
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 3 (Jul. - Aug. 2013), PP 43-52
www.iosrjournals.org

www.iosrjournals.org 43 | Page

Improving search time for contentment based image retrieval via,

LSH, MTRee, and EMD bounds

1
Bahri abdelkhalak,

1
Hamid zouaki

1
Department of Mathematics and Computer Science, Faculty of Science, El jadida, Morocco

1Equipe : Modélisation Mathématiques et Informatique Décisionnelle

ABSTRACT: Comparison of images requires a distance metric that is sensitive to the spatial location of objects

and features. The Earth Mover’s Distance was introduced in Computer Vision to better approach human

perceptual similarities. Its computation, however, is too complex for usage in interactive multimedia database

scenarios. Nearest neighbor (NN) search in high dimensional space is an important problem in many

applications, in particular if the method of similarity measure used be the EMD. Ideally, a practical solution (i)

should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the

dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills

both requirements, except locality sensitive hashing (LSH). In this paper, we propose a new index structure,

named LSH-LUBMTree, for efficient retrieval of multimedia objects. It combines the advantages of LSH

[27,28], the technique used to embedding [33] the EMD, and the advantages, of LUBMTree [19]. Unlike the

images of each bucket are stored in the LUBMTree.
Experimental results show that LSH-LUBMTree performs better than the standard LSH in term of search time.

Key words: CBIR, LSH, EMD, MTree, LUBMTree

I. Introduction
 Any image database, whether a newspaper photo archive, a repository for biomedical images, or a

surveillance system, must be able to compare images in order to be more than an expensive file cabinet.

 Content-based access is key to making use of large image databases, such as a collection of decades’

worth of diverse photographs or the torrent of images from new, high-throughput microscopes [1]. Having a

notion of distance is also necessary for global analyses of image collections, ranging from general-purpose

techniques such as clustering and outlier detection to specialized machine learning applications that attempt to
model biological processes. Comparing two images requires a feature extraction method and a distance metric.

A feature is a compact representation of the contents of an image. The MPEG-7 standard [2] specifies a number

of image features for visual browsing. A distance metric computes a scalar distance between two features:

examples are the Euclidean (L2) distance, the Manhattan (L1) distance, and the Mahalanobis distance [3]. The

choice of image feature and distance metric depends on the nature of the images, as well as the kind of similarity

one hopes to capture. For many classes of images, the spatial location is important for whether two images

should be considered similar. For example can be constructed from photographs or surveillance images where

one wishes to discount small rotations or translations in defining image similarity. The earth mover’s distance

(EMD), first proposed by Werman et al. [6], captures the spatial aspect of the different features extracted from

the images. The distance between two images measures both the distance in the feature space and the spatial

distance.
 The EMD has strong theoretical foundations [7] and is robust to small translations and rotations in an

image. It is general and flexible, and can be tuned to be having like any Lp-norm with appropriate parameters. It

has also been successfully applied to image retrieval based on contours [10] and texture [11], as well as

similarity search on melodies [12], graphs [13], and vector fields [14].The complexity of the EMD algorithm is

more than O(N3) [1], where N is the number of clusters in the signatures. Some derivation algorithms of the

EMD have been proposed to reduce the time computation. Pele and Werman [16] proposed the fast algorithm of

ˆEMD . Ling and Okada [15] proposed the fast algorithm of EMD_ L1. The ˆEMD can be obtained by

replacing the ground distance of the EMD with the threshold distance. EMD-L1 is a replacement of the ground

distance with the L1 distance. Both ˆEMD and EMD-L1 are different from the original EMD. They only

indicate high-speed calculation methods in the case that the threshold distance and L1 distance were used as the

ground distance.
 The most common and straightforward method for solving exact NN problem is based on hierarchical

space partitioning, resulting in various kinds of tree structure indexes [32], [29], [26], [30]. The multi-

dimensional feature space is split into smaller partitions and organized as a tree structure. Data close to each

other are grouped in the node so that they can be pruned together without accessing each individual point inside.

