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ABSTRACT: In this paper, we study Transport Control Protocol (TCP) in-cast congestion control. 

In cast may severely degrade their performances by increasing response time also we study among 

TCP throughput, round trip time (RTT) and receive window. Our idea is to design an ICTCP (In cast 

congestion Control for TCP) scheme at the receiver side. In particular, our method adjusts TCP 

receive window proactively before packet drops occur. The implementation and techniques 

demonstrate that we achieve al-most zero timeout and high good put for TCP in cast. In this paper, 

we discuss a cross layer congestion control technique of TCP. In cast congestion happens in high-

bandwidth and low-latency networks when multiple synchronized servers send data to the same 

receiver in parallel. For many important data-centre applications such as Map Reduce and Search, 

this many-to-one traffic pattern is common. Hence TCP in cast congestion may severely degrade their 

performances, e.g., by increasing response time. In this paper, we study TCP in cast in detail by 

focusing on the relationships between TCP throughputs, round-trip time (RTT). In particular, our 

method adjusts the TCP receive window proactively before packet loss occurs. The implementation 

and experiments in our test bed demonstrate that we achieve almost zero timeouts and high good put 

for TCP in cast. 

KEYWORDS: Transport Control Protocol (TCP), Congestion, Data center networks, incast 

congestion, round-trip time (RTT). 

 

I. INTRODUCTION 

The root cause of TCP incast collapse is that the highly burst traffic of multiple TCP 

connections overflows the Ethernet switch buffer in a short period of time, causing intense packet loss 

and thus TCP retransmission and timeouts. Previous solutions focused on either reducing the wait 

time for packet loss recovery with faster retransmissions [2], or controlling switch buffer occupation 

to avoid overflow by using ECN and modified TCP on both the sender and receiver sides [5]. This 

paper focuses on avoiding packet loss before incast congestion, which is more appealing than 

recovery after loss. Of course, recovery schemes can be complementary to congestion avoidance. The 

smaller the change we make to the existing system, the better. To this end, a solution that modifies 

only the TCP receiver is preferred over solutions that require switch and router support (such as ECN) 

and modifications on both the TCP sender and receiver sides. Our idea is to perform incast congestion 

avoidance at the receiver side by preventing incast congestion. The receiver side is a natural choice 

since it knows the throughput of all TCP connections and the available bandwidth. The receiver side 

can adjust the receive window size of each TCP connection, so the aggregate burstiness of all the 

synchronized senders are kept under control. We call our design Incast congestion Control for TCP 

(ICTCP). However, adequately controlling the receive window is challenging: The receive window 

should be small enough to avoid incast congestion, but also large enough for good performance and 

other nonincast cases. A well-performing throttling rate for one incast scenario may not be a good fit 

for other scenarios due to the dynamics of the number of connections, traffic volume, network 

conditions, etc. This paper addresses the above challenges with a systematically designed ICTCP. We 

first perform congestion avoidance at the system level. We then use the per-flow state to finely tune 

the receive window of each connection on the receiver side.  
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1.1 TCP Incast Congestion 

In fig1.1, a typical data-center network structure is there. There are three layers of switches/routers: 

the ToR switch, the Aggregate switch, and the Aggregate router. A detailed case for a ToR connected 

to dozens of servers. 

 

 
Fig.1.1: Data-center networks and a detailed illustration of a ToR switch connected to multiple 

rack-mounted servers. 

Incast congestion happens when multiple sending servers under the same ToR switch send 

data to one receiver server simultaneously, as shown in Fig. 1.2.  

 
 

            Fig.1.2: Scenario of incast congestion in data-center networks, where multiple ( ) TCP senders 

transmit data to the   same receiver under the same ToR switch. 

 

The amount of data transmitted by each connection is relatively small, e.g. 64 kB. The term 

goodputas it is effective throughput obtained and observed at the application layer. The multiple TCP 

connections are barrier-synchronized. First establish multiple TCP connections between all senders 

and the receiver, respectively. Then, the receiver sends out a (very small) request packet to ask each 

sender to transmit data, respectively, i.e., multiple requests packets are sent using multiple threads. 

