
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 11, Issue 6 (May. - Jun. 2013), PP 89-96
www.iosrjournals.org

www.iosrjournals.org 89 | Page

Affable Compression through Lossless Column-Oriented

Huffman Coding Technique

Punam Bajaj
1
, Simranjit Kaur Dhindsa

2

Computer Science Engineering Department, Chandigarh Engineering Collage, Landran, Mohali, Punjab

Abstract: Compression is a technique used by many DBMSs to increase performance. Compression improves

performance by reducing the size of data on disk, decreasing seek times, increasing the data transfer rate and

increasing buffer pool hit rate [1]. Column-Oriented Data works more naturally with compression because

compression schemes capture the correlation between values; therefore highly correlated data can be

compressed more efficiently than uncorrelated data. The correlation between values of the same attribute is

typically greater than the correlation between values of different attributes. Since a column is a sequence of

values from a single attribute, it is usually more compressible than a row [4].

In this paper we proposed the Lossless method of Column-Oriented Data-Image Compression and

Decompression using a simple coding technique called Huffman Coding. This technique is simple in

implementation and utilizes less memory [2]. A software algorithm has been developed and implemented to
compress and decompress the created Column-oriented database image using Huffman coding techniques in a

MATLAB platform.

Keywords- Compression, Column-Oriented Data-Image Compression and Decompression, Huffman coding.

I. Introduction:
Column-oriented DBMS‟s are currently under development. Column oriented DBMS‟s differ from

Row-Oriented DBMS‟s in the layout of data on disk [4]. In Column Oriented each value of an attribute

(column) is stored contiguously on disk; in a row store the values of each attribute in a tuple are stored

contiguously. Compression is a technique used by many DBMSs to increase performance. Compression
improves performance by reducing the size of data on disk, decreasing seek times, increasing the data transfer

rate and increasing buffer pool hit rate [1]. Intuitively, data stored in columns is more compressible than data

stored in rows. Column-oriented Compression algorithms perform better on data with low information entropy

(high data value locality) [3]. Eg. Imagine a database table containing information about customers (name,

phone number, e-mail address, e-mail address, etc.). Storing data in columns allows all of the names to be stored

together, all of the phone numbers together, etc. Certainly phone numbers will be more similar to each other

than surrounding text fields like e-mail addresses or names [4]. Further, if the data is sorted by one of the

columns, that column will be super-compressible. Column data is of uniform type; therefore, there are some

opportunities for storage size optimizations available in column-oriented data that are not available in row-

oriented data. This has advantages for data warehouses and library catalogues where aggregates are computed

over large numbers of similar data items [5].

Therefore, Column-Oriented Compression are better than traditional Row-oriented Compression as
applications require higher storage and easier availability of data, the demands are satisfied by better and faster

techniques [7].

II. Column-Oriented Compression
Compression is possible for data that are redundant or repeated in a given test set. Compression is a

technique used by many DBMSs to increase performance. Compression improves performance by reducing the

size of data on disk, decreasing seek times, increasing the data transfer rate and increasing buffer pool hit rate

[1]. Intuitively, data stored in columns is more compressible than data stored in rows.

Compression is usually of three types:
• Data Compression

• Image Compression

• Graphical Compression

But in our paper, we are performing Data Compression by embedding that data into Images i.e. by using

Column-Oriented Image Compression.

Column data is of uniform type; therefore, there are some opportunities for storage size optimizations available

in Column-oriented data that are not available in Row-oriented data. Compression is useful because it helps

reduce the consumption of expensive resources, such as hard disk space or transmission bandwidth.

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 90 | Page

Infobright is an example of an open source Column-Oriented DBMS built for high-speed reporting and

analytical queries, especially against large volumes of data. Data that required 450GB of storage using SQL

Server required only 10GB with Infobright, due to Infobright‟s massive compression and the elimination of all
indexes. Using Infobright, overall compression ratio seen in the field is 10:1. Some customers have seen results

of 40:1 and higher. Eg.1TB of raw data compressed 10 to 1 would only require 100 GB of disk capacity [5].

Customer’s Test Alternative Infobright

Analytic Queries 2+ hours with MySQL <10 seconds

1 Month Report (15MM Events) 43 min with SQL Server 23 seconds

Oracle Query Set 10 seconds- 15 minutes 0.43-22 seconds

Table 1 Performance Output Difference
Therefore, we can conclude that Column-Oriented Data Compression performs better than traditional Row-

oriented Compression as applications require higher storage and easier availability of data, the demands are

satisfied by better and faster techniques [7].