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 44 | Page

 However, the pruning power of these indexes decreases as dimensionality grows and most of the tree

nodes will be accessed, taking considerable CPU and I/O cost. In this case, the performance of existing index

structures degrades rapidly and even becomes worse than a simple sequential scan of the data [24]. Due to this
curse of dimensionality, it is difficult to build indexing support to efficiently answer exact NN queries. To

provide efficient similarity search, the research community has focused on approximate NN search in recent

years. Among various efforts, locality sensitive hashing (LSH) [28], [27] and its variants have received

considerable attention. The LSH family adopts hash functions that preserve the distance in the Euclidean space

so that similar objects have a high probability of colliding in the same bucket. If there are l hash tables and each

table is associated with m hash functions, an object o will be hashed to H(o) = [h1, h2, ..., hl]. Given a query

object q, the search space includes the buckets in the l hash tables where q is located. All the objects in these

buckets are scanned to return the approximate NN result. As m increases, the bucket size becomes smaller and

more false positives are removed. Precision increases but recall degrades. Similarly, as l increases, more buckets

are examined. Recall is improved but precision may become worse. Thus, the main challenge of LSH is to tune

a good tradeoff between precision and recall. To achieve a high search accuracy, hundreds of hash tables are
normally used [27] and require a large amount of memory space. In [31], multi-probe LSH was proposed to

reduce the number of hash tables and obtain the same search quality.

 To support efficient NN query processing, we propose a novel index structure, named LSH-

LUBMTree, based on the following two observations:

1) In LSH, the hash function is likely to place most of data objects into the buckets near the mean hash value,

resulting in a skewed distribution of bucket size. When the size of table decreases, the bucket size increases,

so the buckets recursively partitioned to reduce the number of false positives by using the index structure

LUBMTree[19].

2) The search time decrease by using the range query algorithm in the LUBMTree (see listing 2) based of the

bounds of EMD.

 The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 Describe the
EMD distance. Section 4 Describe the MTree and the index structures LUBMTree. Sections 5 present the LSH

and our contribution. Section 6 evaluates the search in the proposed index structure experimentally; Finally

Section 7 concludes the paper and the future work.

II. Related Work

 LSH [28], [27] has been widely applied to answer the approximate NN query and shown to be quite

effective for similarity search in multimedia databases including text data [21], audio data [22], images [5] and

videos [9]. The query cost grows sub-linearly with the data set size in the worst case. However, it is a trivial job

to tune a good tradeoff between the precision and recall. In practive, hundreds of hash tables have to be built for
a high search accuracy [27]. To reduce the number of hash tables, Lv et al. proposed multi-probe LSH[31]. Tao

et al. have recently [4] recently has proposed LSB-tree to address both the quality and the efficiency of

multimedia retrieval. The hash values are represented as 1-dimensional Z-order values and indexed in the B+-

tree. Multiple trees can be built to improve the result quality. Compared with existing LSH methods, LSH-

LUBMTree only used the EMD, and those bounds, and store the elements of the buckets in the LUBMTree to

accelerate the search time. On the other hand, LSh-LUBMTree takes advantage of the LSH and those of the

LUBMTree .

III. The Earth Mover Distance
 According to the classification result of pixel images, the signatures of images can be of different size,

and hence the Euclidean distance, Bhattacharyya distance…etc are not feasible, hence the choice of EMD (Earth

Mover Distance) [8] distance, and that one of the most efficient distance to compare sets of features, see e.g.

[17, 18].

 The EMD is based on the well-known transportation problem. Suppose some suppliers, each with a

given amount of goods, are required to supply some consumers, each with a given limited capacity to accept

goods. For each supplier-consumer pair, the cost of transporting a single unit of goods is given. The

transportation problem is: Find a minimum expensive flow of goods from the suppliers to the consumers that

satisfy the consumers’ demand.

 The Earth Mover's Distance [Rubner et al., 1998] is one of the distances that can work efficiently on

signatures which are not necessarily the same number of bins.
 The EMD is the minimum amount of work to change a signature into another. The concept of "work" is

based on the quantity of the contents of the signature to be transported from one component to another and the

distance chosen by the user to measure the distance between two components. The number of components to

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 45 | Page

compare two signatures may be different, as well as the sum total of the components of the two signatures. Two

signatures are compared   1 1 1 1(,), , (,) (,),..., (,)m m n nP p w p w and Q q u q u 

 P is the first signature containing m clusters pi of weight wi, and Q the second signature containing n
clusters qj of weight uj. According to [1], the first step is to find all content portions of fij to carry the signature

of the component i to component j that minimize the cost (work) as follows:

 

m

i

n

j

ijij fd
1 1

 Where F={fij} denotes a set of flows. Each flow fij represents the amount transported from the ith supply

to the j-th demand.

