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Abstract  This wave of COVID-19 Pandemic is highlighting the crisis of overstocking and understocking, and 

how to balance just-in-time and just-in-case has become a difficult problem for many companies. The COVID-

19 epidemic spread disturbed the whole world to generate a huge impact on traveling, business operations, and 

civilian activities. Owing to the vaccination rate being over eighty percent and the buster shots being popular 

among many countries, people are planning to live with business operations following the epidemic era. To 
handle this new challenge, we discuss the non-convexity phenomenon of the replenishment run time problem 

without the use second derivative from calculus. We provide two approaches: (a) Our first result is based on the 

geometric skill of asymptote and a tangent line, and (b) Our second approach is a direct numerical 

computation, to help practitioners with an alternative approach other than analytical methods. Our results can 

be helpful for researchers and practitioners facing business operations and marketing management after the 

COVID-19 epidemics to develop the best management models for warehouse management systems in the post-

pandemic era. 
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I. Introduction 
When the epidemic first broke out, demand for many commodities fell sharply, leaving companies with 

excessive inventories. But the subsequent border closures, tightening of the supply chain, and gradual rebound 

in demand proved that it was wise to stock up. Traditionally, researchers have used calculus to examine the first 

and second partial derivatives of objective functions to solve for the optimal solution of inventory models. 

However, due to the strong mathematical background needed for this approach, the development of a non-

calculus approach will greatly increase the comprehension of inventory models for researchers without a 

mathematical background. Grubbstrom [10] pioneered this approach by deriving the standard EOQ formula 

from an algebraic approach. Grubbstrom and Erdem [11] generalized the algebraic method for inventory models 

with shortages. Moreover, Cardenas- Barron [1] studied an EPQ model with shortages by an algebraic method, 

and then Chang [5] applied this approach for inventory models with a variable lead-time. Ronald et al. [19] 

studied the inventory models in Grubbstrom and Erdem [6] and Cardenas-Barron [1] and revealed that some 

questionable results implicitly referring to findings of calculus, which led to the derivation of a complex method 

to obtain the optimal solution presented in Ronald et al. [19]. This method, which lends its origins to 
Montgomery et al. [18], searches for the minimum solution along each beam in the first octant, and then 

connects the minimum solutions to yield a new objective function, thereby locating its minimum. This method 

however is too tedious to be absorbed by ordinary researchers. Chang et al. [6] amended Ronald et al. [19] to 

present a more intuitive algebraic approach in finding the optimal solution. Similarly, Sphicas [20] applied an 

intuitive algebraic method to locate the optimal solution for EOQ and EPQ systems with linear and fixed 

backorder costs. Minner [17] examined the algebraic derivation for a finite planning horizon inventory system 

and then took its limit to yield the optimal solution for infinite planning horizon inventory systems. Cardenas-

Barron [2] applied the perfect square method to construct a supply chain inventory system with equally divided 

cycle time. Lan et al. [14], taking a page from Grubbstrom and Erdem [11], Cardenas-Barron [1], Chang [4], and 

Ronald et al. [19], presented a clearer algebraic method to solve inventory systems with stochastic lead time, in 

which the algebraic approach is applied to inventory systems under a more general setting. Teunter and Dekker 
[21] used the marginal cost to obtain the optimal order level without the tedious derivation of the average cost. 

Hsieh et al. [12] applied the Cauchy–Schwarz inequality and the arithmetic-geometric mean inequality to find 

the optimal solution for an integrated single-vendor single-buyer inventory problem without referring to the 

traditional algebraic method of completing the square. Cardenas-Barron [3] used algebraic methods to solve the 

optimal solution for EOQ and EPQ models. However, he did not check the sign before he took the square root. 

Hence, he overlooked the degenerate cases, where the optimal solutions occurred on the boundary. Cardenas-
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Barron et al. [3] offered a simpler method for deciding the integer solutions for the lot sizing replenishment 

policy for a two-stage inventory model. They also amended some questionable results in Drake et al. [9]. Chung 

[7] examined the second result of Lin and Chiu [16] to show the convex property proposed by Lin and Chiu [16] 
containing questionable findings, and then he obtained a revision to find the optimal solution. This article is 

motivated by Hung et al. [13] that provided a new solution method to solve an old inventory problem and Lin et 

al. [15] that provided a neat approach to dramatically simplify the previous complicated solution of Deng et al. 