III. Image Compression
A digital image obtained by sampling and quantizing a continuous tone picture requires an enormous

storage. For instance, a 24 bit color image with 512x512 pixels will occupy 768 Kbyte storage on a disk, and a
picture twice of this size will not fit in a single floppy disk. To transmit such an image over a 28.8 Kbps modem

would take almost 4 minutes. The purpose for image compression is to reduce the amount of data required for

representing sampled digital images and therefore reduce the cost for storage and transmission. Image

compression plays a key role in many important applications, including image database, image communications,

and remote sensing.

The image(s) to be compressed are gray scale with pixel values between 0 to 255. There are different

techniques for compressing images [6]. They are broadly classified into two classes called lossless and lossy

compression techniques. As the name suggests in lossless compression techniques, no information regarding the

image is lost. In other words, the reconstructed image from the compressed image is identical to the original

image in every sense. Whereas in lossy compression, some image information is lost, i.e. the reconstructed

image from the compressed image is similar to the original image but not identical to it. In this work we will use
a lossless compression and decompression through a technique called Huffman coding (i.e. Huffman encoding

and decoding) [6].

It‟s well known that the Huffman‟s algorithm is generating minimum redundancy codes compared to

other algorithms. The Huffman coding has effectively used in text, image, video compression, and conferencing

system such as, JPEG, MPEG-2, MPEG-4, and H.263etc.. The Huffman coding technique collects unique

symbols from the source image and calculates its probability value for each symbol and sorts the symbols based

on its probability value. Further, from the lowest probability value symbol to the highest probability value

symbol, two symbols combined at a time to form a binary tree. Moreover, allocates zero to the left node and one

to the right node starting from the root of the tree. To obtain Huffman code for a particular symbol, all zero and

one collected from the root to that particular node in the same order [8].

IV. Need For Compression
Research indicates that the size of the largest data warehouses doubles every three years. According to

Wintercorp‟s 2005 TopTen Program Summary, during the five year period between 1998 and 2003, the size of

the largest data warehouse grew at an exponential rate, from 5TB to 30 TB. But in four year period between

2001 and 2005, that exponential rate increased, with the largest data warehouse growing from 10 TB to 100 TB

[9].

To store these data including images, audio files, videos etc, and make them available over network

(e.g. the internet), compression techniques are needed. Image compression addresses the problem of reducing

the amount of data required to represent digital image. The underlying basis of the reduction process is the

removal of redundant data. According to mathematical point of view, this amounts to transforming a two-
dimensional pixel array into a statistically uncorrelated data set. The transformation is applied prior to storage or

transmission of the image. At receiver, the compressed image is decompressed to reconstruct the original image

or an approximation to it. The example below clearly shows the importance of compression. An image, 1024

pixel×1024 pixel×24 bit, without compression, would require 3 MB of storage and 7 minutes for transmission,

utilizing a high speed, 64Kbits/s, ISDN line. If the image is compressed at a 10:1 compression ratio, the storage

requirement is reduced to 300 KB and the transmission time drop to less than 6 seconds.

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 91 | Page

4.1 Principle behind Compression
A common characteristic of most images is that the neighboring pixels are correlated and therefore

contain redundant information. The foremost task then is to find less correlated representation of the image.

Two fundamental components of compression are redundancy and irrelevancy reduction.

a) Redundancies reduction aims at removing duplication from the signal source (image/video).

b) Irrelevancy reduction omits parts of the signal that will not be noticed by the signal receiver, namely the

Human Visual System.

In an image, which consists of a sequence of images, there are three types of redundancies in order to compress

file size. They are:

a) Coding redundancy: Fewer bits to represent frequently occurring symbols.

b) Inter-pixel redundancy: Neighboring pixels have almost same value.

c) Psycho visual redundancy: Human visual system cannot simultaneously distinguish all colors.

V. Various Types Of Redundancy
In digital image compression, three basic data redundancies can be identified and exploited:

a. Coding redundancy

b. Inter pixel redundancy

c. Psycho visual redundancy

Data compression is achieved when one or more of these redundancies are reduced or eliminated.

5.1 Coding Redundancy
A gray level image having n pixels is considered. Let us assume, that a discrete random variable rk in

the interval (0,1) represents the grey levels of an image and that each rk occurs with probability Pr(rk).

