
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 10, Issue 1 (Mar. - Apr. 2013), PP 83-88
www.iosrjournals.org

www.iosrjournals.org 83 | Page

Mining Approach for Updating Sequential Patterns

Bhagyshri Lachhwani, Mehul P Barot
LDRP Institute of Research and Technology, Gandhinagar

Abstract:- We are given a large database of customer transactions, where each transaction consists of customer-

id, transaction time, and the items bought in the transaction. The discovery of frequent sequences in temporal

databases is an important data mining problem. Most current work assumes that the database is static, and a
database update requires rediscovering all the patterns by scanning the entire old and new database. We consider

the problem of the incremental mining of sequential patterns when new transactions or new customers are added to

an original database. In this paper, we propose novel techniques for maintaining sequences in the presence of a)

database updates, and b) user interaction (e.g. modifying mining parameters). This is a very challenging task,

since such updates can invalidate existing sequences or introduce new ones.

I. Introduction
Sequential pattern mining can mine only the maximal frequent subsequences, or all frequent

subsequences. An itemset is a non-empty set of items. A sequence is an ordered list of itemsets. Without loss of

generality, we assume that the set of items is mapped to a set of contiguous integers. We denote an itemset i by

(i1, i2, i3, ... im) where ij is an item1. We denote a sequence s by <s1, s2, s3, ... sn> where sj is an itemset.

A sequence <a1, a2, a3, ... an> is contained in another sequence <b1, b2, b3, ... bm> if there exists integers k1 < k2 <

... < kn such that a1 ⊆ bk1, a2 ⊆ bk2, ... an ⊆ bkn. For example, the sequence <(3) (4 5) (8)> is contained in <(7)

(3 8) (9) (4 5 6) (8)>, since (3) ⊆ (3 8), (4 5) ⊆ (4 5 6) and (8) ⊆ (8). However, the sequence <(3) (5)> is not

contained in <(3 5)> and vice versa. The former represents items 3 and 5 being bought one after the other, while

the latter represent items 3 and 5 being bought together.
In this paper our goal is to minimize the I/O and computation requirements for handling incremental

updates. Our algorithm accomplishes this goal by maintaining information about ―maximally frequent‖ and

―minimally infrequent‖ sequences. When incremental data arrives, the incremental part is scanned once to

incorporate the new information.

The new data is combined with the ―maximal‖ and ―minimal‖ information in order to determine the

portions of the original database that need to be re-scanned. This process is aided by the use of a vertical

database layout — where attributes are associated with the list of transactions in which they occur. The result is

an improvement in execution time by up to several orders of magnitude in practice, both for handling

increments to the database, as well as for handling interactive queries.

A record supports a sequence s if s is contained in it. The support count is incremented only once per

record. The support for a sequence is defined as the fraction of the whole data set that contains this sequence. If

this support ≤ min_sup, then the sequence is frequent.

II. Incrementally Mining Sequential Pattern Algorithms

2.1 The SPADE Algorithm

 In this section we describe SPADE [1], an algorithm for fast discovery of frequent sequences, which

forms the basis for our incremental algorithm. Sequence Lattice: SPADE uses the observation that the

subsequence relation ≤ defines a partial order on the set of sequences, i.e,if is a frequent sequence, then all

subsequences are also frequent. The algorithm systematically searches the sequence lattice spanned by the

subsequence relation, from the most general (single items) to the most specific frequent sequences (maximal

sequences) in a depth-first manner. For instance, in Figure1, the bold lines correspond to the lattice for the
example dataset.

 Support Counting: Most of the current sequence mining algorithms assume a horizontal database layout

such as the one shown in Figure 1. In the horizontal format, the database consists of a set of customers (cid‘s).

Each customer has a set of transactions (tid‘s), along with the items contained in the transaction. In contrast, we

use a vertical database layout, where we associate with each item X in the sequence lattice its idlist, denoted

L(X), which is a list of all customer(cid)and transaction identifier(tid) pairs containing the item. For example,

the idlist for the item C in the original database (Figure 1) would consist of the tuples {< 2,20>,< 2,30>}.

