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ABSTRACT: Comparison of images requires a distance metric that is sensitive to the spatial location of objects 

and features. The Earth Mover’s Distance was introduced in Computer Vision to better approach human 

perceptual similarities. Its computation, however, is too complex for usage in interactive multimedia database 

scenarios. Nearest neighbor (NN) search in high dimensional space is an important problem in many 

applications, in particular if the method of similarity measure used be the EMD. Ideally, a practical solution (i) 

should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the 

dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills 

both requirements, except locality sensitive hashing (LSH). In this paper, we propose a new index structure, 

named LSH-LUBMTree, for efficient retrieval of multimedia objects. It combines the advantages of LSH 

[27,28], the technique used to embedding [33] the EMD, and the advantages, of LUBMTree [19]. Unlike the 

images of each bucket are stored in the LUBMTree. 
Experimental results show that LSH-LUBMTree performs better than the standard LSH in term of search time. 
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I. Introduction 
 Any image database, whether a newspaper photo archive, a repository for biomedical images, or a 

surveillance system, must be able to compare images in order to be more than an expensive file cabinet. 

 Content-based access is key to making use of large image databases, such as a collection of decades’ 

worth of diverse photographs or the torrent of images from new, high-throughput microscopes [1]. Having a 

notion of distance is also necessary for global analyses of image collections, ranging from general-purpose 

techniques such as clustering and outlier detection to specialized machine learning applications that attempt to 
model biological processes. Comparing two images requires a feature extraction method and a distance metric. 

A feature is a compact representation of the contents of an image. The MPEG-7 standard [2] specifies a number 

of image features for visual browsing. A distance metric computes a scalar distance between two features: 

examples are the Euclidean (L2) distance, the Manhattan (L1) distance, and the Mahalanobis distance [3]. The 

choice of image feature and distance metric depends on the nature of the images, as well as the kind of similarity 

one hopes to capture. For many classes of images, the spatial location is important for whether two images 

should be considered similar. For example can be constructed from photographs or surveillance images where 

one wishes to discount small rotations or translations in defining image similarity. The earth mover’s distance 

(EMD), first proposed by Werman et al. [6], captures the spatial aspect of the different features extracted from 

the images. The distance between two images measures both the distance in the feature space and the spatial 

distance.  
 The EMD has strong theoretical foundations [7] and is robust to small translations and rotations in an 

image. It is general and flexible, and can be tuned to be having like any Lp-norm with appropriate parameters. It 

has also been successfully applied to image retrieval based on contours [10] and texture [11], as well as 

similarity search on melodies [12], graphs [13], and vector fields [14].The complexity of the EMD algorithm is 

more than O(N3) [1], where N is the number of clusters in the signatures. Some derivation algorithms of the 

EMD have been proposed to reduce the time computation. Pele and Werman [16] proposed the fast algorithm of 

ˆEMD . Ling and Okada [15] proposed the fast algorithm of EMD_ L1. The ˆEMD can be obtained by 

replacing the ground distance of the EMD with the threshold distance. EMD-L1 is a replacement of the ground 

distance with the L1 distance. Both ˆEMD and EMD-L1 are different from the original EMD. They only 

indicate high-speed calculation methods in the case that the threshold distance and L1 distance were used as the 

ground distance.  
 The most common and straightforward method for solving exact NN problem is based on hierarchical 

space partitioning, resulting in various kinds of tree structure indexes [32], [29], [26], [30]. The multi-

dimensional feature space is split into smaller partitions and organized as a tree structure. Data close to each 

other are grouped in the node so that they can be pruned together without accessing each individual point inside. 
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 However, the pruning power of these indexes decreases as dimensionality grows and most of the tree 

nodes will be accessed, taking considerable CPU and I/O cost. In this case, the performance of existing index 

structures degrades rapidly and even becomes worse than a simple sequential scan of the data [24]. Due to this 
curse of dimensionality, it is difficult to build indexing support to efficiently answer exact NN queries. To 

provide efficient similarity search, the research community has focused on approximate NN search in recent 