Probability can be estimated from the histogram of an image using

Pr(rk) = hk/n for k = 0,1……L-1

Where L is the number of grey levels and hk is the frequency of occurrence of grey level k (the number of times

that the kth grey level appears in the image) and n is the total number of the pixels in the image. If the number of

the bits used to represent each value of rk is l(rk), the average number of bits required to represent each pixel is :

Hence the number of bits required to represent the whole image is n x Lavg. Maximal compression ratio

is achieved when Lavg is minimized. Coding the gray levels in such a way that the Lavg is not minimized results

in an image containing coding redundancy. Generally coding redundancy is presented when the codes (whose

lengths are represented here by l(rk) function) assigned to a gray levels don't take full advantage of gray level‟s

probability (Pr(rk)function). Therefore it almost always presents when an image's gray levels are represented

with a straight or natural binary code. A natural binary coding of their gray levels assigns the same number of

bits to both the most and least probable values, thus failing to minimize equation and resulting in coding

redundancy.

Example of Coding Redundancy: An 8-level image has the gray level distribution shown in table I. If a natural

3-bit binary code is used to represent 8 possible gray levels, Lavg is 3- bits, because l rk= 3 bits for all rk . If code
2 in table I is used, however the average number of bits required to code the image is reduced to:

Lavg = (0.19) + 2(0.25) +2(0.21) + 3(0.16) + 4(0.08) + 5(0.06) + 6(0.03) + 6(0.02) =2.7 bits.

From equation of compression ratio (n2/n1) the resulting compression ratio CR is 3/2.7 = 1.11. Thus

approximately 10% of the data resulting from the use of code 1 is redundant. The exact level of redundancy can

be determined from equation RD = 1 – 1/1.11 =0.099.

Table I: Example of Variable Length Coding

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 92 | Page

It is clear that 9.9% data in first data set is redundant which is to be removed to achieve compression.

5.1.1 Reduction of Coding Redundancy
To reduce this redundancy from an image we go for the Huffman technique where we are assigning

fewer bits to the more probable gray levels than to the less probable ones achieves data compression. This

process commonly is referred to as variable length coding. There are several optimal and near optimal

techniques for constructs such a code i.e. Huffman coding, Arithmetic coding etc.

5.2 Inter pixel Redundancy
Another important form of data redundancy is inter-pixel redundancy, which is directly related to the

inter-pixel correlations within an image. Because the value of any given pixel can be reasonable predicted from

the value of its neighbors, the information carried by individual pixels is relatively small. Much of the visual

contribution of a single pixel to an image is redundant; it could have been guessed on the basis of its neighbor‟s

values. A variety of names, including spatial redundancy, geometric redundancy, and inter frame redundancies

have been coined to refer to these inter-pixel dependencies. In order to reduce the inter-pixel redundancies in an

image, the 2-D pixel array normally used for human viewing and interpretation must be transformed into a more

efficient but usually non-visual format. For example, the differences between adjacent pixels can be used to

represent an image. Transformations of this type are referred to as mappings. They are called reversible if the

original image elements can be reconstructed from the transformed data set.

5.2.1 Reduction of Inter-pixel Redundancy
To reduce the inter-pixel redundancy we use various techniques such as:

1. Run length coding.

2. Delta compression.

3. Predictive coding.

5.3 Psycho visual Redundancy
Human perception of the information in an image normally does not involve quantitative analysis of

every pixel or luminance value in the image. In general, an observer searches for distinguishing features such as

edges or textural regions and mentally combines them into recognizable groupings. The brain then correlates

these groupings with prior knowledge in order to complete the image interpretation process. Thus eye does not

respond with equal sensitivity to all visual Information. Certain information simply has less relative importance

than other information in normal visual processing. This information is said to be psycho visually redundant. It

can be eliminated without significantly impairing the quality of image perception. Psycho visual redundancy is

fundamentally different from the coding Redundancy and inter-pixel redundancy. Unlike coding redundancy

and inter-pixel redundancy, psycho-visual redundancy is associated with real or quantifiable visual information.

Its elimination is possible only because the information itself is not essential for normal visual processing. Since
the elimination of psycho-visual redundant data results in a loss of quantitative information. Thus it is an

irreversible process.

5.3.1 Reduction of Psycho visual Redundancy
To reduce psycho visual redundancy we use Quantizer. Since the elimination of psycho-visually

redundant data results in a loss of quantitative information. It is commonly referred to as quantization. As it is an

irreversible operation quantization results in lossy data compression [].