Mining Approach for Updating Sequential Patterns

www.iosrjournals.org 84 | Page

Given the per item idlists, we can iteratively determine the support of any k-sequence from the idlists of any two

ofits(k -1) length subsequences. In particular, we combine (intersect) 1 the two (k - 1) length subsequences that

share a common suffix(the generating sequences)to compute the support of a new k length sequence. A simple

check on the support of the resulting idlist tells us whether the new sequence is frequent or not.

Figure 1 :Original Database

If we had enough main-memory, we could enumerate all the frequent sequences by traversing the lattice, and

performing intersections to obtain sequence supports. In practice, however, we only have a limited amount of

main-memory, and all the intermediate idlists will not fit in memory. SPADE breaks up this large search space

into small, manageable chunks that can be processed independently in memory. This is accomplished via suffix-

based equivalence classes (henceforth denoted as a class). We say that two k length sequences are in the same

class if they share a common k -1 length suffix.

 The key observation is that each class is a sub-lattice of the original sequence lattice and can be
processed independently. Each suffix class is independent in the sense that it has complete information for

generating 1 Described in Zaki[1]. all frequent sequences that share the same suffix. For example, if a class[X]

has the elements Y -> X, and Z -> X as the only sequences, the only possible frequent sequences at the next step

can be Y -> Z -> X, Z -> Y -> X, and (YZ) -> X. It should be obvious that no other item Q can lead to a frequent

sequence with the suffix X, unless (QX)or Q-> X is also in[X].

Figure 2 : Enumerating Frequent Sequences

 SPADE recursively decomposes the sequences at each new level into even smaller independent classes.

For instance, at level one it uses suffix classes of length one (X,Y), at level two it uses suffix classes of length

two (X ->Y, XY) and so on. We refer to level one suffix classes as parent classes. These suffix classes are

processed one-by-one. Figure 2 shows the pseudo-code (simplified for exposition, see[1]for exact details) for

the main procedure of the SPADE algorithm. The input to the procedure is a class, along with the idlist for each

of its elements. Frequent sequences are generated by intersecting [1] the idlists of all distinct pairs of sequences

in each class and checking the support of the resulting idlist against min sup. The sequences found to be
frequent at the current level form classes for the next level. This level-wise process is recursively repeated until

all frequent sequences have been enumerated. In terms of memory management, it is easy to see that we need

memory to store intermediate idlists for at most two consecutive levels. Once all the frequent sequences for the

next level have been generated, the sequences at the current level can be deleted. For more details on SPADE,

see[1].

2.2 ISM

 The ISM algorithm, proposed by [2], is actually an extension of SPADE, which aims at considering the

update by means of the negative border and a rewriting of the database. Figure 3 is an example of a database and

its update (items in bold characters). We observe that three clients have been updated.

 The first iterations of SPADE on DBspade, ended in the lattice given in Figure1 (without the gray
section). The main idea of ISM is to keep the negative border (in gray, Figure 1) NB, which is made of j-

Mining Approach for Updating Sequential Patterns

www.iosrjournals.org 85 | Page

candidates, at the bottom of the hierarchy in the lattice. We can observe, in Figure 4 the lattice and negative

border for DBspade. Note that hash lines stand for a hierarchy that does not end in a frequent sequence.

The first step of ISM aims at pruning the sequences that become infrequent from the set of frequent sequences

after the update. The second step aims at taking into account the new frequent sequences one by one, in order to

make the information browse the lattice using the SPADE generating process. The field of observation

considered by ISM is thus limited to the new items.

Figure 3: DBspade, a database and its update

Let us consider item ‗‗C‘‘ in DBspade. This item only has a threshold of 1 sequence according to SPADE. After

the update given in Figure 3, ISM will consider that support, which is now of four sequences. ‗‗C‘‘ is now going

from NB to the set of frequent sequences. In the same way, the sequences <(A)(A)(B)> and <(A)(B)(B)>

become frequent after the update and go from NB to the set of frequent sequences. This is the goal of the first

step.

