
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727 Volume 13, Issue 2 (Jul. - Aug. 2013), PP 60-65
www.iosrjournals.org

www.iosrjournals.org 60 | Page

Simple Load Rebalancing For Distributed Hash Tables In Cloud

Ch. Mounika
1
, L. RamaDevi

2
, P.Nikhila

3

1M.Tech (S.E), VCE, Hyderabad, India,
2M.Tech (S.E), VCE, Hyderabad, India,
3M.Tech (S.E), VCE, Hyderabad, India,

 Abstract: Distributed file systems are key building blocks for cloud computing applications based on the Map

Reduce programming paradigm. In such file systems, nodes simultaneously serve computing and storage

functions; a file is partitioned into a number of chunks allocated in distinct nodes so that Map Reduce tasks can
be performed in parallel over the nodes. However, in a cloud computing environment, failure is the norm, and

nodes may be upgraded, replaced, and added in the system. This dependence is clearly inadequate in a large-

scale, failure-prone environment because the central load balancer is put under considerable workload that is

linearly scaled with the system size, and may thus become the performance bottleneck and the single point of

failure. In this paper, a fully distributed load rebalancing algorithm is presented to cope with the load

imbalance problem.

Our algorithm is compared against a centralized approach in a production system and a competing

distributed solution presented in the literature. The simulation results indicate that our proposal is comparable

with the existing centralized approach and considerably outperforms the prior distributed algorithm in terms of

load imbalance factor, movement cost, and algorithmic overhead.

Keywords: DHT, CentraliseSystem, LoadImBalancing, Distributed System

I. Introduction
 The Distributed file systems an important issue in DHTs is load-balance the even distribution of items

to nodes in the DHT. All DHTs make some effort to load balance; generally by randomizing the DHT address

associated with each item with a “good enough” hash function and making each DHT node responsible for a

balanced portion of the DHT address space. Chord is a prototypical example of this approach: its “random”

hashing of nodes to a ring means that each node is responsible for only a small interval of the ring address

space, while the random mapping of items means that only a limited number of items land in the (small) ring

interval owned by any node. The cloud computing Current distributed hash tables do not evenly partition the

address space into.
 Which keys get mapped; some machines get a larger portion of it. Thus, even if keys are numerous and

random, some machines receive more than their fair share, by as much as a factor of n times the average. To

cope with this problem, many DHTs use virtual nodes each real machine pretends to be several distinct

machines, each participating independently in the DHT protocol. The machine’s load is thus determined by

summing over several virtual nodes’, creating a tight con cent ration of load near the average. As an example,

the Chord DHT is based upon consistent hashing which requires virtual copies to be operated for every node.

 The node will occasionally check its inactive virtual nodes, and may migrate to one of them if the distribution

of load in the system has changed. Since only one virtual node is active, the real node need not pay the original

Chord protocol’s multiplicative increase in space and band width costs. Our solution to this problem therefore

allows nodes to move to arbitrary addresses; with this freedom we show that we can load balance an arbitrary

distribution of items, without expending much cost in maintaining the load balance. Our scheme works through
a kind of “work stealing” in which under loaded nodes migrate to portions of the address space occupied by too

many items. The protocol is simple and practical, with all the complexity in its performance analysis. In this

paper, we are interested in studying the load rebalancing problem in distributed file systems specialized for

large-scale, dynamic and data-intensive clouds. Lastly, permitting nodes to choose arbitrary addresses in our

item balancing protocol makes it easier for malicious nodes to disrupt the operation of the P2P network. It

would be interesting to find counter-measures for this problem.

The paper is organized as follows. Section II Related work, Section III. System Model Section IV Load

balancing algorithm. Section V Distributed files system. Section VI. . Performance Evaluation VII concludes.

II. Related Work
This attempt to load-balance can fail in two ways. First, the typical “random” partition of the address space

among nodes is not completely balanced. Some nodes end up with a larger portion of the addresses and thus

receive a larger portion of the randomly distributed items. Second, some applications may preclude the

Simple Load Rebalancing For Distributed Hash Tables In Cloud

www.iosrjournals.org 61 | Page

randomization of data items’ addresses. For example, to support range searching in a database application the

items may need to be placed in a specific order, or even at specific addresses, on the ring. In such cases, we may

find the items unevenly distributed in address space, meaning that balancing the address space among nodes is
not adequate to balance the distribution of items among nodes. We give protocols to solve both of the load

balancing challenges just described.