[8] and Wu et al. [22]. The purpose of this paper is to provide an intuitive explanation for the examination of the 

non-convexity property so that practitioners who are not familiar with calculus can fully understand the 

significant results of Chung [7].  

 

II. Notation and assumptions 
To be compatible with Lin and Chiu [16] and Chung [7], we adopt the same notation and assumptions as theirs. 
Notation 

C  is the unit production cost. 

k
C  is the unit rework cost. 

s
C  is the disposal cost for one unit. 

g  is the constant reinstatement time for a breakdown machine 

h  is the holding cost per item per unit time of producer. 

1
h  is the holding cost for reworked items. 

K  is the setup cost per production run. 

M  is the cost to restore a breakdown machine. 

P  is the annual production rate. 

1
P  is the work rate to repair defective items 

1
t  is the production uptime, the decision variable. 

x  is the portion of defective items in the production rate P . 

  is the number of breakdowns per unit time (annual), a random variable that  

   follows a Poisson distribution. 

  is the annual demand rate, with P . 

1
  is the portion of disposal after defective items are reworked. 

  is an auxiliary function to simplify the expression. 

 xE  is the expectation of the portion of defective items. 

 
1

tTCU  is the total production-inventory costs per unit time. 

  
1

tTCUE  is the expected total production-inventory costs per unit time. 

 
1




y
e

bya
yf  with 0a  and 0b  is an auxiliary function. 

Assumptions 
The manufacturing process is developed with the following features: 

(1) It will randomly produce x portion of defective items that can be reworked. 

(2) During the reworked process, there is a 
1

  portion that cannot be reworked to repair at rework cost, 
k

C  per 

item, and then they will be discarded with disposal cost, 
s

C  per item. 

(3) The annual production rate P  is greater than the annual demand rate   and the reworked items are 

denoted as xP. 

(4) Based on the mean time between failure data, only one machine breakdown happens with random 

occurrence times. 

(5) The resume inventory control policy is followed after a breakdown occurs the maintenance procedure will 

be operated immediately to correct with a constant repair time. The disturbed lot will be restarted right after 

the reinstatement of the breakdown machine. 
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III. Materials and methods 
First, we review previous results, Lin and Chiu [16] discussed the expected total inventory cost per unit time as 

follows 
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For the detailed notation and expressions, please refer to Lin and Chiu [16]. They claimed that   
1

tTCUE  is 

a convex function. 

Next, we recall their solution approach. Chung [7] studied Equations (1) and (2) to derive the second derivative 

of   
1

tTCUE  as 
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Chung [7] used the following inequality, 
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to imply that if 
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then    0
12

1

2

tTCUE
td

d
, invalidating the claim of Lin and Chiu [16] as that   

1
tTCUE  is convex when 

1
t  is big enough. Chung [7] provided an excellent solution procedure to analyze the first derivative of 

  
1

tTCUE , proving the uniqueness of the minimum solution.  

In this paper, we will provide a different approach to show that   
1

tTCUE  is not convex without the use of 

the second derivative. 

 

IV. Our solution method 

We will apply a different approach without referring to analytical skills as calculus. Owing to 
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the expression of equation (1) was simplified as follows 

   c
e

bya
yTCUE

y







1
,                                                              (8) 
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for 0y  where the following new parameter and abbreviations are adopted, 

1
ty  ,                                                                              (9) 
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First, it is apparent to show that 0a , since 10
1
   the failure in rework rate and  xE  is the 

expectation of the random defective rate with   1xE . 

Next, we need to show that proving that 0b  is equivalent to proving that 0 .  We can rewrite   of 

Equation (2) as follows 

      xEPh
1

21       gxExEPh 
2

11
 

    
11

2

1

1   hhxE
P

P
,                                                                     (13) 

where P  is the annual production rate and   is the annual demand rate, and so P . 

 

Next, we discuss the numerical examination from previous papers. In the numerical example of Chung [7] 

and Lin and Chiu [16], it was assumed that x  follows a uniform distribution over  2.0,0  such that 

  1.0xE  and the failure in rework rate 1.0
1
  such that   021

1
 xE  is a reasonable assumption. 

Moreover, 
1

h  is the unit holding cost for reworked items with 8.0
1
h , h  being the holding cost per item per 

unit time, when 6.0h ,   01
11

 hh  is also logical based on the numerical examples of Chung [7] 

and Lin and Chiu [16]. Hence, we know that 0  and 0b . 