Figure 4: The negative border, considered by ISM after using SPADE on the database from Figure 3,

before the update

The second step is intended to consider the generation of candidates, but is limited to the sequences added to the

set of frequent sequences during the first step. For instance, sequences <(A)(A)(B)> and <(A)(B)(B)> can

generate the candidate <(A)(A)(B)(B)> which will have a support of 0sequences and will be added to the

negative border. After the update, the set of frequent sequences will thus be: A, B, C, <(A)(A)>, <(B)(A)>,
<(AB)>, <(A)(B)>, <(B)(B)>, <(A)(C)>, <(B)(C)>, <(A)(A)(B)>, <(AB)(B)>, <(A)(B)(B)>, <(A)(A)(C)>,

<(A)(B)(C)>.

At the end of the second and last step, the lattice is updated and ISM can give the new set of frequent sequences,

as well as a new negative border, allowing the algorithm to take a new update into account. As we observe in

Figure 4, the lattice storing the frequent itemsets and the negative border can be very large and memory

intensive.

2.3 SPAM

Ayres [4] proposed SPAM algorithm based on the key idea of SPADE. The difference is that SPAM

utilizes a bitmap representation of the database instead of {SI D, T I D} pairs used in the SPADE algorithm.
Hence, SPAM can perform much better than SPADE and others by employing bitwise operations.

Mining Approach for Updating Sequential Patterns

www.iosrjournals.org 86 | Page

While scanning the database for the first time, a vertical bitmap is constructed for each item in the database, and

each bitmap has a bit corresponding to each itemset (element) of the sequences in the database. If an item

appears in an itemset, the bit corresponding to the itemset of the bitmap for the item is set to one; otherwise, the

bit is set to zero. Figure 5 shows the bitmap vertical table.

\

Figure 5: Bitmap Vertical Table

Figure 6: SPAM S-Step join

To generate and test the candidate sequences, SPAM uses two steps, S-step and I- step, based on the lattice

concept. To extend a sequence, the S-step appends an item to it as the new last element, and the I-step appends

the item to its last element if possible. The resultant bitmap of the S-step can be obtained by doing ANDing

operation for the transformed bitmap and the bitmap of the appended item. Figure 6 illustrates how to join two
1-length patterns, a and b, based on the example database. I-step uses the bitmaps of the sequence and the

appended item to do ANDing operation to get the resultant bitmap, as shown in Figure 7, which extend the

pattern <ab> to the candidate <a(bc)>. The support counting becomes a simple check how many bitmap

partitions not containing all zeros.

The main drawback of SPAM is the huge memory space necessary. For example, although an item, α,

does not exist in a sequence, s, SPAM still uses one bit to represent the existence of α in s. This disadvantage

restricts SPAM as a best algorithm on mining large datasets in limit resource environments.

Figure 7: SPAM I-Step join

2.4 Ise

 In [2] the main consequence of adding new customers is to verify the support of the frequent sequences

in LDB. During the first pass on db, we count the support of individual items and are provided with 1-candExt

standing for the set of items occurring at least once in db. This set is called L1
db.The frequent 1-sequences in db

to generate new candidates. This candidate generation works by joining L1
db with L1

db and yields the set of

Mining Approach for Updating Sequential Patterns

www.iosrjournals.org 87 | Page

candidate 2-sequences.Such a set is called 2-candExt. This phase is quite different from the GSP approach since

we do not consider the support constraint. A candidate 2-sequence is in 2-candExt if and only if it occurs at least

once in db. Next, we scan U to find out frequent 2-sequences from 2-candExt. This set is called freqExt and it is

achieved by discarding the 2-sequences that do not verify the minimum support from 2-candExt.

During the scan to find 2-freqExt, we also obtain the set of frequent sub-sequences preceding items of db. From

this set, by appending the items of db to the frequent sub-sequences we obtain a new set of frequent sequences.