Performance in a P2P System:

 Our online load balancing algorithms are motivated by a new application domain for range partitioning peer-to-

peer systems. P2P systems store a relation over a large and dynamic set of nodes, and support queries over this

relation. Many current systems, known as Distributed Hash Tables (DHTs) use hash partitioning to ensure

storage balance, and support point queries over the relation. There has been considerable recent interest in

developing P2P systems that can support efficient range queries. For example, a P2P multi-player game might

query for all objects located in an area in a virtual 2-D space. In a P2P web cache, a node may request (pre-

fetch) all pages with a specific URL prefix. It is well-known that hash partitioning is inefficient for answering
such ad hoc range queries, motivating a search for new networks that allow range partitioning while still

maintaining the storage balance offered by normal DHTs.

Handling Dynamism in the Network:

 The network is a splits the range of Nh to take over half the load of Nh, using the NBRADJUST

operation. After this split, there may be NBRBALANCE violations between two pairs of neighbors and In

response, ADJUSTLOAD is executed, first at node Nh and then at node N. It is easy to show (as in Lemma 3)

that the resulting sequence of NBRADJUST operations repair all NBRBALANCE violations.

Node Departure:

 While in the network, each node manages data for a particular range. When the node departs, the data is stored

becomes unavailable to the rest of the peers. P2P networks reconcile this data loss in two ways: (a) Do nothing
and let the “owners” of the data deal with its availability. The owners will frequently poll the data to detect its

loss and re-insert the data into the network.

Maintain replicas of each range across multiple nodes. A Skip Net DHT organizes peers and data objects

according to their lexicographic addresses in the form of a variant of a probabilistic skip list. It supports

logarithmic time range-based lookups and guarantees path locality. Mercury is more general than Skip Net since

it supports range-based lookups on multiple-attributes. Our use of random sampling to estimate query selectivity

constitutes a novel contribution towards implementing scalable multi-dimensional range queries. Load

balancing is another important way in which Mercury from Skip Net. While Skip Net incorporates a constrained

load-balancing mechanism, it is only useful when part of a data name is hashed, in which case the part is

inaccessible for performing a range query. This implies that Skip Net supports load-balancing or range queries

not both.

III. System Model
3.1 Data Popularity:

 Unfortunately, in many applications, a particular range of values may exhibit a much greater popularity

in terms of database insertions or queries than other ranges. This would cause the node responsible for the

popular range to become overloaded. One obvious solution is to determine some way to partition the ranges in

proportion to their popularity. As load patterns change, the system should also move nodes around as needed.

 We leverage our approximate histograms to help implement load-balancing in Mercury. First, each

node can use histograms to determine the average load existing in the system, and, hence, can determine if it is
relatively heavily or lightly loaded. Second, the histograms contain information.

Fig.1 About which parts of the overlay are lightly loaded.

Simple Load Rebalancing For Distributed Hash Tables In Cloud

www.iosrjournals.org 62 | Page

3.2 Load Balancing:

 We have shown how to balance the address space, but sometimes this is not enough. Some

applications, such as those aiming to support range-searching operations, need to specify a particular, non-
random mapping of items into the address space. In this section, we consider a dynamic protocol that aims to

balance load for arbitrary item distributions. To do so, we must sacrifice the previous protocol’s restriction of

each node to a small number of virtual node locations instead, each node is free to migrate anywhere. Our

protocol is randomized, and relies on the underlying P2P routing framework only insofar as it has to be able to

contact “random” nodes in the system (in the full paper we show that this can be done even when the node

distribution is skewed by the load balancing protocol). The protocol is the following, to state the performance of

the protocol, we need the concept of a half-life [LNBK02], which is the time it takes for half the nodes or half

the items in the system to arrive or depart.

3.3 DHT Implementation

 The storage nodes are structured as a network based on distributed hash tables (DHTs), e.g., discovering
a file chunk can simply refer to rapid key lookup in DHTs, given that a unique handle (or identifier) is assigned

to each file chunk. DHTs enable nodes to self-organize and Repair while constantly offering lookup

functionality in node dynamism, simplifying the system provision and management. The chunk servers in our

proposal are organized as a DHT network. Typical DHTs guarantee that if a node leaves, then its locally hosted

chunks are reliably migrated to its successor; if a node joins, then it allocates the chunks whose IDs immediately

precede the joining node from its successor to manage. Now we describe the application of this idea to DHTs.

