £ R W Wy )

%. This has the same functional form of Marshall-Olkin survival function.

The converse can be proved by mathematical induction, assuming that F_ , (x) = Fx (x).

where p' =

6. The max-min process with WFr marginal distribution

To obtain the WFr max-min process, applying WFr survival function in equation (7),
we obtain

Fu(x) p'exp(—alexpl(o/x)P —1])")
T 1= (1—p)exp(—a(exp[(o/x)P —1])-8)’

which is the MOWFr survival function of distributions with p’ = %._ P2 < py and
pi+p2<l.
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Now consider a more general autoregressive structure which includes maximum, minimum
as well as the innovations and the process values.

Theorem 6.1 Consider an AR(1) structure given by

max(Xy—1,€n), wWp pi

min(X, 1.&,). wp. p2

Ens w.p. p3

Xn—1 W.p. Py
with the condition that 0 < py,p2. p3. pa < 1.p2 < py andpy = 1 — py — p2 — p3, where {g,}
is a sequence of i.i.d. random variables independently distributed of X, Then {X,} is a

stationary Markovian AR(1) max-min process with stationary marginal distribution Fx (x)
if and only if {e,} follows Marshall-Olkin distribution.

Proof: From the given structure it follows that

PXn>x) = p1 Pmax(Xp_1,80) >x)+p2 P(min(Xp 1,€a) > x)
+p3 P(gy > x)+ (1 —p1 — p2— p3) P(Xp—1 > x).

This simplifies to

Fx,(x) = pi|1—(1=Fx,,(x))(1=Fe,(x))| +p2 Fx, , (x)F, (x)
+pafFe, (x)+ (1 — p1 — pa— p3)Fx, , (x).
Under stationary equilibrium, this reduces to

} (p2+p3) Fx(x) Brx(x)
Fe(x) ) T 1—(1—-P)Fx(x)

~ pi+p3t+(p2—pi)Fx(x)
where f = o p.- 1his has the same functional form of the Marshall-Olkin survival func-
tion. Conversely Fy (x) follows survival function of WFr distribution.

Remark: By substituting the survival function of WFr distribution in (8) we obtain the
survival function of MOWFr distribution, as

. Bexp(—a(exp[(a/x)P —1])~)
Fo(x) = T— (1 —PB)exp(—alexpl(o/x)B —1])-2) (9)

(8)

_ pp
where = P2

7. Applications

The Marshall-Olkin WFr (MOWFr) distribution studied in this paper can be used for
modeling data from various areas such as statistical mechanics, financial contexts, commu-
nications engineering, entropy studies etc. The max-min auto regressive processes can be
used for modeling time series data from hydro logical. financial and reliability contexts.
They accommodate four components with respect to innovations, processes, minimum as
well as maximum of the process values and offers wide flexibility in modeling real data
sets.
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