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 93 | Page

VI. Implementation Of Lossless Compression And Decompression Techniques
6.1 Huffman coding

Huffman code procedure is based on the two observations.

a. More frequently occurred symbols will have shorter code words than symbol that occur less frequently.

b. The two symbols that occur least frequently will have the same length. The Huffman code is designed by

merging the lowest probable symbols and this process is repeated until only two probabilities of two compound

symbols are left and thus a code tree is generated and Huffman codes are obtained from labeling of the code

tree. This is illustrated with an example shown in table II:

Table III: Huffman Code Assignment Procedure

At the far left of the table I the symbols are listed and corresponding symbol probabilities are arranged in

decreasing order and now the least t probabilities are merged as here 0.06 and 0.04 are merged, this gives a

compound symbol with probability 0.1, and the compound symbol probability is placed in source reduction

column1 such that again the probabilities should be in decreasing order. So, this process is continued until only

two probabilities are left at the far right shown in the above table as 0.6 and 0.4. The second step in Huffman‟s

procedure is to code each reduced source, starting with the smallest source and working back to its original

source [3]. The minimal length binary code for a two-symbol source, of course, is the symbols 0 and 1. As

shown in table III these symbols are assigned to the two symbols on the right (the assignment is arbitrary;

reversing the order of the 0 and would work just and well). As the reduced source symbol with probabilities 0.6
was generated by combining two symbols in the reduced source to its left, the 0 used to code it is now assigned

to both of these symbols, and a 0and 1 are arbitrary appended to each to distinguish them from each other. This

operation is then repeated for each reduced source until the original course is reached. The final code appears at

the far-left in table 1.8. The average length of the code is given by the average of the product of probability of

the symbol and number of bits used to encode it. This is calculated below:

Lavg = (0.4)(1) +(0.3)(2) + (0.1)(3) + (0.1)(4) + (0.06)(5) + (0.04)(5) = 2.2bits/ symbol and the entropy of the

source is 2.14bits/symbol, the resulting Huffman code efficiency is 2.14/2.2 = 0.973.

Huffman‟s procedure creates the optimal code for a set of symbols and probabilities subject to the constraint that

the symbols be coded one at a time.

6.2 Huffman decoding
After the code has been created, coding and/or decoding is accomplished in a simple look-up table

manner. The code itself is an instantaneous uniquely decodable block code. It is called a block code, because

each source symbol is mapped into a fixed sequence of code symbols. It is instantaneous, because each

codeword in a string of code symbols can be decoded without referencing succeeding symbols. It is uniquely

decodable, because any string of code symbols can be decoded in only one way. Thus, any string of Huffman

encoded symbols can be decoded by examining the individual symbols of the string in a left to right manner. For

the binary code of table III, a left-to-right scans of the encoded string 010100111100 reveals that the first valid

code word is 01010, which is the code for symbol a3. The next valid code is 011, which corresponds to

symbola1. Valid code for the symbol a2 is 1, valid code for the symbols a6 is 00, valid code for the symbol a6 is

continuing in this manner reveals the completely decoded message a5 a2 a6 a4 a3 a1, so in this manner the

original image or data can be decompressed using Huffman decoding as explained above.

 At first we have as much as the
compressor does a probability distribution. The compressor made a code table. The decompressor doesn't use

this method though. It instead keeps the whole Huffman binary tree, and of course a pointer to the root to do the

recursion process. In our implementation we'll make the tree as usual and then you'll store a pointer to last node

in the list, which is the root. Then the process can start. We'll navigate the tree by using the pointers to the

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 94 | Page

children that each node has. This process is done by a recursive function which accepts as a parameter a pointer

to the current node, and returns the symbol.

VII. Quality Measures:

7.1 Peak Signal To Noise Ratio:
The Peak Signal to Noise Ratio (PSNR) is the ratio between maximum possible power and corrupting

noise that affect representation of image. PSNR is usually expressed as decibel scale. The PSNR is commonly

used as measure of quality reconstruction of image. The signal in this case is original data and the noise is the

error introduced. High value of PSNR indicates the high quality of image.
It is defined via the Mean Square Error (MSE) and corresponding distortion matric, the Peak Signal to

Noise[10].

7.2 Mean Square Error
Mean Square Error can be estimated in one of many ways to quantify the difference between values

implied by an estimate and the true quality being certificated. MSE is a risk function corresponding to the

expected value of squared error. The MSE is the second moment of error and thus incorporates both the variance
of the estimate and its bias[10].

VIII. Development Steps of Column-Oriented Huffman Coding and Decoding Algorithm
Step1- Plot the interested Columns of column -oriented database in workplace of MATLAB.

Step2- Convert the given figure into grey level image.