Let h0 be a universally agreed hash function that maps peers onto the ring. Similarly, let h1; h2; : : :hd be a

series of universally agreed hash functions mapping items onto the ring. To insert an item x using d hash

functions, a peer calculates h1(x); h2(x); : : : ; hd(x). Then, d lookups are executed in parallel to and the peers

p1; p2; : : : ; pd responsible for these hash values, according to the mapping given by h0,

3.4 Chunk creation:
 A file is partitioned into a number of chunks allocated in distinct nodes so that Map Reduce Tasks can

be performed in parallel over the nodes. The load of a node is typically proportional to the number of file chunks

the node possesses. Because the files in a cloud can be arbitrarily created, deleted, and appended, and nodes can

be upgraded, replaced and added in the file system, the file chunks are not distributed as uniformly as possible

among the nodes. Our objective is to allocate the chunks of files as uniformly as possible among the nodes such

that no node manages an excessive number of chunks.

 Fig.2 Chunk creation

3.5 Replica Management:

 In distributed file systems (e.g., Google GFS and Hadoop HDFS), a constant number of replicas for

each file chunk are maintained in distinct nodes to improve file availability with respect to node failures and

departures. Our current load balancing algorithm does not treat replicas distinctly. It is unlikely that two or more

replicas are placed in an identical node because of the random nature of our load rebalancing algorithm. More

specifically, each under loaded node samples a number of nodes, each selected with a probability of 1/n, to share
their loads (where n is the total number of storage nodes).

Simple Load Rebalancing For Distributed Hash Tables In Cloud

www.iosrjournals.org 63 | Page

IV. Load Balancing Algorithm
 In our proposed algorithm, each chunk server node I first estimate whether it is under loaded (light) or

overloaded (heavy) without global knowledge. A node is light if the number of chunks it hosts is smaller than

the threshold. Load statuses of a sample of randomly selected nodes.

Fig.3 Load Balancing

Specifically, each node contacts a number of randomly selected nodes in the system and builds a vector denoted

by V. A vector consists of entries, and each entry contains the ID, network address and load status of a randomly

selected node. Fig. 3 shows the total number of messages generated by a load rebalancing algorithm.

Load-balanced state:
If each chunk server hosts no more than Am chunks. In our proposed algorithm, each chunk server node I first

estimates whether it is under loaded (light) or overloaded (heavy) without global knowledge. Lj A from j to
relieve j’s load. Node j may still remain as the heaviest node in the system after it has migrated its load to node i.

In this case, the current least-loaded node, say node i departs and then rejoins the system as j’s successor. That

is, I become node j+1, and j’s original successor i thus becomes node j + 2. Such a process repeats iteratively

until j is no longer the heaviest. Then, the same process is executed to release the extra load on the next heaviest

node in the system. This process repeats until all the heavy nodes in the system become light nodes.

Others: We will offer a rigorous performance analysis for the effect of varying nV in Appendix E. Specifically,

we discuss the tradeoff between the value of nV and the movement cost. A larger nV introduces more overhead

for message exchanges, but results in a smaller movement cost.

Procedure 1 ADJUSTLOAD (Node Ni)

On Tuple Insertg

 1 : 1(2 ;)Let L Ni x Tm Tm 

2 : ?1 1.Let Nj be the lighter loaded of Ni and Ni 

 3 : _ ?1 L Nj Tm fDo NBRADJUSTgif then

4: Move tuples from Ni to Nj to equalize load.

5: ADJUSTLOAD(Nj)

6: ADJUSTLOAD(Ni)
7: else

8: Find the least-loaded node Nk.

9:   _ ? 2 L Nk Tm fDo REORDERgif then

10: Transfer all data from Nk to N = Nk_1.

11: Transfer data from Ni to Nk, s.t. L(Ni) = dx=2e and L(Nk) = bx=2c.

12: ADJUSTLOAD (N)

13: fRename nodes appropriately after REORDER.g

14: end if

15: end if

Example1: In the setting above, the maximum load is at most log log n= log d+O with high probability. Our

proof (not included for reasons of space) uses the layered induction technique from the seminal work of Because

of the variance in the arc length associated with each peer; we must modify the proof to take this into account.

The standard layered induction uses the fact that if there is k bins that have load at least k,

Simple Load Rebalancing For Distributed Hash Tables In Cloud

www.iosrjournals.org 64 | Page

Examole2: long distance links are constructed using the harmonic distribution on node-link distance. Value

Link denotes the overlay when the harmonic distribution on value distance. Given the capacities of nodes
(denoted by {β1, β2, · · · , βn}), we enhance the basic algorithm in Section III-B2 as follows: each node i

approximates the ideal number of file chunks that it needs to host in a load balanced state as follows:

 Ai = γβi,

Note that the performance of the Value Link overlay is representative of the performance of a plain DHT under

the absence of hashing and in the presence of load balancing algorithms which preserve value contiguity.

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");
reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

V. Distributed File System
 We have given several provably efficient loadbalancing for distributed file’s protocols for

distributed data storage in P2P systems. More details and analysis can be found in a thesis. Our algorithms are

simple, and easy to implement in. distributed files so an obvious next research step should be a practical

evaluation of these schemes. In addition, several concrete open problems follow from our work.