 D=[dij] the ground distance matrix, where dij is the ground distance between clusters pi and qj with the

following constraints:

  





   













m

i

n

j

m

i

n

j

jiij

j

m

i

ij

n

j

iij

ij

uwf

njuf

miwf

njmif

1 1 1 1

1

1

),min(

1,

1,

1,1,0

 The first constraint only allows movement of components from P to Q.

 The following two constraints limit the amount of displaced components of P, and quantity of

components received by Q at their respective weights. The last constraint implies the maximum possible
displacement of components.

EMD distance is then defined as

1 1

1 1

(,)

m n

ij iji j

m n

iji j

d f
EMD q p

f

 

 


 

 

 EMD distance is normalized to the minimum sum of weights of signatures to avoid favoring smaller

signatures when comparing signatures of different sizes.

IV. Metric Access Methods
 Metric access methods (MAMs) [20] are index structures designed to perform efficiently similarity

queries in metric spaces. They only use especially the triangle inequality, to filter out objects or entire regions of

the space during the search, thus avoiding the sequential (or linear) scan over the database.

 MAMs can be classified into two main groups: (1) Pivot based MAMs select from the database a

number of pivot objects, and classify all the other objects according to their distance from the pivots (2) MAMs

based on compact partitions divide the space into regions as compact as possible.

 Each region stores a representative point (local pivot) and data that can be used to discard the entire
region at query time, without computing the actual distance from the region objects to the query object. Each

region can be partitioned recursively into more regions, inducing a search hierarchy.

1. M-Tree

A. Basic Principles

 The M-tree [10] is a dynamic (meaning easily updatable) index structure that provides good

performance in secondary memory. The M-tree is a hierarchical index, where some of the data points are

selected as centers (local pivots) of regions and the rest of the objects are assigned to suitable regions in order to

build up a balanced and compact hierarchy of data regions. Each region (branch of the tree) is indexed

recursively. The data is stored in the leaves of the M-tree, where each leaf contains ground entries (grnd(Oi), Oi
 S). The internal nodes store routing entries (rout(Oi), Oi  S).
 The M-tree organizes the objects into fixed-size nodes. Each node can store up to M entries—this is the

capacity of M-tree nodes. An entry for a routing object Or also include a pointer, denoted ptr(T(Or)), which

references the root of a sub-tree, T(Or), called the covering tree of Or, a covering radius r(Or) > 0, and d(Or,

P(Or)), the distance to the parent object P(Or), i.e. the routing object which references the node where the Or

entry is stored.

entry (Or) = [Or, ptr(T(Or)), r(Or), d(Or, P(Or))]

For each (ground) DB object, one entry having the format

 entry(Oj) = [Oj, oid(Oj), d(Oj, P(Oj))] is stored in a leaf node, where oid(Oj) is the identifier of the

object, which is used to provide access to the whole object resident on a separate data file. Starting at the root

level, a new object Oi is recursively inserted into the best subtree T(Oj), which is defined as the one where the

covering radius r(Oj) must increase the least in order to cover the new object. In case of ties, the subtree whose

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 46 | Page

center is closest to Oi is selected. The insertion algorithm proceeds recursively until a leaf is reached and Oi is

inserted into that leaf, at each level storing the distance to the routing object of its parent node (so-called to-

parent distance). Node overflows are managed in a similar way as in the B-tree. If an insertion produces an
overflow, two objects from the node are selected as new centers, the node is split, and the two new centers are

promoted to the parent node. If the parent node overflows, the same split procedure is applied. If the root

overflows, it is split and a new root is created. Thus, the M-tree is a balanced tree.

 The semantics of the covering radius is the following: All the objects stored in the covering tree of Or

are within the distance r(Or) from Or, i.e. ∀ Oi ∈ T(Or), d(Or, Oi) ≤ r(Or).

