
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 11, Issue 6 (May. - Jun. 2013), PP 15-19
www.iosrjournals.org

www.iosrjournals.org 15 | Page

Comparison Study of Lossless Data Compression Algorithms for

Text Data

Arup Kumar Bhattacharjee
1
, Tanumon Bej

2
, Saheb Agarwal

3

1, 2, 3(Dept. of MCA, RCC Institute of Information Technology, India)

 Abstract : Data Compression is the technique through which, we can reduce the quantity of data, used to

represent content without excessively reducing the quality of the content. This paper examines the performance

of a set of lossless data compression algorithm, on different form of text data. A set of selected algorithms are

implemented to evaluate the performance in compressing text data. A set of defined text file are used as test bed.

The performance of different algorithms are measured on the basis of different parameter and tabulated in this

article. The article is concluded by a comparison of these algorithms from different aspects.

Keywords - Encryption, Entropy Encoding, Dictionary Encoding, Compression Ratio, Compression time, Test

Bed.

I. Introduction:
 Compression is the art of representing information in a compact form rather than its original or

uncompressed form [1]. The main objective of data compression is to find out the redundancy and eliminate

them through different efficient methodology; so that the reduced data can save, space: to store the data, time: to
transmit the data and cost: to maintain the data. To eliminate the redundancy, the original file is represented with

some coded notation and this coded file is known as ‘encrypted file’. For any efficient compression algorithm

this file size must be less than the original file. To get back the original file we need to ‘decrypt’ the encoded

file. In this paper we have selected 10 different file as test bed, and implemented 3 lossless compression

algorithms, namely Huffman Compression Algorithm, Shannon Fano Compression Algorithm, Lempel Zev

Welch (LZW) Compression Algorithm; and applied them on those test bed to evaluate the compression time,

compression ratio, decompression time etc.

II. Types Of Compression:
Compression can be of two types: Lossless Compression, Lossy Compression.

2.1) Lossless Compression: In the process compression if no data is lost and the exact replica of the original

file can be retrieved by decrypting the encrypted file then the compression is of lossless compression type. Text

compression is generally of lossless type. In this type of compression generally the encrypted file is used for

storing or transmitting data, for general purpose use we need to decrypt the file.

Lossless compression technique can be broadly categorized in to two classes:

i) Entropy Based Encoding: In this compression process the algorithm first counts the frequency of

occurrence of each unique symbol in the document. Then the compression technique replaces the symbols

with the algorithm generated symbol. These generated symbols are fixed for a certain symbol of the

original document; and doesn’t depend on the content of the document. The length of the generated

symbols is variable and it varies on the frequency of the certain symbol in the original document.

Comparison study of lossless data compression algorithms for text data

www.iosrjournals.org 16 | Page

ii) Dictionary Based Encoding: This encoding process is also known as substitution encoding. In this

process the encoder maintain a data structure known as ‘Dictionary’ [3]. This is basically a collection of

string. The encoder matches the substrings chosen from the original text and finds it in the dictionary; if a
successful match is found then the substring is replaced by a reference to the dictionary in the encoded file.

2.2) Lossy Compression: Lossy Compression is generally used for image, audio, video; where the compression

process neglects some less important data. The exact replica of the original file can’t be retrieved from the

compressed file. To decompress the compressed data we can get a closer approximation of the original file.

III. Measurement Parameter:
 Depending on the use of the compressed file the measurement parameter can differ. Space and time

efficiency are two most important factors for a compression algorithm.
 Performance of the compression algorithm largely depends on the redundancy on the source data. So

to generalize the test platform we used same test files for all the algorithms. The parameters were as follows:

Compression Ratio: The ratio between the compressed file and the original file.

Compression Ratio =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

Compression Factor: The ratio between the original file and the compressed file.

This is basically the inverse of the Compression Ratio.

 Compression Factor =
1

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜
 OR

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟 𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

Saving Percentage: The percentage of the size reduction of the file, after the compression.

Saving Percentage =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
%

Compression Time: The time taken by the algorithm to compress the file. Calculated in milliseconds (ms).

Decompression Time: The time taken by the algorithm to decompress and retrieve the original file from
compressed file. It is also calculated in milliseconds.

 The compression time and decompression time is important in case of the applications where the algorithms

are used to transmit the data, or to store the data in a secondary storage and retrieve it as required.