 First, it might be possible to further improve the consistent hashing scheme as discussed at the end of our range

search data structure. Distributed does not easily generalize to more than one order. For example (Fig.4) when

storing music files, one might want to index them by both artist and song title, allowing lookups according to

two orderings. Since our protocol rearranges the items according to the ordering, doing this for two orderings at

the same time seems difficult. A simple, but inelegant, solution is to rearrange not the items themselves, but just

store pointers to them on the nodes. This requires far less storage, and Network Setting.

Fig.4 The average downloading rate and Convergence time

Makes it possible to maintain two or more orderings at once. Lastly, emitting nodes to choose arbitrary

addresses in our item balancing protocol for distributed file’s makes it easier for malicious nodes to disrupt the

operation of the P2P network. It would be interesting to find counter-measures for this problem.

VI. Performance Evaluation
We run a varying number of players. The players move through the world according to a random

waypoint model, with a motion time chosen uniformly at random from seconds, a destination chosen uniformly

at random, and a speed chosen uniformly at random from (0, 360) pixels per second. The size of the game world
is scaled according to the number of players. The dimensions are 640n _ 480n, where n is the number of players.

All results are based on the average of 3 Experiments, with each experiment lasting 60 seconds. The

Simple Load Rebalancing For Distributed Hash Tables In Cloud

www.iosrjournals.org 65 | Page

experiments include the bent of log n sized LRU cache long pointers. The HDFS load balancer and our

proposal. Our proposal clearly outperforms the HDFS load balancer. When the name node is heavily loaded

(i.e., small M’s), our proposal remarkably performs better than the

Fig.5 HDFS

HDFS load balancer. For example, if M = 1%, the HDFS load balancer takes approximately 60 minutes to

balance the loads of data nodes. By contrast, our proposal takes nearly 20 minutes in the case ofM= 1%.

Specifically, unlike the HDFS load balancer, our proposal is independent of the load of the name node. In

particular, approximating the unlimited scenario is expensive, and the use of blog2 nc virtual peers as proposed

in introduces a large amount of topology maintenance track but does not provide a very close approximation.

Finally, we observe that while we are illustrating the most powerful instantiation of virtual peers, we are
comparing it to the weakest choice model further improvements are available to us just by increasing d to 4.

VII. Conclusions
A load balancing algorithm to deal with the load rebalancing problem in large-scale, dynamic, and distributed

file systems in clouds has been presented in this paper. Our proposal work is to balance the loads of nodes and

reduce the demanded movement cost as much as possible, while taking advantage of physical network locality

and node heterogeneity. In the absence of representative real workloads (i.e., the distributions of file chunks in a

large-scale storage system) in the public domain, we have investigated the performance of our proposal and

compared it against competing algorithms through synthesized probabilistic distributions of file chunks. The
synthesis workloads stress test the load balancing algorithms by creating a few storage nodes that are heavily

loaded. The computer simulation results are encouraging, indicating that our proposed algorithm performs very

well.

Reference
[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a Scalable Peer-to-

Peer Lookup Protocol for Internet Applications,” IEEE/ACM Trans. Netw., vol. 11, no. 1, (Feb. 2003), 17–21.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing for Large-Scale Peer-to-Peer Systems,”

LNCS 2218, (Nov. 2001), 161–172.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,

“Dynamo: Amazon’s Highly Available Key-value Store,” in Proc. 21st ACM Symp. Operating Systems Principles (SOSP’07), (Oct.

2007), 205–220.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load Balancing in Structured P2P Systems,” in Proc. 2nd Int’l

Workshop Peerto-Peer Systems (IPTPS’02), (Feb. 2003), 68–79.

[5] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems,” in Proc. 16th ACM Symp. Parallel

Algorithms and Architectures (SPAA’04), (June 2004), 36–43.

[6] D. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar, and M. Muralikrishna. Gamma -a high performance dataflow

database. In Proc. VLDB, 1986.

[7] H. Feelifl, M. Kitsuregawa, and B. C. Ooi. A fast convergence technique for online heat-balancing of btree indexed database over

shared-nothing parallel systems. In Proc. DEXA, 2000.

[8] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-partitioned data with applications to p2p systems. Technical

Report http://dbpubs.stanford.edu/pubs/2004-18, Stanford U., 2004.

[9] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: Multi-dimensional queries in p2p systems. In WebDB, 2004.

[10] D. R. Karger and M. Ruhl. Simple efficient load-balancing algorithms for peer-to-peer systems. In Proc. IPTPS, 2004.