 A routing object Or, hence, defines a region in the metric space M, centered on Or and with radius r(Or)

(see Fig 1).

Fig 1 : Example on an MTree

 The M-tree, therefore, organizes the space into a set of (possibly overlapping) regions, to which the

same principle is recursively applied. The covering radius, r(Or), and the distance between the object and its
parent object, d(Or, P(Or)), both stored in each entry of the tree, are used to ―prune‖ the search space during the

search phase

B. Searching the M-tree

 Before presenting specific algorithms for building the M-tree, we show how the information stored in

nodes is used for processing similarity queries. Clearly, the performance of search algorithms is largely

influenced by the actual construction of the M-tree, even though the correctness and the logic of search are

independent of such aspects.

 In order to minimize both the number of accessed nodes and computed distances, all the information

concerning (pre-computed) distances which are stored in the M-tree nodes, i.e. d(Oi, P(Oi)) and r(Oi), is used to

efficiently apply the triangle inequality property.
 The query range (Q, rQ) requests for all the database objects Oj , such that d(Oj,Q) ≤ rQ. Therefore, the

algorithm rangeQuery has to follow all such paths in the M-tree which cannot be excluded from leading to

objects satisfying the above inequality. Since the query threshold, rQ, does not change during the search process,

and provided the response set is required as a unit, the order with which nodes are visited has no effect on the

performance of rangeQuery algorithm.

 Since, when accessing node N, the distance between Q and Op, the parent object of N, has already been

computed, it is possible, by applying the triangle inequality, to prune a whole sub-tree without computing any

new distance at all. The condition for pruning is as follows.

Lemma 1 [25]

If d(Or,Q) > rQ + r(Or), then, for each object Oj in T(Or), it is d(Oj,Q) > rQ. Thus,

T(Or) can be safely pruned from the search.

Proof: Since d(Oj,Or) ≤ r(Or) holds for any object Oj in T(Or), it is
d(Oj,Q) ≥ d(Or,Q) − d(Oj,Or) (triangle inequality)

 ≥ d(Or,Q) − r(Or) (def. of covering radius)

 > rQ (by hypothesis)

Range query algorithm in M-tree [25]

Algorithm 1. (Range query algorithm)

QueryResult rangeQuery(Node N, Query (Q,rQ))

{

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 47 | Page

 // if N is root then d(Or,Op)=d(Op,Q)=0

 Let P be the parent rooting object of N

 If N is not a leaf then {
 For each root (Or) in N do {

 If |d(Op,Q) - d(Or,Op)|  r(Or)+rQ then
 Compute d(Or,Q)

 If d(Or,Q)  r(Or)+rQ then
 rangeQuery(ptr(T(Or)),(Q, rQ))

 }

} /* for each….*/

 }

 Else{

 For each grnd (Oj) in N do {

 If | d(Op,Q) - d(Oj,Op)|  rQ then
 Compute d(Oj,Q)

 If d(Oj,Q) rQ then
 Add Oj to the query result

 }

} /* for each….*/

 }

} /* rangeQuery…*/

 In order to apply Lemma 1, the distance d(Or,Q) has to be computed. This can be avoided by taking

advantage of the following result.

Lemma 2 [25]

If |d(Op,Q) − d(Or,Op)| > rQ + r(Or), then d(Or,Q) > rQ + r(Or).

Proof: This is a direct consequence of the triangle inequality, which guarantees that both d(Or,Q) ≥ d(Op,Q) −

d(Or,Op) and d(Or,Q) ≥ d(Or,Op) − d(Op,Q) hold (see Fig.2).

a) b)

Fig 2: How Lemma 2 is used to avoid computing distances. Case a): d(Or,Q) ≥d(Op,Q)−d(Or,Op) > r(Q)+r(Or);

Case b): d(Or,Q) ≥ d(Or,Op)−d(Op,Q) > r(Q)+r(Or). In both cases computing d(Or,Q) is not needed.

 Range queries are implemented by traversing the tree, starting from the root. The nodes which parent

region (described by the routing entry) is overlapped by the query ball are accessed (this requires a distance

computation). As each node in the tree (except for the root) contains the distances from the routing/ground

entries to the center of its parent node (the to-parent distances), some of the non-relevant branches can be further

filtered out, without the need of a distance computation, thus avoiding the ―more expensive‖ basic overlap

check.