This set is called freqSeed.In subsequent iterations we go on to discover the all frequent sequences not yet
embedded in freqSeed and 2-freqExt.

 Assume that we are at the jth pass. In these subsequent iterations, we start by generating new

candidates from the two sets found in the previous pass. The main idea of candidate generation is to retrieve

from among sequences of freqSeed and j-freqExt, two sequences (s ∈ freqSeed; s‘ ∈ j-freqExt) such that the

last item of s is the first item of s‘. When such a condition hold items for a pair (s, s‘), a new candidate sequence

is built by dropping the last of s and appending s‘ to the remaining sequence.

Figure 8: ISE iterations with j ≥ 2

for all candidates are then obtained by scanning U and those with minimum support become frequent sequences.

The two sets become, respectively, freqInc and (j + 1)-freqExt. The last one and freqSeed are then used to

generate new candidates.

III. Proposed New Algorithm
The original large and pre-large sequences with their counts from preceding runs are retained for later

use in maintenance. As new transactions are added, the proposed approach first transforms them into new

customer sequences and merges them with the corresponding old sequences existing in the original database.

The newly merged customer sequences are then scanned to generate candidate 1-sequences with occurrence

increments. These candidate sequences are compared to the large and pre-large 1-sequences which were

previously retained.

These candidate sequences are divided into three parts according to whether they are large, pre-large or

small in the original database. If a candidate 1-sequence is also among the previously retained large or prelarge
1-sequences, its new total count for the entire updated database can easily be calculated from its current count

increment and previous count, since all previous large and pre-large sequences with their counts have been

retained. Whether an original large or pre-large sequence is still large or pre-large after new transactions are

added is then determined from its new support ratio, which is derived from its total count over the total number

of customer sequences.

If a candidate 1-sequence does not exist among the previously retained large or pre-large 1-sequences,

then the sequence is absolutely not large for the entire updated database when the number of newly merged

customer sequences is within the safety bound. In this situation, no action is needed. When new transaction data

are incrementally added and the total number of newly added customer sequences exceeds the safety bound, the

original database must be re-scanned to find new large and pre-large sequences.

The proposed approach can thus find all large 1-sequences for the entire updated database. After that,

candidate 2-sequences from the newly merged customer sequences are formed, and the same procedure is used
to find all large 2-sequences. This procedure is repeated until all large sequences have been found.

Two global variables, c and b, are used to accumulate, respectively, the number of newly added

customer sequences and the number of newly added customer sequences belonging to old customers since the

last re-scan of the original database.

The Output is a set of final large sequential patterns for the updated database.The procedure works as

follows first the value [(Su - Sl)d] / (1 - Su) is calculated where d is the number of customer sequences in D , Su

is the upper support threshold for large sequences,Sl is the lower support threshold for pre-large sequences, Sl <

Su.Then, Merge the newly added customer sequences with the old sequences in the original database,after that

Mining Approach for Updating Sequential Patterns

www.iosrjournals.org 88 | Page

one temporary variable is taken say q, which is the number of the newly added customer sequences belonging to

old customers. Then one variable say h is taken and b = b + q and calculate the value of the term as: h =

bSu / (1 - Su) ,where b is the accumulative amount of q since the last re-scan.Then one variable say k is taken

and initially Set k = 1, where k is used to record the number of itemsets in the sequences currently being

processed. Then Find all candidate k-sequences Ck and their count increments from the newly merged customer

sequences T. Divide the candidate k-sequences into three parts according to whether they are large, pre-large or

small in the original database. In this way find all the large or pre-large sequences of newly added transactions
and customers from updated database. For deciding whether the sequences are large or pre-large do the

following, for each k-sequence I in the original large k-sequences Lk
D (i)Set the new count SU(I) = ST(I) + SD(I).