The TCP connections are issued round by round, and one round ends when all connections on that 

round have finished their data transfer to the receiver. Here observed similar goodput trends for three 

different traffic amounts per server, but with slightly different transition points. 

 

II.  LITERATURE REVIEW & RELATED WORK 

As the Transport Control Protocol (TCP) is widely used on the Internet and generally works 

well. However, from recent studies A. Phanishayee, V. Vasudevan has shown that TCP does not work 

well for many-to-one traffic patterns on high-bandwidth, low-latency networks. Congestion occurs 

when manysynchronized servers under the same Gigabit Ethernet switch simultaneously send data to 

onereceiver in parallel. Only after all connections have finished the data transmission can the next 

round be issued. 

V. Vasudevan focused on either reducing the wait time for packet loss recovery with faster 

retransmissions and M. Alizadeh focused on controlling switch buffer occupation to avoid overflow 

by using ECN and modified TCP on both the sender and receiver sides. 

TCP incast has been identified and described by D. Nagle, D. Serenyi, and A. Matthews, the 

active Scale storage cluster delivering scalable high bandwidth storage in distributed storage clusters. 
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In distributed file systems, the files are deliberately stored in multiple servers.TCP incast congestion 

occurs when multiple blocks of a file are fetched from multiple servers at the same time. Several 

application-specific solutions have been proposed in the context of parallel file systems. With recent 

progress in data-center networking, TCP incast problems in data-center networks have become a 

practical issue. Since there are various data-center applications, a transport-layer solution can obviate 

the need for applications to build their own solutions and is therefore preferred and the study of TCP 

characteristics on high-bandwidth, low-latency networks. Then root cause of packet loss in incast 

congestion, and after observing that the TCP receive window is the right controller to avoid 

congestion, seek to the TCP receive window adjustment algorithm. 

 S. Kandula, S. Sengupta work on the nature of data center traffic, as that in a data center, 

traffic under the same ToR is actually a significant pattern known as work-seeks-bandwidth, as 

locality has been considered during job assignment. 

 

3. ICTCP Algorithm 
ICTCP provides a receive-window-based congestion control algorithm for TCP at the end-

system. The receive windows of all low-RTT TCP connections are jointly adjusted to control 

throughput on incast congestion. ICTCP algorithm closely follows the design points made. It is 

described how to set the receiver window of a TCP connection.  

3.1 Control Trigger: Available Bandwidth 
 It is assumed there is one network interface on a receiver server, and define symbols 

corresponding to that interface. This algorithm can be applied to a scenario where the receiver has 

multiple interfaces, and the connections on each interface should perform this algorithm 

independently. 

Assume the link capacity of the interface on the receiver server is G. Define the bandwidth of 

the total incoming traffic observed on that interface as BWT, which includes all types of packets, i.e., 

broadcast, multicast, unicast of UDP or TCP, etc. Then, define the available bandwidth on that 

bandwidth BWA interface as  

BWA=max (0, α*C- BWT) 

Where α € |0, 1 is a parameter to absorb potential oversubscribed bandwidth during window 

adjustment. A larger α (closer to 1) indicates the need to more conservatively constrain the receive 

window and higher requirements for the switch buffer to avoid overflow; a lower α indicates the need 

to more aggressively constrain the receive window, but throughput could be unnecessarily throttled. A 

fixed setting of BWA in ICTCP, an available bandwidth as the quota for all incoming connections to 

increase the receive window for higher throughput. Each flow should estimate the potential 

throughput increase before its receiving window is increased. Only when there is enough quota (BWA) 

can the receive window be increased, and the corresponding quota is consumed to prevent bandwidth 

oversubscription.  