 In the MTree structure, the objects in a single node may belong to different classes. During the search if
the leaf node is selected, then the distances between the query object and all objects in it are calculated. And

therefore we can have additional calculations between the query object and the objects that are not similar to this

one. To reduce the number of calculations, the auteur [19] create one index structure called LUBMTree.

2. LUBMTree index structure

 The LUBMTree is a metric access method, and it is an extension of MTree. Its goal is to accelerate the

search of objects. By using our index structure LUBMTree, the original EMD can be calculated efficiently. The

characteristic of the search in this structure is that it does not necessarily calculate all distances between

different objects of the same node by using the EMD lower and upper bounds.

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 48 | Page

2.1 LUBMTree index structure

 The LUBMTree structure has the same attributes as MTree, in addition two other attributes. The first
attribute represent the lower bound of the EMD distance between the routing object and its parent. The second

attribute represent the lower bound of the EMD distance of the covering radius of routing object.

The construction of the structure LUBMTree is built in the same way as MTree, while adding two attributes

lower bounds, and two other attributes upper bounds for each object.

2.2 Searching in LUBMTree
Lemma 3[19]

 Let P be the parent object of a data region (R, r). Let dlb(·) and dub(.) are a lower and upper-bounding

distance to EMD(·) respectively.

 If (,) (,)ub lb

p w p wd P Q d r d d P Q r        Then the data region is not relevant to the query and

can be filtered.

Proof [19]: This is a direct consequence of the triangle inequality, which guarantees that both dub(R,Q) ≥ r + εw

and dlb(R,Q) ≥ r + εw hold (see Fig.3).

Fig. 3: Outer parent filtering in LUBMTree.

2.3 Similarity queries

Range query algorithm in LUBMTree [19]

Algorithm 2. (Range query algorithm)
QueryResult rangeQueryLUB(Node N, RQuery (Q,ε))
{

 // if N is root then d(R,O)=d(P,Q)=0

 Let P be the parent rooting object of N

 Let’s dlb(R,P)= be the lower bound of the EMD(R,P) distance

 If N is not a leaf then {

 For each root (R) in N do {

 If d(P,Q) - dub(R,P)  r+ε and dlb(R,P) – d(P,Q)  r+ ε then { // lemme 3

 If d(P,Q) - d(R,P)  r +ε and d(R,P) – d(P,Q)  r + ε then { // lemme 2
 Compute d(R,Q)

 If d(R,Q) rub + ε then // lemme 1
 rangeQueryLUB(ptr(T(R)),(Q, ε))

 }

 }

} /* for each….*/

 }

 Else{

 For each grnd (R) in N do {

 If d(P,Q) - dub(R,P)  r+ε and dlb(R,P) – d(P,Q)  r+ ε then { // lemma 3

 If d(P,Q) - d(R,P)  r +ε and d(R,P) – d(P,Q)  r + ε then { // lemma 2
 Compute d(R,Q)

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 49 | Page

 If d(R,Q) ε then

 Add R to the query result

 }

 }

} /* for each….*/
 }

} /* rangeQuery…*/

V. LOCALITY SENSITIVE HASHING

5.1 Details of hash function

 Let h(o) be a hash function that maps a d-dimensional point o to a one-dimensional value. It is locality

sensitive if the chance of mapping two points o1, o2 to the same value grows as their distance decreases.

Formally:

 Definition (LSH). Given a distance r, approximation ratio c, probability values p1 and p2 such that p1
> p2, a hash function h(.) is (r, cr, p1, p2) locality sensitive if it satisfies both conditions below:

 1 2 1 2 11. , , Pr () () ;If o o r then h o h o p  

 1 2 1 2 22. , , Pr () () .If o o cr then h o h o p  

 LSH functions are known for many distance metrics. For lp norm, a popular LSH function is defined as

follows [23]:

.
() .

a o b
h o

w

 
  
 

 

 Here, o


 represents the d-dimensional vector representation of a point o; a


 is another d-dimensional

vector where each component is drawn independently from a so-called p-stable distribution [23]; a


