
IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 12 | Page

Improving Performance of RESTful Web Services

G M Tere
1
, R R Mudholkar

2
, B T Jadhav

3

1
(Department of Computer Science, Shivaji University, Kolhapur, India)

2
(Department of Electronics,Shivaji University, Kolhapur, India)

3
(Department of Computer Science,Y C College of Science, Satara, India)

 ABSTRACT: RESTful Web services play important role in distributed web applications.

Performance of Web services affects overall performance of applications. Using features of REST,

HTTP, and the REST frameworks like Jersey, Restlet, RESTEasy the latency and system resource

consumption of application is improved. Performance of RESTful web services is improved using

techniques such as fast manipulation of strings, streaming large representations, compressing SOAP

response, partial representation, using Caching techniques and using conditional methods. It is

observed that performances of RESTful Web services increases by approximately 40% if above

techniques are used. This paper describes those techniques for improving performance of RESTful

Web services.

Keywords -Caching, compression, conditional methods, REST, Streaming

INTRODUCTION

Using features of REST, HTTP, and the REST frameworks like Jersey, Restlet, RESTEasy

[4,5] the latency and system resource consumption of application can be improved. Performance of

RESTful web services can be improved using following techniques:

1. Using StringBuilder for handling large number of strings

2. Streaming large representations

3. Compressing SOAP response

4. Partial representation

5. Using Caching techniques

6. Use of Conditional methods

RESEARCH METHODOLOGY

The objective of research work is to improve performance of RESTful Web Services. To verify

above mentioned six techniques various experiments are carried out in .NET and Java. Programs are

developed and tested with following experiment setup:

Experiment Setup

 Server side: DELL Inspron N5110 Intel Core i5, 4GB RAM and Windows 7 OS

 Consumer side: Dell Inspiron N1545 Intel Core duo with 4 GB RAM and Windows XP.

 IDE used for application development: Visual Studio 10 and Eclipse

 Database used: MySQL

 Both laptops were connected using Wi-Fi router.

Techniques for Improving Performance of RESTful Web Services

A.Using StringBuilder for handling large number of strings

Strings are immutable in the .NET framework as well as in Java. Therefore methods and

operations that appear to change the string are actually returning a modified copy of the string. String

operations such as append would be more efficient if performed using StringBuilder objects than

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 13 | Page

String objects. This approach has improved performance lot. If many string manipulations are to be

done, one has to use StringBuilder class as it is faster. The time to create a string from 10000

substrings is measured in two different ways. The first time a simple string concatenation is used and

the second time the StringBuilder class is used. Output of developed comparison application is shown

in Figure 1.

From Fig. 1 it is clear that lot of time can be saved when StringBuilder class is used. In this

application strings are handled using StringBuilder class and the time required in string building is

reduced by 99% as that of string developed using concatenation.

Figure 1: String manipulation using Concatenation and StringBuilder

B. Streaming representations

In most use cases, HTTP requests and responses must contain a header that specifies the

length in bytes of the message body. For instance, a server that returns a request with the ASCII

character string ―Good morning!‖ will include the following header in its response, as the string is

composed of 13 characters:

Content-Length: 13

This approach requires knowing the length of the data before sending it. But that‘s not always

the case; for example, the data can be generated dynamically and its length is not known. If the data is

large or takes a long time to generate, one might want to start sending it before it is entirely generated.

Streaming data like that is made possible by TCP, which is usually the transport protocol use for

sending HTTP requests and responses over the network. When a TCP connection is established

between the client and the server, data can be sent over that connection in pieces.

In such situations, to solve the unknown Content-Length problem, a technique called content

streaming is used. Instead of indicating the entire content length, the entity will contain a series of

chunks, using a Transfer-Encoding: chunked header. Each chunk specifies its own size, and the end of

the series is marked with a zero-sized chunk.

When Content-Length is not known, a technique called content streaming is used. Instead of

indicating the entire content length, the entity will contain a series of chunks, using a Transfer-

Encoding: chunked header. Each chunk specifies its own size, and the end of the series is marked with

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 14 | Page

a zero-sized chunk. Using this technique client receives quick response from server and start

processing the data received instead of waiting for full data to be available.

C.Compressing SOAP response

One of the important features of HTTP [3] is its ability to compress the content of entities

exchanged between components. This feature relies on the Accept-Encoding and Content-Encoding

HTTP headers. REST frameworks like Jersey, Restlet, RESTEasy are capable of automatically

compressing and uncompressing entities exchanged with other remote components. For better

performance encoding must be enabled.

A major drawback of using SOAP for [10] application integration is its enormous demand

for network bandwidth. Compared to classical approaches, like Java-RMI and CORBA,

SOAP messages typically cause more than three times the network traffic. In this section

compression strategies are explored. Work explains how to use the available network

bandwidth effectively. Developed Compress Web service [12] returns a response containing a

data from MySQL student table. The response of web services is compressed at runtime

using java.util.zip.ZipOutputStream. Output of application is shown in Figure 2.

Figure 2: Output of ‘Compressor’ application, downloading compress.zip file

‗compress.zip‘ file contains temp.log text file. Compress Web service creates a zip file which can sent

to client. Thus the response time of a Web service is reduced. The response time of a Web service is

measured returning a normal data and Zip data [9]. Results are shown graphically in Figure 3.

Thus available network can be used effectively if large SOAP response is compressed at runtime.

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 15 | Page

Figure 3: Response time comparison

D. Partial representations

Suppose that, while receiving the representation of some resource in response to a GET request,

a client application suffers a temporary network problem that drops the connection to the server.