years. Among various efforts, locality sensitive hashing (LSH) [28], [27] and its variants have received 

considerable attention. The LSH family adopts hash functions that preserve the distance in the Euclidean space 

so that similar objects have a high probability of colliding in the same bucket. If there are l hash tables and each 

table is associated with m hash functions, an object o will be hashed to H(o) = [h1, h2, ..., hl]. Given a query 

object q, the search space includes the buckets in the l hash tables where q is located. All the objects in these 

buckets are scanned to return the approximate NN result. As m increases, the bucket size becomes smaller and 

more false positives are removed. Precision increases but recall degrades. Similarly, as l increases, more buckets 

are examined. Recall is improved but precision may become worse. Thus, the main challenge of LSH is to tune 

a good tradeoff between precision and recall. To achieve a high search accuracy, hundreds of hash tables are 
normally used [27] and require a large amount of memory space. In [31], multi-probe LSH was proposed to 

reduce the number of hash tables and obtain the same search quality.   

 To support efficient NN query processing, we propose a novel index structure, named LSH-

LUBMTree, based on the following two observations: 

1) In LSH, the hash function is likely to place most of data objects into the buckets near the mean hash value, 

resulting in a skewed distribution of bucket size. When the size of table decreases, the bucket size increases, 

so the buckets recursively partitioned to reduce the number of false positives by using the index structure 

LUBMTree[19]. 

2) The search time decrease by using the range query algorithm in the LUBMTree (see listing 2) based of the 

bounds of EMD. 

 

 The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 Describe the 
EMD distance. Section 4 Describe the MTree and the index structures LUBMTree. Sections 5 present the LSH 

and our contribution. Section 6 evaluates the search in the proposed index structure experimentally; Finally 

Section 7 concludes the paper and the future work. 

 

II. Related Work 

 LSH [28], [27] has been widely applied to answer the approximate NN query and shown to be quite 

effective for similarity search in multimedia databases including text data [21], audio data [22], images [5] and 

videos [9]. The query cost grows sub-linearly with the data set size in the worst case. However, it is a trivial job 

to tune a good tradeoff between the precision and recall. In practive, hundreds of hash tables have to be built for 
a high search accuracy [27]. To reduce the number of hash tables, Lv et al. proposed multi-probe LSH[31]. Tao 

et al. have recently [4] recently has proposed LSB-tree to address both the quality and the efficiency of 

multimedia retrieval. The hash values are represented as 1-dimensional Z-order values and indexed in the B+-

tree. Multiple trees can be built to improve the result quality. Compared with existing LSH methods, LSH-

LUBMTree  only used the EMD, and those bounds, and store the elements of the buckets in the LUBMTree to 

accelerate the search time. On the other hand, LSh-LUBMTree takes advantage of the LSH and those of the 

LUBMTree . 

 

III. The Earth Mover Distance 
 According to the classification result of pixel images, the signatures of images can be of different size, 

and hence the Euclidean distance, Bhattacharyya distance…etc are not feasible, hence the choice of EMD (Earth 

Mover Distance) [8] distance, and that one of the most efficient distance to compare sets of features, see e.g. 

[17, 18].  

 The EMD is based on the well-known transportation problem. Suppose some suppliers, each with a 

given amount of goods, are required to supply some consumers, each with a given limited capacity to accept 

goods. For each supplier-consumer pair, the cost of transporting a single unit of goods is given. The 

transportation problem is: Find a minimum expensive flow of goods from the suppliers to the consumers that 

satisfy the consumers’ demand.  

 The Earth Mover's Distance [Rubner et al., 1998] is one of the distances that can work efficiently on 

signatures which are not necessarily the same number of bins. 
 The EMD is the minimum amount of work to change a signature into another. The concept of "work" is 

based on the quantity of the contents of the signature to be transported from one component to another and the 

distance chosen by the user to measure the distance between two components. The number of components to 
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compare two signatures may be different, as well as the sum total of the components of the two signatures. Two 

signatures are compared    1 1 1 1( , ), , ( , ) ( , ),..., ( , )m m n nP p w p w and Q q u q u   

 P is the first signature containing m clusters pi of weight wi, and Q the second signature containing n 
clusters qj of weight uj. According to [1], the first step is to find all content portions of fij to carry the signature 

of the component i to component j that minimize the cost (work) as follows: 

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 The first constraint only allows movement of components from P to Q.  