· o


denotes

the dot product of these two vectors. w is a sufficiently large constant, and finally, b is uniformly drawn from

[0,w). All L hash tables use the same primary hash function t1 (used to determine the index in the hash table)
and the same secondary hash function t2. These two hash functions have the form

'

1 1 2 1
(, ,...,) (()mod)mod (1)

k

k i ii
t a a a r a P tableSize


 

"

1 1 2 1
(, ,...,) (()mod) (2)

k

k i ii
t a a a r a P


 

 Where ri’ and ri’’ are random integers, tableSize is the size of the hash tables, and P is a prime. In the

current implementation, ai are represented by 32-bit integers, and the prime P is equal to 232 − 5. This value of
the prime allows fast hash function computation without using modulo operations. If there are l hash tables, as l

increases, more buckets are examined. Recall is improved but precision may become worse. As tablesize

increases, the bucket size becomes smaller and more false positives are removed. Precision increases but recall

degrades. Similarly, as tablesize decrease the bucket size becomes bigger and more true positives are retrieved,

but search time is increases. To improve this time we propose a new index structure called LSH-LUBMTree that

combines the technique LSH with the LUBMTree.

2 LSH-LUBMTree

 In the firs we describe the embedding technique of EMD, that is used to building, and to searching in

the LSH-LUBMTree.

2.1. The embedding [33]
 We formally show how to construct an embedding of EMD into l1 space.

 Let P, Q be tow points sets of cardinality s, each in Rk and V P Q  . for any pear

,p P q Q  , the weight of(p,q) is the Euclidean (l2) distance between p and q. Assume that the smallest

inter-point distance is 1, and let D be the diameter of V. The embedding is defined as fellows. We impose grids

of Rk of sides 1/2, 1, 2, 4, . . . , 2i, . . .  . Let Gi be grid of side 2i. We impose the condition that the grid Gi is a

refinement of grid Gi+1. Moreover, the grid is translated by a vector chosen uniformly at random from [0, ]K.
 For each grid Gi, we construct a vi(p) with one coordinate par cell, where each coordinate counts the

number of points in the corresponding cell. In other words, each vi(p) forms a histogram of P. we defined

mapping f, by setting f(P) to be the vector v-1(p)/2,v0(p),2v1(p),4v2(p), . . . ,2ivi(p),. . . Note that v(P) lives in an

O()k-dimensional space, but only O(log().|P|) entries in this vector are non-zero (i.e, the vector v(P) is
sparse).

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 50 | Page

2.2 Building a LSH-LUBMTree

 The construction of the LSH-LUBMTree is very simple. Within each embedding [33], the signature of
each image is mapped into a series of vectors, one for each grid, and concatenated into one vector (d

dimensional). For each hash table, in the first step we calculate the first index for each d-dimensional object, in

the second step we calculate its second index, and we store them in the corresponding bucket. So each bucket is

a LUBMTree[19] index structure (see listing 3).

Algorithm 3. (Algorithm preprocessing the index structure LSH-LUBMTree)

Algorithm Preprocessing

Input a set of points S (signatures), l (number of hash tables), size table, prime

Output Hash tables Ti, i=1,…,l

Pembedding(s)
For each i=1,…,l

Initialize hash table Ti by generating a random hash function gi(.)

 For each i=1,…, l

 For each j=1, …, n

 Ind1t1(gi(pj)) // equation (1)

Ind2t2(gi(pj)) // equation (2)

Strfind(Ti(ind1),ind2)// find in the list Ti(ind1) the bucket ind2

If(str==null)

 Create new LUBMTree and add them in the list Ti(ind1)

endif

Store point pj on the bucket ind2 (e.i in the LUBMTree)

End for

End for

Table i Fig.4: Schema of LSH-LUBMTree Structure (one table)

2.3 Searching in LSH-LUBMTree
 For each hash table, in the first step we calculate the first index for d-dimensional query, in the second

step we calculate its second index to find the corresponding bucket, after this we start the search in the

corresponding bucket (LUBMTree) by using the rangeQueryLUB (algorithm 2) algorithm (see algorithm 4).