When the network is back and if the representation is large, a server must be able to request only the

missing part of the representation instead of restarting from the beginning. A client application may

needs a part of a particular representation. In this situation a server must be able to send only the

needed resource. For large data sets, this can reduce network traffic local storage capacity

requirements and improve performance.Because the server supports the range feature, a client can

obtain a specific portion of a resource‘s representation using the ranges property, which maps to the

Range header. Using this technique traffic on network is reduced.

E. Using Caching technique

Caching is one more technique of HTTP performance optimization mechanisms [11]. Caching

[1] is a technique in which frequently requested data is stored in memory so that the next time the

same information is requested; it can be fetched from memory, rather than asking to application. The

purpose of caching is to allow a client to keep previous responses sent by the server and reuse them

instead of performing real requests over the network. There are two main benefits of this approach:

reduced latency and reduced network traffic. HTTP provides powerful support for caching. If the

cached item has expired, either because the underlying data has changed, the time limit has run out, or

some dependency has changed, the cache will be invalidated and the next request will retrieve fresh

content from the source rather than the cache. This section demonstrates how to add items to the

cache. When a client issues a GET request, it can look in its local cache to see if this request has

previously been answered by the server and stored in the cache. If this is the case, and if the cached

response is fresh enough, the cached response will be used, without the need for network interactions

with the server.When implementing a RESTful system [8], caching mechanism is used. Information

about the cacheability of responses emitted by server-side application is specified. Caching is a

technique in which frequently requested data is stored in memory so that the next time the same

information is requested; it can be fetched from memory, rather than asking to application. The

purpose of caching is to allow a client to keep previous responses sent by the server and reuse them

instead of performing real requests over the network. Using this technique performance of web

application is improved.

F. Use of Conditional methods

0

200

400

600

800

10 50 100 200 300

R
e

sp
o

n
se

 T
im

e
 in

 m
se

c

Number of rows of table 'student'

Response Time Comparison

Time required to
send response
normally (response
in msec)

Time required to
send Zip response
(response in msec)

IOSR Journal of Computer Science (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727

PP 12-16

www.iosrjournals.org

International Conference on Advances in Engineering & Technology – 2014 (ICAET-2014) 16 | Page

Conditional methods are used to revalidate cached responses and prevent the lost updateproblem.

Sometimes a

client wants to ask the server to process a request only if certain conditions are met. HTTP supports

headers that allow conditional method processing [3]:

If-Match, If-Modified-Since, If-None-Match, and If-Unmodified-Since.

A client might want to retrieve the state of a resource (with a GET method), do some processing, and

then update the state on the server (with a PUT method) only if the resource state has not changed in

the meantime—for example, after concurrent accessing by another client. To achieve this, the client‘s

PUT request should include an If-Match header specifying the entity tag included in the response to

the previous GET request.

Conclusion

Web services are used for combining heterogeneous applications. Commercial web applications

need to use different heterogeneous applications. Therefore to achieve good performance of these web

applications the Web services used in it must perform in efficient manner. Empirical research work

conforms that performance of RESTful web services is improved using following techniques:

1. Using StringBuilder for handling large number of strings

2. Streaming large representations

3. Compressing SOAP response

4. Partial representation

5. Using Caching techniques

6. Use of Conditional methods

ACKNOWLEDGEMENTS

We thank teachers of Department of Computer Science, Shivaji University, Kolhapur for

motivating us for this research work. We wish to thank Principal of Thakur College of Science and

Commerce, Mumbai and Principal, Y.C. Institute of Science, Satara, for providing resources required

to perform experiments and to complete this paper.

REFERENCES
[1] Caching Guide, Mar 2012

a. URL: http://httpd.apache.org/docs/2.2/caching.html

[2] ETag, Entity Tag, Jan 2012

a. URL: http://optimizeasp.net/conditional-get

[3] Gourley D.; Totty B.; Sayer M.; Aggarwal A. and Reddy S. (2002), HTTP: The Definitive Guide, O'Reilly Media
JAX-RS, Java API for RESTful Services, 2011

a. URL: https://jax-rs-spec.java.net/

[4] Jersey, RESTful Web Services in Java, 2011
a. URL: https://jersey.java.net/

[5] Mazzetti P.; Nativi S.; Bigagli L. (2008), Integration of REST style and AJAX technologies to build Web applications; an

example of framework for Location-Based-Services, Information and Communication Technologies: From Theory to
Applications, ICTTA 2008. 3rd International Conference on, vol., no., 1 pp.6, 7-11 April 2008

[6] Meng J.; Mei S.; Zhao Y. (2009), RESTful Web Services: A Solution for Distributed Data Integration, Computational

Intelligence and Software Engineering, CiSE 2009. International Conference on, vol., no., pp.1-4, 11-13 Dec. 2009
[7] Richardson L. and Ruby S. (2007), RESTful Web Services, O‘Reilly Media

[8] SharpZipLib, Open source compression tool, 2012

a. URL: http://www.icsharpcode.net/opensource/sharpziplib/
[9] SOAP (2007) Version 1.2. W3C Recommendation (Second Edition), February 2010

a. URL: http://www.w3.org/TR/soap/

[10] Takase T. and Tatsubori M. (2004), Efficient Web services response caching by selecting optimal data representation. In

Proceedings of the 24th International Conference on Distributed Computing Systems, pages 188–197, Toronto, Canada. IEEE

Computer Society.

[11] Werner C.; Buschmann C. and Fischer S. (2005), WSDL-Driven SOAP Compression. International Journal of Web Services
Research, Vol. 2, Issue 1, pp. 18-35.