 The following two constraints limit the amount of displaced components of P, and quantity of 

components received by Q at their respective weights. The last constraint implies the maximum possible 
displacement of components.  

EMD distance is then defined as  
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 EMD distance is normalized to the minimum sum of weights of signatures to avoid favoring smaller 

signatures when comparing signatures of different sizes.    
                              

IV. Metric Access Methods 
 Metric access methods (MAMs) [20] are index structures designed to perform efficiently similarity 

queries in metric spaces. They only use especially the triangle inequality, to filter out objects or entire regions of 

the space during the search, thus avoiding the sequential (or linear) scan over the database. 

 MAMs can be classified into two main groups: (1) Pivot based MAMs select from the database a 

number of pivot objects, and classify all the other objects according to their distance from the pivots (2) MAMs 

based on compact partitions divide the space into regions as compact as possible. 

 Each region stores a representative point (local pivot) and data that can be used to discard the entire 
region at query time, without computing the actual distance from the region objects to the query object. Each 

region can be partitioned recursively into more regions, inducing a search hierarchy. 

 

1. M-Tree 

A. Basic Principles 

 The M-tree [10] is a dynamic (meaning easily updatable) index structure that provides good 

performance in secondary memory. The M-tree is a hierarchical index, where some of the data points are 

selected as centers (local pivots) of regions and the rest of the objects are assigned to suitable regions in order to 

build up a balanced and compact hierarchy of data regions. Each region (branch of the tree) is indexed 

recursively. The data is stored in the leaves of the M-tree, where each leaf contains ground entries (grnd(Oi), Oi 
  S). The internal nodes store routing entries (rout(Oi), Oi   S). 
 The M-tree organizes the objects into fixed-size nodes. Each node can store up to M entries—this is the 

capacity of M-tree nodes. An entry for a routing object Or also include a pointer, denoted ptr(T(Or)), which 

references the root of a sub-tree, T(Or), called the covering tree of Or, a covering radius r(Or) > 0, and d(Or, 

P(Or)), the distance to the parent object P(Or), i.e. the routing object which references the node where the Or 

entry is stored. 

entry (Or) = [Or, ptr(T(Or)), r(Or), d(Or, P(Or))]  

For each (ground) DB object, one entry having the format 

 entry(Oj) = [Oj, oid(Oj), d(Oj, P(Oj))] is stored in a leaf node, where oid(Oj) is the identifier of the 

object, which is used to provide access to the whole object resident on a separate data file. Starting at the root 

level, a new object Oi is recursively inserted into the best subtree T(Oj), which is defined as the one where the 

covering radius r(Oj) must increase the least in order to cover the new object. In case of ties, the subtree whose 
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center is closest to Oi is selected. The insertion algorithm proceeds recursively until a leaf is reached and Oi is 

inserted into that leaf, at each level storing the distance to the routing object of its parent node (so-called to-

parent distance). Node overflows are managed in a similar way as in the B-tree. If an insertion produces an 
overflow, two objects from the node are selected as new centers, the node is split, and the two new centers are 

promoted to the parent node. If the parent node overflows, the same split procedure is applied. If the root 

overflows, it is split and a new root is created. Thus, the M-tree is a balanced tree. 

 The semantics of the covering radius is the following: All the objects stored in the covering tree of Or 

are within the distance r(Or) from Or, i.e. ∀ Oi ∈ T(Or), d(Or, Oi) ≤ r(Or). 

 A routing object Or, hence, defines a region in the metric space M, centered on Or and with radius r(Or) 

(see Fig 1). 