IV. Compression Algorithms:
 Three lossless algorithms (two of Entropy encoding type: Huffman Compression & Shannon Fano

Compression and one Dictionary encoding type: LZW Compression) was implemented using JAVA.

4.1) Huffman Compression: Huffman coding is used for lossless data compression. The term refers to the use
of a variable length code for encoding a source symbol (such as a character in a file).The variable-length code

table has been derived in a particular way, based on the estimated probability of occurrence for each possible

value of the source symbol. In this compression technique a table is created incorporating the no of occurrences

of an individual symbol, this table is known as frequency table. This table is arranged in a certain order and

then a tree is generated from that table, in this tree high frequency symbols are assigned codes which have fewer

bits, and less frequent symbols are assigned codes with many bits. In this way the code table is generated.

4.2) Shannon Fano Compression: Named after Claude Shannon and Robert Fano, variable length code for

encoding a source symbol, lossless data compression scheme, Entropy encoding, According to Shannon's source

coding theorem, the optimal code length for a symbol is –log b P, where b is the number of symbols used to

make output codes and P is the probability of the input symbol [5, 6]. Similar to the Huffman coding, initially a

frequency table is generated, then a particular procedure is followed to produce the code table from frequency

4.3) LZW Compression: Named after Abraham Lampel , Jacob Zev and Terry Welch, it is dictionary coder or

substitution coder, which means a dynamic dictionary is created depending upon the presence of substring

chosen from the original file. Then the substring is matched with the Dictionary, if the string is found then a

reference of the dictionary is mentioned in the encoded file, if the string is not found then a new dictionary entry

is made with a new reference [8].

 In all algorithms the encoded file contains the code table/ Dictionary and the encoded text; the encoder

matches the codes with the directory (code table/ dictionary) and retrieves the original text iteratively.

Comparison study of lossless data compression algorithms for text data

www.iosrjournals.org 17 | Page

V. Test Bed:
For test bed we have selected 10 files to test the algorithms. The descriptions of the files are as follows:

Test beds Size(kb) type Extension Content

1. 93.5 Rich text document .doc Content of book, less white

space, less repetition of symbol

2. 50 Spreadsheet document .xls List document, repetition of

same type of word, less white

space

3. 33.5 Rich text document .doc Content of database query,

contains lots of white space and

tab space

4. 516 Database file .mdb Collection of tables,

less white space & null value,

repetition of same type of word

5. 208 Database file .mdb No null value, fewer table data

6. 6.11 Text document .txt Same content repeated multiple

time, contains white space

7. 99.5 Spreadsheet document .xls Repetition of same type of word,

less null value

8. 44 Rich text document .doc Contains programs, lots of

special character, lots of white

space, repetition of same

character as well as same word

9. 135 Rich text document .docx Output sequence, contains lots of

white space

10. 45.1 Text document .txt Contains programs, lots of tab

space, and same contain repeated

multiple time

VI. Result:
The result found by implementing the algorithms over the test files we get the following results:

6.1) Huffman Compression:
Original File Huffman Compression & Decompression

S.No File Size

(Bytes)

Comp File

Size

(Bytes)

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp Time

(mS)

1 96256 54272 0.56383 1.773585 0.43617 180 1110

2 51200 26624 0.52 1.923077 0.48 90 550

3 34816 13312 0.382353 2.615385 0.617647 60 300

4 528384 139264 0.263566 3.794118 0.736434 250 2990

5 212992 44032 0.206731 4.837209 0.793269 160 1110

6 7168 5120 0.714286 1.4 0.285714 20 100

7 102400 61440 0.6 1.666667 0.4 260 1240

8 45056 20480 0.454545 2.2 0.545455 100 440

9 139264 80896 0.580882 1.721519 0.419118 320 1890

10 47104 29696 0.630435 1.586207 0.369565 130 500

6.2) Shannon Fano Compression:
Original File Shannon-Fano Compression & Decompression

S.N

o

File Size

(Bytes)

Comp File

Size

(Bytes)

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp

Time (mS)