Our goal is to verify that for 0y , the following auxiliary function 

 
1




y
e

bya
yf                                                                                  (14) 

with 0a  and 0b , is not a convex function. 

 

We will provide proof that is based on geometric properties: asymptote and tangent line for this problem. 

We know that bya   and )1(1 
y

e  both are decreasing functions, owing to 0a  and 0b .  

Moreover, )1(1 
y

e  is always positive.   

bya   is positive for  bay 0  and the sign of bya   changes to negative for    yba .  

Hence, the minimum of  yf  should happen in the interval of    yba . Thus, our domain was 

restricted from original  y0  to    yba . 

We know that 
y

e  goes to infinity faster than any polynomial so then y , to imply that   0yf , that 

is,  yf  has a horizontal asymptote at y  with   
 0yf , implying   0yf  and   0yf  as 

y . 

 

By the way of contradiction, we assume that  yf  is a convex function then   0 yf  for 0y .  Because 

 yf  is negative for   yba   and there is a horizontal asymptote when y  so the minimum problem 

can be further restricted to a compact set so that the minimum problem has a solution in that specific compact 

set. Hence, we prove the existence of the minimum solution. 
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We may assume the absolute minimum point as 
*

y . We know that   0 yf  and for 
*

yy   so   0 yf  

for the restricted domain 
*

yy  . 

We may consider the tangent line passing through   1,1
**
 yfy  and slope   01

*
 yf  that will 

intersect the x-axis at a finite point, say 
#

y , with 

   

 1

11
1

*

*

*#






yf

yf
yy .                                                           (15) 

If  yf  is convex and  yf  is above the tangent, which implies that  yf  will intersect the x-axis before 

#
y  that is contradicted that   0yf  for    yba . 

 

V. Our second approach: A numerical evaluation 
Next, we will provide a more intuitive approach through numerical examination. There are two appealing 

approaches to check the convexity of a function: 

(a)   0 yf  in the entire domain,  

and 

(b) For any 
1

y , 
2

y , and 10   ,  

        
2121

11 yfyfyyf   .                                                  (16) 

Chung [7] considered the first approach, showing that   0 yf  is invalid when y  is very large. Here we 

will use the second approach to find two points: 
1

y , and 
2

y  , and a value of   with 10   , 

        
2121

11 yfyfyyf   .                                                   (17) 

We used the same data as Lin and Chiu [16] and Chung [7], to use the following values for parameters: 

450k , 4000 , 5.0 , 10000P , 1.0
1
 ,   1.0xE  and 13.3760  to get the next 

table. 

 

Table 1. The comparison between  yf  and the middle point of a secant line 

y  1 2 3 4 

 yf  -4367 -2363 -1189 -565 

   

2

11  yfyf
 

-2778 -1464  

 

From Table 1, we know that 

        26.11893 f
   

43.1464
2

42





ff
                                              (18) 

showing that  yf  is not a convex function, under the domain, 31  y .  Therefore, we present a numerical 

examination to show that  yf  is not convex. 

 

VI. Applications of our findings 
Many companies stressed that once trading conditions return to normal, they would still prefer to return 

to stocking levels before COVID-19 Pandemic. For companies, the huge inventory backlog means more money, 

space, management, insurance expenses, and a major problem, selling commodities before their expiration 

dates. Researchers and companies developed business models to cite data and relations among parameters and 

variables to describe commerce procedures. As time goes by, those business models involved more complicated 
and contained more parameters and variables and then their interrelationship becomes intractable. In this paper, 

we demonstrate two different approaches to studying business models.  

The first approach is an analytic method to establish mathematical verifications to prove some 

assertions under rigorous definition and precious examinations which is independent of the values of parameters 

and variables. Our second approach is a numerical method that uses data of parameters directly to explain the 

phenomenon without tedious proof which provides an intuitive explanation for business models. We can claim 
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that our two different solution approaches will help researchers and partitioners to deal with business operations 

and marketing management. 

 

VII. Conclusion 
Chung [7] used the second derivative to show the assertion of Lin and Chiu [16] to claim that their objective 

function is convex that is invalid. We offered two intuitive approaches: (a) a geometric approach with the use of 

tangent line and asymptote and (b) a numerical check to show the same result. Our work will help researchers 

who are not acquainted with the second derivation of calculus to reach a deeper understanding of the 

replenishment run time problem with breakdown and failure in rework for production systems. 
Funnding Statement: This paper is partially supported by Sanming University Projet NO. KD190015 
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