(ii)If SU(I)/(d + c + t - b) ≥ Su, then assign I as a large sequence, set SD(I) = SU(I) and keep I with SD(I);

otherwise, if SU(I)/(d + c + t - b) ≥ Sl, then assign I as a pre-large sequence, set SD(I) = SU(I) and keep I with

SD(I); otherwise, ignore I. where I is sequence, SD(I) is the number of occurrences of I in D. ST(I) is the number

of occurrence increments of I in T.SU(I) is the number of occurrences of I in U. d is the number of customer

sequences in D. t is the number of customer sequences in T. Same way Pre-large sequences are decided. Put I in

the rescan-set R for each k-sequence I in the candidate k-sequences Ck that is neither in the original large

sequences Lk
D nor in the pre-large sequences Pk

D, for use when rescanning in Step 10 is necessary. Now if c + t

≤ f - h or R is null, then do nothing; otherwise, rescan the original database to determine whether the sequences

in the rescan-set R are large or pre-large. Form candidate (k + 1)-sequences Ck + 1 from finally large and pre-
large k-sequences (Lk

D U Pk
D) that appear in the newly merged transactions. where Lk

D is the set of large k-

sequences from D. Lk
T
 is the set of large k-sequences from T. Lk

U
 is the set of large k-sequences from U. Pk

D
 is

the set of pre-large k-sequences from D. Pk
T is the set of pre-large k-sequences from T. Pk

U is the set of pre-large

k-sequences from U. Ck is the set of all candidate k-sequences from T. Increment value of k by 1. Repeat the

above STEPs until no new large or pre-large sequences are found. Modify the maximal large sequence patterns

according to the modified large sequences. Now If c + t > f - h, then set d = d + c + t, c = 0 and b = 0;

otherwise, set c = c + t. After all these steps the finally maximal large sequences for the updated database can be

determined.

IV. Conclusion
Memory Management SPADE simply requires per item idlists. The vertical database is partitioned into

a number of blocks such that each individual block fits in memory. Each block contains the vertical

representation of all transactions involving a set of customers. Within each block there exists an item

dereferencing array, pointing to the first entry for each item. Given a customer, and an item, we first identify the

block containing the customer‘s transactions using a first level cid-index (hash function). The second item-index

then locates the item within the given block. After this we perform a linear search for the exact customer

identifier. Using this two level indexing scheme we can quickly jump to only that portion of the database which

will be affected by the update, without having to touch the entire database. Note that using a vertical data format

we were able to efficiently retrieve all affected item‘s cids, without having to touch the entire database. This is

not possible in the horizontal format, since a given item can appear in any transaction, which is found by

scanning the entire data.ISM allows the algorithm to take a new update into account but for frequent itemsets
and the negative border can be very large and memory intensive. SPAM utilizes a bitmap representation of the

database and perform much better than SPADE but for it the huge memory space necessary. ISE provides all the

frequent sequences in the updated database. The assumptions with this new technique are taken that 1) It avoids

recomputing large sequences that have already been discovered. 2) It focuses on newly added customer

sequences, which are transformed from newly added transactions, thus greatly reducing the number of candidate

sequences. 3) It uses a simple check to further filter candidate sequences in newly added customer sequences. 4)

It effectively handles the case, in which sequences are small in an original database.

References
[1] M. J. Zaki. Efficient enumeration of frequent sequences. In 7th CIKM, 1998

[2] Florent Masseglia; Pascal Poncelet; Maguelonne Teisseire;, ―Incremental mining of sequential patterns in large databases,‖ Data &

Knowledge Engineering, pp. 97-121, 2003
[3] S. Parthasarathy; M. Zaki; M. Ogihara; S. Dwarkadas; , ―Incremental and interactive sequence mining,‖ In Proceedings of the 8th

International Conference on Information and Knowledge Management (CIKM‘ 99), pp. 251–258, 1999

[4] J. Ayres; J. Gehrke; T. Yiu; J. Flannick; , ―Sequential pattern mining using a bitmap representation,‖ In Proceedings of ACM

SIGKDD International Confer ence on Knowledge Discovery and Data Mining, pp. 429–435, 2002