 
Fig 1 : Example on an MTree 

 

 The M-tree, therefore, organizes the space into a set of (possibly overlapping) regions, to which the 

same principle is recursively applied. The covering radius, r(Or), and the distance between the object and its 
parent object, d(Or, P(Or)), both stored in each entry of the tree, are used to ―prune‖ the search space during the 

search phase 

 

B. Searching the M-tree 

 Before presenting specific algorithms for building the M-tree, we show how the information stored in 

nodes is used for processing similarity queries. Clearly, the performance of search algorithms is largely 

influenced by the actual construction of the M-tree, even though the correctness and the logic of search are 

independent of such aspects. 

 In order to minimize both the number of accessed nodes and computed distances, all the information 

concerning (pre-computed) distances which are stored in the M-tree nodes, i.e. d(Oi, P(Oi)) and r(Oi), is used to 

efficiently apply the triangle inequality property. 
 The query range (Q, rQ) requests for all the database objects Oj , such that d(Oj,Q) ≤ rQ. Therefore, the 

algorithm rangeQuery has to follow all such paths in the M-tree which cannot be excluded from leading to 

objects satisfying the above inequality. Since the query threshold, rQ, does not change during the search process, 

and provided the response set is required as a unit, the order with which nodes are visited has no effect on the 

performance of rangeQuery algorithm.  

 Since, when accessing node N, the distance between Q and Op, the parent object of N, has already been 

computed, it is possible, by applying the triangle inequality, to prune a whole sub-tree without computing any 

new distance at all. The condition for pruning is as follows. 

Lemma 1 [25] 

If d(Or,Q) > rQ + r(Or), then, for each object Oj in T(Or), it is d(Oj,Q) > rQ. Thus, 

T(Or) can be safely pruned from the search. 

Proof: Since d(Oj,Or) ≤ r(Or) holds for any object Oj in T(Or), it is 
d(Oj,Q) ≥ d(Or,Q) − d(Oj,Or) (triangle inequality)  

            ≥ d(Or,Q) − r(Or) (def. of covering radius) 

           > rQ (by hypothesis) 

Range query algorithm in M-tree [25] 

Algorithm 1. (Range query algorithm ) 

QueryResult      rangeQuery( Node N, Query (Q,rQ)) 

{ 
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      // if N is root then d(Or,Op)=d(Op,Q)=0 

      Let P be the parent rooting object of N 

       If  N  is not a leaf then { 
 For  each root ( Or) in N do { 

        If |d(Op,Q) -  d(Or,Op)|   r(Or)+rQ    then 
             Compute  d(Or,Q) 

  If d(Or,Q)   r(Or)+rQ       then     
         rangeQuery(ptr(T( Or)),(Q, rQ)) 

        } 

}  /* for each….*/      

       }  

       Else{ 

     For  each grnd  (Oj) in N do { 

        If | d(Op,Q) -  d(Oj,Op)|   rQ    then 
  Compute  d(Oj,Q) 

  If d(Oj,Q)   rQ   then 
         Add Oj to the query result  

        } 

}  /* for each….*/      

       } 

} /* rangeQuery…*/ 

 
 In order to apply Lemma 1, the distance d(Or,Q) has to be computed. This can be avoided by taking 

advantage of the following result. 

Lemma 2 [25] 

If |d(Op,Q) − d(Or,Op)| > rQ + r(Or), then d(Or,Q) > rQ + r(Or). 

Proof: This is a direct consequence of the triangle inequality, which guarantees that both d(Or,Q) ≥ d(Op,Q) − 

d(Or,Op) and d(Or,Q) ≥ d(Or,Op) − d(Op,Q) hold (see Fig.2). 

 

a)                                              b) 

Fig 2: How Lemma 2 is used to avoid computing distances. Case a): d(Or,Q) ≥d(Op,Q)−d(Or,Op) > r(Q)+r(Or); 

Case b): d(Or,Q) ≥ d(Or,Op)−d(Op,Q) > r(Q)+r(Or). In both cases computing d(Or,Q) is not needed. 

 

 Range queries are implemented by traversing the tree, starting from the root. The nodes which parent 

region (described by the routing entry) is overlapped by the query ball are accessed (this requires a distance 

computation). As each node in the tree (except for the root) contains the distances from the routing/ground 

entries to the center of its parent node (the to-parent distances), some of the non-relevant branches can be further 

filtered out, without the need of a distance computation, thus avoiding the ―more expensive‖ basic overlap 

check. 