1 96256 59393 0.617032 1.620662 0.382968 260 1550

2 51200 30720 0.6 1.666667 0.4 130 620

3 34816 16384 0.470588 2.125 0.529412 90 400

4 528384 196608 0.372093 2.6875 0.627907 390 4160

5 212992 68608 0.322115 3.104478 0.677885 250 1460

6 7168 5120 0.714286 1.4 0.285714 30 80

7 102400 67584 0.66 1.515152 0.34 270 1320

8 45056 24576 0.545455 1.833333 0.454545 50 590

9 139264 87040 0.625 1.6 0.375 270 1700

10 47104 31744 0.673913 1.483871 0.326087 60 510

Comparison study of lossless data compression algorithms for text data

www.iosrjournals.org 18 | Page

6.3) LZW Compression:
Original File LZW Compression & Decompression

S.No File Size

(Bytes)

Comp File

Size (Bytes)

Compression

Ratio

Compression

Factor

Saving

Percentage

Comp

Time

(mS)

Decomp Time

(mS)

1 96256 41984 0.43617 2.292683 0.56383 180 330

2 51200 20480 0.4 2.5 0.6 170 570

3 34816 10240 0.294118 3.4 0.705882 110 60

4 528384 57344 0.108527 9.214286 0.891473 1910 130

5 212992 17408 0.081731 12.23529 0.918269 660 120

6 7168 4096 0.571429 1.75 0.428571 170 40

7 102400 49152 0.48 2.083333 0.52 310 300

8 45056 17408 0.386364 2.588235 0.613636 160 160

9 139264 72704 0.522059 1.915493 0.477941 410 350

10 47104 20480 0.434783 2.3 0.565217 130 180

VII. Comparison:
 From the data presented in the above tables it can be concluded that LZW provide better result than

other two methods. The values drawn from the three algorithms on the basis of compressed file size,

compression time and decompression time are compared through graphical representation. For the cardinality of

the graph the data were sorted according to the ascending order of the file size.

Comparison study of lossless data compression algorithms for text data

www.iosrjournals.org 19 | Page

VIII. Conclution and Future Scope:
 From the compression and decompression time we can conclude that LZW take much more time to

compress a file than the other two algorithms whereas decompression of a file is much faster than other two

algorithms. The average decompression time of Shannon Fano algorithm is higher than the Huffman

Decompression. In case of decompressed file size LZW give better result than other two algorithms, however it

can also be concluded that depending on the content of the original file, the performance of the algorithm varies.

 In this paper we have compared three lossless data compression algorithm and our text bed was limited
in text data, In future, more compression algorithms(both lossless and lossy) can be implemented over a larger

test bed which includes audio, video and image data. And then a system can be implemented which will detect

the file type and then depending on that it will choose the appropriate compression technique for the file.

Reference:
[1] Pu, I.M., 2006, Fundamental Data Compression, Elsevier, Britain.

[2] Kaufman, K. and T. Shmuel, 2005. Semi-lossless text compression, Intl. J. Foundations of Computer Sci., 16: 1167-1178.

[3] Kesheng, W., J. Otoo and S. Arie, 2006. Optimizing bitmap indices with efficient compression, ACM Trans. Database

 Systems, 31: 1-38.

[4] Introduction to Data Compression, Khalid Sayood, Ed Fox(Editor), March 2000

[5] Shannon, C.E. (July 1948). "A Mathematical Theory of Communication". Bell System Technical Journal 27: 379–423.

[6] Fano, R.M. (1949). "The transmission of information". Technical Report No. 65 (Cambridge (Mass.), USA: Research Laboratory of

Electronics at MIT).

[7] Terry Welch, "A Technique for High-Performance Data Compression", IEEE Computer, June 1984, p. 8–19.

[8] Jacob Ziv and Abraham Lempel; Compression of Individual Sequences Via Variable-Rate Coding, IEEE Transactions on

Information Theory, September 1978.

[9] Improved wordaligned binary compression for text indexing, Vo Ngoc and M. Alistair, 2006. IEEE Trans. Knowledge & Data

Engineering, 18: 857-861.

[10] Data compression using dynamic Markov modeling, Cormak, V. and S. Horspool, 1987. Comput. J., 30: 541–550.

[11] Bounds on the redundancy of Huffman codes, Capocelli, M., R. Giancarlo and J. Taneja, 1986. IEEE Trans. Inf. Theory, 32: 854–

857.

[12] Data compression for estimation of the physical parameters of stable and unstable linear systems, Gawthrop, J. and W. Liuping,

2005. Automatica, 41: 1313-1321.