Algorithm 4. (Approximate Nearest Neighbor query answering algorithm)

Algorithm Approximate Nearest Neighbor Query

Input a query point Sq, threshold of range query

Access To hash tables Ti, i=1,…,l generated by the preprocessing algorithm

Output nearest neighbors

q Embedding(Sq)

SΦ
For each i=1, …, l

Ind1t1(gi(q)) // equation of (1)

Ind2t2(gi(q)) // equation of (2)

Strfind(Ti(ind1),ind2)// find in the list Ti(ind1) the bucket ind2

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 51 | Page

SS U{points found in rangeQuery(str, threshold, q) by using the search algorithm in LUBMTree, e.i see

algorithm 2) }

end for
Remove the duplicate and return S

VI. Experimental Evaluation
 We performed a number of range queries using 50 classes of the Coil-100 database, which each class

contains 72 images. We use also the Wang database, composed by 10 classes, which each class contains 100

images.

 All experiments were performed on a PC with a 5.6 Ghz processor and 4 Gb of main memory.

For all experiments we set the parameters k=6 and w=1. Moreover, we set the parameters of false negatives that

we can tolerate to 10%. For this choice of parameters, l evaluated to 10.

Fig. 5 .Number of distance computations calculate in the range query when searching in the LSH-LUBMTree

compared by the search in the LSH

Fig. 6. Time computation calculates in the range query when searching in the LSH-LUBMTree, and in standard

LSH.

 In the figure 5, the search in the LSH produces more number of distance computations than the search

in the LSH-LUBMTree for the some parameters, and so produces more image candidates. The figure 6, show
the response time obtained when search in the LSH and in our index structure. We see that the search in our

structure is faster than the search in the LSH, because the number of the calculated distances in the search

algorithm in our structure is less than the one of the LSH. This improvement is explain by the search algorithm

in the proposed index uses the lower and the upper bounding to skipping the supplementary calculs.

 Since the index structure LSH-LUBMTree that combines the structure LSH with LUBMTree show its

efficiency in term of search time than LSH. For example for the search in coil database, the search time in the

index LSH-LUBMTree in the range 0.1 is 6.5s, but the one in the same range for the LSH is 23.8s.

VII. Conclusion
 Search in large image or other multimedia databases highly dependents on the underlying similarity

model. The Earth Mover’s Distance, proposed in Computer Vision literature, is an interesting new approach

towards achieving high-quality content-based retrieval. Despite its advantages, this distance measure is

computed via a linear programming algorithm which is too slow for today’s huge and interactive multimedia.

 The disadvantage of the EMD metric is the significant response time. To solve this problem, we have

used the index structure LUBMTree.

 To improve more the search time, we have proposed a new index structure called LSH-LUBMTree that

combines the advantages of LSH, the technique used to embedding the color signature (Indyk and all 2003), and

Improving search time for contentment based image retrieval via, LSH, MTRee, and EMD bounds

www.iosrjournals.org 52 | Page

the advantages of LUBMTree. The experimentation shows that the search in the LSH-LUBMTree, become

more efficiency in the search time than the standard LSH.

 In the feature work, we plan to adapt the signatures that proposed by Rubner, to be supported by the
LSH structure.

References
[1] Swedlow, J.R., Goldberg, I., Brauner, E., Sorger, P.K.: Informatics and quantitative analysis in biological imaging. Science 300

(2003) 100–102

[2] Manjunath, B.S., Salembier, P., Sikora, T., eds.: Introduction to MPEG 7: Multimedia Content Description Language. Wiley (2002)

[3] Mahalanobis, P.: On the generalised distance in statistics. Proc. Nat. Inst. Sci. India 12 (1936) 49–55

[4] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and efficiency in high dimensional nearest neighbor search. In SIGMOD ’09:

Proceedings of the 35th SIGMOD international conference on Management of data, pages 563–576, New York, NY, USA, 2009.

ACM.

[5] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar. Efficient near-duplicate detection and sub-image retrieval. In In ACM

Multimedia, pages 869–876, 2004

 [6] Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multi-dimensional histograms. Computer, Vision, Graphics, and Image

Proc. 32 (1985) 328–336

[7] Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution: Space and gray-level. IEEE Trans. PAMI 11

(1989) 739–719

[8] Y. Rubner and C. Tomasi, Perceptual Metrics for Image Databases Navigation, Kluwer Academic Publishers, Dordrecht, The

Ntherlands, 2001

[9] W. Dong, Z. Wang, M. Charikar, and K. Li. Efficiently matching sets of features with random histograms. In MM ’08: Proceeding

of the 16th ACM international conference on Multimedia, pages 179–188, New York, NY, USA, 2008. ACM.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces. In Proc. 23rd

Conference on Very Large Databases (VLDB’97), pages 196–435. Morgan Kaufmann, 1997.