Step3- Read the image on to the workspace of the MATLAB.
Step4- Call a Column-Oriented Huffman Coding Algorithm.

Step5- Following five figures are generated as results.

Figure 1: Construction of Image from Column-Oriented Database.

Figure 2: Image Encoding Steps from 1-6

Figure 3: Final Image Encoding Steps.

Figure 4: Image Decoding Steps from 1-6

Figure 5: Final Image Decoding Steps.

Step 6- Calculate values of MSE, PSNR and Elapsed Time.

IX. Results:

Fig1: Construction of Image from Column-Oriented Database. Fig2: Image Encoding Steps from 1-6

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 95 | Page

Figure 3: Final Image Encoding Steps. Figure 4: Image Decoding Steps from 1-6

Figure 5: Final Image Decoding Steps

The input image shown in Fig.1 to which the above Huffman coding algorithm is applied for the generation of
codes and then decompression algorithm (i.e. Huffman decoding) is applied to get the original image back from

the generated codes, which is shown in the Fig.3. The number of saved bits is the difference between the

number of bits required to represent the input image i.e. shown in the table II by considering each symbol can

take a maximum code length of 8 bits and the number of bits taken by the Huffman code to represent the

compressed image i.e. Saved bits = (8*(r*c)-(l1*l2))=3212, r and c represents size of the input matrix, l1 and l2

represents the size of Huffman code. The compression ratio is the ratio of number of bits required to represent

the image using Huffman code to the number of bits used to represent the input image. i.e. Compression ratio =

(l1*l2)/ (8*r*c) =0.8456, The output image is the decompressed image i.e. from the Fig.5 it is clear that the

decompressed image is approximately equal to the input image.

X. Conclusion
The experiment shows that the higher data redundancy helps to achieve more compression. The above

presented a new Column-Oriented compression and decompression technique based on Huffman coding and

decoding for scan testing to reduce test data volume, test application time.

Assessment for image quality is a traditional need. The conventional method for measuring quality of image is

MSE & PSNR. In this paper we compared the different image enhancement techniques by using their quality

parameters (MSE & PSNR). Experimental results show that

• Both PSNR and MSE are inversely proportional to each other.

• Whose PSNR is High, the Image Compression is Better.

MSE=2.2710e+004 , PSNR= 4.5687 dB and Total Elapsed Time=133.3965

Therefore, better compression ratio for the above image is obtained. Hence we conclude that Column-Oriented
Huffman coding is efficient technique for image compression and decompression. As the future work on

compression of images for storing and transmitting images can be done by other lossless methods of image

compression because as we have concluded above the result the decompressed image is almost same as that of

the input image so that indicates that there is no loss of information during transmission. So other methods of

image compression can be carried out as namely JPEG method, Entropy coding, etc.

Affable Compression through Lossless Column-Oriented Huffman Coding Technique

www.iosrjournals.org 96 | Page

References
[1] Miguel C. Ferreira, 'Compression and Query Execution within Column Oriented Databases'.

[2] Jagadish H. Pujar, Lohit M. Kadlaskar, „A New Lossless Method Of Image Compression And Decompression Using Huffman

Coding Techniques‟, Journal of Theoretical and Applied Information Technology, © 2005 - 2010 JATIT.

[3] Sushila Aghav, “Database compression techniques for performance optimization”, 2010 IEEE, V6-714.

[4] Daniel J. Abadi, Query Execution in Column-Oriented Database Systems, MASSACHUSETTS INSTITUTE OF TECHNOLOGY,

June 2005 (c) Massachusetts Institute of Technology 2005.

[5] Infobright,”Analytic Applications With PHP and a Columnar Database”, 403-47 Colborne St Toronto, Ontario M5E 1P8 Canada.

[6] C. Saravanan, M. Surender, 'Enhancing Efficiency of Huffman Coding using Lempel Ziv Coding for Image Compression',

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, January 2013

[7] Daniel J. Abadi, Peter A. Boncz, Stavros Harizopoulos,'Column-oriented Database Systems', VLDB ’09, August 24-28, 2009, Lyon,

France.

[8] C. Saravanan & R. Ponalagusamy “Lossless Grey-scale Image Compression using Source Symbols Reduction and Huffman

Coding”, International Journal of Image Processing (IJIP), Volume (3): Issue (5).

[9] SyBase, David Loshin (President, Knowledge Integrity Inc) , ' Gaining the Performance Edge Using a Column-Oriented Database

Management System'. en.wikipedia.org/wiki/Peak_Signal-to-noise_ratio.