 In the MTree structure, the objects in a single node may belong to different classes. During the search if 
the leaf node is selected, then the distances between the query object and all objects in it are calculated. And 

therefore we can have additional calculations between the query object and the objects that are not similar to this 

one. To reduce the number of calculations, the auteur [19] create one index structure called LUBMTree. 

 

2. LUBMTree index structure  

 The LUBMTree is a metric access method, and it is an extension of MTree. Its goal is to accelerate the 

search of objects. By using our index structure LUBMTree, the original EMD can be calculated efficiently. The 

characteristic of the search in this structure is that it does not necessarily calculate all distances between 

different objects of the same node by using the EMD lower and upper bounds. 
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2.1 LUBMTree index structure  

 The LUBMTree structure has the same attributes as MTree, in addition two other attributes. The first 
attribute represent the lower bound of the EMD distance between the routing object and its parent. The second 

attribute represent the lower bound of the EMD distance of the covering radius of routing object. 

The construction of the structure LUBMTree is built in the same way as MTree, while adding two attributes 

lower bounds, and two other attributes upper bounds for each object. 

 

2.2 Searching in LUBMTree 
Lemma 3[19] 

 Let P be the parent object of a data region (R, r). Let dlb(·) and dub(.) are a lower and upper-bounding 

distance to EMD(·) respectively. 

 If ( , ) ( , )ub lb

p w p wd P Q d r d d P Q r         Then the data region is not relevant to the query and 

can be filtered.  

Proof [19]: This is a direct consequence of the triangle inequality, which guarantees that both dub(R,Q) ≥ r + εw  

and dlb(R,Q) ≥ r + εw    hold (see Fig.3). 

 

 
Fig. 3: Outer parent filtering in LUBMTree. 

 

2.3 Similarity queries 

Range query algorithm in LUBMTree [19] 

 

Algorithm 2. (Range query algorithm) 
QueryResult      rangeQueryLUB( Node N, RQuery (Q,ε)) 
{ 

      // if N is root then d(R,O)=d(P,Q)=0 

      Let P be the parent rooting object of N 

        Let’s  dlb(R,P)= be the lower bound of the EMD(R,P) distance 

       If  N  is not a leaf then { 

 For  each root ( R) in N do { 

        If d(P,Q) -  dub(R,P)   r+ε    and    dlb(R,P) – d(P,Q)   r+ ε   then {  // lemme 3 

         If d(P,Q) -  d(R,P)   r +ε  and  d(R,P)  – d(P,Q)   r + ε   then {  // lemme 2 
   Compute  d(R,Q) 

   If d(R,Q)  rub + ε   then    // lemme 1 
          rangeQueryLUB(ptr(T( R)),(Q, ε)) 

  } 

        } 

}  /* for each….*/      

       }  

       Else{ 

     For  each grnd  ( R) in N do { 

               If d(P,Q) -  dub(R,P)   r+ε    and   dlb(R,P) – d(P,Q)   r+ ε   then {  // lemma 3 

         If d(P,Q) -  d(R,P)   r +ε  and d(R,P)  – d(P,Q)   r + ε   then {  // lemma 2        
   Compute  d(R,Q) 
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   If d(R,Q)   ε   then 

           Add R to the query result  

   } 

        } 

}  /* for each….*/      
       } 

} /* rangeQuery…*/ 

 

V. LOCALITY SENSITIVE HASHING 

5.1 Details of hash function  

 Let h(o) be a hash function that maps a d-dimensional point o to a one-dimensional value. It is locality 

sensitive if the chance of mapping two points o1, o2 to the same value grows as their distance decreases. 