[11] Lazebnik, S., Schmid, C., Ponce, J.: Sparse texture representation using affineinvariant neighborhoods. In: Proc. CVPR. (2003)

[12] Typke, R., Veltkamp, R., Wiering, F.: Searching notated polyphonic music using transportation distances. In: Proc. Int. Conf.

Multimedia. (2004) 128–135

[13] Demirci, M.F., Shokoufandeh, A., Dickinson, S., Keselman, Y., Bretzner, L.: Manyto-many feature matching using spherical

coding of directed graphs. In: Proc. European Conf. Computer Vision (ECCV). (2004)

[14] Lavin, Y., Batra, R., Hesselink, L.: Feature comparisons of vector fields using earth mover’s distance. In: Proc. of the Conference

on Visualization. (1998) 103–109

[15] H. Ling and K. Okada. EMD-L1 : An Efficient and Robust Al-gorithm for Comparing Histogram-Based Descriptors. ECCV, p.

330-343, 2006.

[16] O. Pele and M. Werman. Fast and robust earth mover’s distances. In ICCV, 2009.

[17] Y. Liu, D. Zhang, G. Lu, W.-Y. Ma, ―Region-based image retrieval with high-level semantic color names,‖ IEEE Int. Multimedia

Modelling Conference, pp. 180–187, 2005.

[18] G. Dvir, H. Greenspan, Y. Rubner, ―Context-Based image modelling,‖ ICPR, pp. 162–165, 2002.

[19] A. Bahri and H. Zouaki. Fast Retrieval Algorithm Using EMD Lower and Upper Bounds and a Search Algorithm in

multidimensional index

[20] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqu´ın. Searching in metric spaces. ACM Computing Surveys, 33(3):273–321,

2001.

[21] B. Stein. Principles of hash-based text retrieval. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference

on Research and development in information retrieval, pages 527–534, New York, NY, USA, 2007. ACM.

[22] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma. Scalable music recommendation by search. In MULTIMEDIA ’07: Proceedings of the

15th international conference on Multimedia, pages 1065–1074, New York, NY, USA, 2007. ACM.

[23] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SoCG,

pages 253–262, 2004.

[24] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-

dimensional spaces. In VLDB ’98: Proceedings of the 24rd International Conference on Very Large Data Bases, pages 194–205,

San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[25] Tomáš Skopal Ph.D. Thesis, ― Metric Indexing in Information Retrieval‖, 2004

[26] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree: An index structure for high-dimensional data. In VLDB ’96: Proceedings

of the 22th International Conference on Very Large Data Bases, pages 28–39, San Francisco, CA, USA, 1996. Morgan Kaufmann

Publishers Inc.

 [27] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB ’99: Proceedings of the 25th

International Conference on Very Large Data Bases, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers

Inc.

[28] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In STOC ’98:

Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages 604–613, New York, NY, USA, 1998. ACM.

 [29] N. Katayama and S. Satoh. The sr-tree: an index structure for high dimensional nearest neighbor queries. In SIGMOD ’97:

Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pages 369–380, New York, NY, USA,

1997. ACM.

 [30] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: an index structure for high-dimensional data. Technical report, College

Park, MD, USA, 1994.

 [31] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient indexing for high-dimensional similarity search.

In Proceedings of the 33rd international conference on Very large data bases, VLDB ’07, pages 950–961. VLDB Endowment,

2007.

[32] J. T. Robinson. The k-d-b-tree: a search structure for large multidimensional dynamic indexes. In SIGMOD ’81: Proceedings of the

1981 ACM SIGMOD international conference on Management of data, pages 10–18, New York, NY, USA, 1981. ACM.

[33] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd International Workshop on Statistical and Computational

Theories of Vision (at ICCV), 2003.