 

3.2Per-Connection Control Interval: 2*RTT 
In ICTCP, each connection adjusts it’s receive window only when an ACK is sending out on 

that connection. No additional pure TCP ACK packets are generated solely for receive window 

adjustment, so that no traffic is wasted. For a TCP connection, after an ACK is sent out, the data 

packet corresponding to that ACK arrives one RTT later. As a control system, the latency on the 

feedback loop is one RTT for each TCP connection, respectively. Meanwhile, to estimate the 

throughput of a TCP connection for a receive window adjustment; the shortest timescale is an RTT 

for that connection. Therefore, the control interval for a TCP connection is 2*RTT in ICTCP, and 

needed one RTT latency for the adjusted window to take effect and one additional RTT to measure 

the achieved throughput with the newly adjusted receive window.  

3.3Fairness Controller for Multiple   Connections 
When the receiver detects that the available bandwidth has become smaller than the threshold, 

ICTCP starts to decrease the receiver window of the selected connections to prevent congestion. 
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Considering that multiple active TCP connections typically work on the same job at the same time in 

a data center, there is a method that can achieve fair sharing for all connections without sacrificing 

throughput. Note that ICTCP does not adjust the receive window for flows with an RTT larger than 

2ms, so fairness is only considered among low-latency flows. 

 

III. ANALYSIS OF PROBLEM 
The root cause of TCP incast collapse is that the highly bursty traffic of multiple TCP 

connections overflows the Ethernet switch buffer in a short period of time, causing intense packet loss 

and thus TCP retransmission and timeouts. Previous solutions focused on either reducing the wait 

time for packet loss recovery with faster retransmissions or controlling switch buffer occupation to 

avoid overflow by using ECN and modified TCP on both the sender and receiver sides. This paper 

focuses on avoiding packet loss before incast congestion, which is more appealing than recovery after 

loss. Of course, recovery schemes can be complementary to congestion avoidance. The smaller the 

change we make to the existing system, the better. To this end, a solution that modifies only the TCP 

receiver is preferred over solutions that require switch and router support (such as ECN) and 

modifications on both the TCP sender and receiver sides. Our idea is to perform incast congestion 

avoidance at the receiver side by preventing incast congestion. The receiver side is a natural choice 

since it knows the throughput of all TCP connections and the available bandwidth. The receiver side 

can adjust the receive window size of each TCP connection, so the aggregate burstiness of all the 

synchronized senders are kept under control. We call our design Incast congestion Control for TCP 

(ICTCP). 

 In previous versions the senders are sending many packets to the main server, but if the 

senders increase then the load on receiver side increases. As the window size on receiving side is less 

before, now we are increasing the window size so that it can accommodate many retransmission 

acknowledgements. 

 

IV. PROPOSED WORK AND OBJECTIVES 
When multiple synchronized servers send data to the same receiver in parallel. The sender will send 

the packet to TOR (Top of Rank) switch which send its packet to server. Due to the flexibility of the 

size of congestion window the rate of packet loss reduced but if the number of servers present is same 

and number of sender increases it leads to loss of packet because of the buffer overflow. To avoid this 

we are having one stack where the lost packets acknowledgement will be sent by the server to the 

sender to retransmit the lost packet. RTT of each packet will be given to each of the sender by the 

server to avoid the packet loss. In this paper we will be having one server and number of sender 

sending packet to the same receiver or server in this congestion may occur for this purpose we are 

designing a congestion window which can change its size according to the input and which can 

increase the throughput. 

And if congestion occurs again because of the buffer overflow then we will check the node 

having heavy traffic and will change the path of the packet and will transfer to the neighboring node 

having less traffic by checking in the routing table. Thus congestion can be avoided to large extend, 

but in the previous method we have only the provision or way to change the size of congestion 

window but here we are changing the path of the packet and transferring the packet from heavy traffic 

node to less traffic node.   

1. Retransmission of the lost packet. 

2. The TCP receive window proactively active before packet loss occurs. 
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Fig 1: Proposed work 
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