Formally: 

 Definition (LSH). Given a distance r, approximation ratio c, probability values p1 and p2 such that p1 
> p2, a hash function h(.) is (r, cr, p1, p2) locality sensitive if it satisfies both conditions below: 

 1 2 1 2 11. , , Pr ( ) ( ) ;If o o r then h o h o p    

 1 2 1 2 22. , , Pr ( ) ( ) .If o o cr then h o h o p    

 LSH functions are known for many distance metrics. For lp norm, a popular LSH function is defined as 

follows [23]: 

.
( ) .

a o b
h o

w

 
  
 

 

 

 Here, o


 represents the d-dimensional vector representation of a point o; a


 is another d-dimensional 

vector where each component is drawn independently from a so-called p-stable distribution [23]; a


· o


denotes 

the dot product of these two vectors. w is a sufficiently large constant, and finally, b is uniformly drawn from 

[0,w). All L hash tables use the same primary hash function t1 (used to determine the index in the hash table) 
and the same secondary hash function t2. These two hash functions have the form 

'

1 1 2 1
( , ,..., ) (( )mod )mod (1)

k

k i ii
t a a a r a P tableSize


   

"

1 1 2 1
( , ,..., ) (( )mod ) (2)

k

k i ii
t a a a r a P


   

 Where ri’ and ri’’ are random integers, tableSize is the size of the hash tables, and P is a prime. In the 

current implementation,  ai are represented by 32-bit integers, and the prime P is equal to 232 − 5. This value of 
the prime allows fast hash function computation without using modulo operations. If there are l hash tables, as l 

increases, more buckets are examined. Recall is improved but precision may become worse. As tablesize 

increases, the bucket size becomes smaller and more false positives are removed. Precision increases but recall 

degrades. Similarly, as tablesize decrease the bucket size becomes bigger and more true positives are retrieved, 

but search time is increases. To improve this time we propose a new index structure called LSH-LUBMTree that 

combines the technique LSH with the LUBMTree.  

 

2 LSH-LUBMTree  

 In the firs we describe the embedding technique of EMD, that is used to building, and to searching in 

the LSH-LUBMTree. 

 

2.1. The embedding  [33] 
  We formally show how to construct an embedding of EMD into l1 space.  

 Let P, Q be tow points sets of cardinality s, each in Rk and V P Q  . for any pear  

,p P q Q  , the weight of(p,q) is the Euclidean (l2) distance between p and q. Assume that the smallest 

inter-point distance is 1, and let D be the diameter of V. The embedding is defined as fellows. We impose grids 

of Rk of sides 1/2, 1, 2, 4, . . . , 2i, . . .  . Let Gi be grid of side 2i. We impose the condition that the grid Gi is a 

refinement of grid Gi+1. Moreover, the grid is translated by a vector chosen uniformly at random from [0,  ]K. 
 For each grid Gi, we construct a vi(p) with one coordinate par cell, where each coordinate counts the 

number of points in the corresponding cell. In other words, each vi(p) forms a histogram of P. we defined 

mapping f, by setting f(P) to be the vector v-1(p)/2,v0(p),2v1(p),4v2(p), . . . ,2ivi(p),. . . Note that v(P) lives in an 

O( )k-dimensional space, but only O(log(  ).|P|) entries in this vector are non-zero (i.e, the vector v(P) is 
sparse). 
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2.2 Building a LSH-LUBMTree 

 The construction of the LSH-LUBMTree is very simple. Within each embedding [33], the signature of 
each image is mapped into a series of vectors, one for each grid, and concatenated into one vector (d 

dimensional).  For each hash table, in the first step we calculate the first index for each d-dimensional object, in 

the second step we calculate its second index, and we store them in the corresponding bucket. So each bucket is 

a LUBMTree[19] index structure (see listing 3).  

 

Algorithm 3. (Algorithm preprocessing the index structure LSH-LUBMTree) 

 

Algorithm Preprocessing 

Input a set of points S (signatures), l (number of hash tables), size table, prime 

Output Hash tables Ti, i=1,…,l 

Pembedding(s) 
For each i=1,…,l 

Initialize hash table Ti by generating a random hash function gi(.) 

 For each i=1,…, l 

 For each j=1, …, n 

  Ind1t1(gi(pj))  // equation (1) 

Ind2t2(gi(pj))  // equation (2) 

Strfind(Ti(ind1),ind2)// find in the list Ti(ind1)   the bucket ind2 

If(str==null) 

 Create new LUBMTree and add them in  the list Ti(ind1) 

endif 

Store point pj on the bucket ind2 (e.i in the LUBMTree) 

End for 

End for 

 

 
Table i Fig.4: Schema of  LSH-LUBMTree Structure (one table) 

 

2.3 Searching in LSH-LUBMTree 
 For each hash table, in the first step we calculate the first index for d-dimensional query, in the second 

step we calculate its second index to find the corresponding bucket, after this we start the search in the 

corresponding bucket (LUBMTree) by using the rangeQueryLUB (algorithm 2) algorithm (see algorithm 4).   

 

Algorithm 4. (Approximate Nearest Neighbor query answering   algorithm) 

 

Algorithm Approximate Nearest Neighbor Query 

Input a query point Sq, threshold of range query 

Access To hash tables Ti, i=1,…,l generated by the preprocessing  algorithm 

Output nearest neighbors 

q Embedding(Sq) 

SΦ 
For each i=1, …, l 

Ind1t1(gi(q))  // equation of  (1) 

Ind2t2(gi(q))  // equation of  (2) 

Strfind(Ti(ind1),ind2)// find in the list Ti(ind1)   the bucket ind2 



Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds 

www.iosrjournals.org                                                        51 | Page 

SS U{points found in rangeQuery(str, threshold, q) by using the search algorithm in LUBMTree, e.i see 

algorithm 2) } 

end for 
Remove the duplicate and return S 

 

VI. Experimental Evaluation 
 We performed a number of range queries using 50 classes of the Coil-100 database, which each class 

contains 72 images. We use also the Wang database, composed by 10 classes, which each class contains 100 

images. 

 All experiments were performed on a PC with a 5.6 Ghz processor and 4 Gb of main memory. 

For all experiments we set the parameters k=6 and w=1. Moreover, we set the parameters of false negatives that 

we can tolerate to 10%. For this choice of parameters, l evaluated to 10.  

 
Fig. 5 .Number of distance computations calculate in the range query when searching in the LSH-LUBMTree 

compared by the search in the LSH 

 
Fig. 6. Time computation calculates in the range query when searching in the LSH-LUBMTree, and in standard 

LSH. 

 In the figure 5, the search in the LSH produces more number of distance computations than the search 

in the LSH-LUBMTree for the some parameters, and so produces more image candidates. The figure 6, show 
the response time obtained when search in the LSH and in our index structure. We see that the search in our 

structure is faster than the search in the LSH, because the number of the calculated distances in the search 

algorithm in our structure is less than the one of the LSH. This improvement is explain by the search algorithm 

in the proposed index uses the lower and the upper bounding to skipping the supplementary calculs. 

 Since the index structure LSH-LUBMTree that combines the structure LSH with LUBMTree show its 

efficiency in term of search time than LSH. For example for the search in coil database, the search time in the 

index LSH-LUBMTree in the range 0.1 is 6.5s, but the one in the same range for the LSH is 23.8s. 

 

VII. Conclusion 
 Search in large image or other multimedia databases highly dependents on the underlying similarity 

model. The Earth Mover’s Distance, proposed in Computer Vision literature, is an interesting new approach 

towards achieving high-quality content-based retrieval. Despite its advantages, this distance measure is 

computed via a linear programming algorithm which is too slow for today’s huge and interactive multimedia. 

 The disadvantage of the EMD metric is the significant response time. To solve this problem, we have 

used the index structure LUBMTree. 

 To improve more the search time, we have proposed a new index structure called LSH-LUBMTree that 

combines the advantages of LSH, the technique used to embedding the color signature (Indyk and all 2003), and 
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the advantages of LUBMTree. The experimentation shows that the search in the LSH-LUBMTree, become 

more efficiency in the search time than the standard LSH. 

 In the feature work, we plan to adapt the signatures that proposed by Rubner, to be supported by the 
LSH structure. 
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