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 Abstract : The reversible circuit synthesis problem can be reduced to permutation group. This allows 

Schreier-Sims Algorithm for the strong generating set-finding problem to be used to synthesize reversible 

circuits using the NCT library. Applying novel optimization rules to minimize the number of gates gives better 

quantum cost than that shown in the literature. Applications on how to integrate any three irreversible Boolean 

functions on a single 3-bit reversible circuit will be shown. 
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I. INTRODUCTION 
Reversible logic [1,2] is an active area of research. It has many applications in quantum computing 

[3,4], low-power CMOS [5,6] and many more. Synthesis and optimization of Boolean reversible circuits cannot 

be done using classical methods [7]. Optimization of Boolean systems on non-standard computers that promise 

to do computation more powerfully [8] than classical computers, such as quantum computers, is essential to 

explore the novel applications that can be applied on such systems. 

The study of reversible logic synthesis problem using group theory is arising rapidly. Investigation on 

the universality of the basic building blocks of reversible circuits has been done [9,10]. A relation between 

Young subgroups and the reversible logic synthesis problem has been proposed [11]. A comparison between the 

decomposition of reversible circuit and quantum circuit using group theory has been shown [12]. GAP-based 

algorithms that synthesize reversible circuits for various types of gate with various gate costs have been 

proposed [13]. Tight bounds on the synthesis of 3-bit reversible circuits using 𝑁𝐶𝑇 library has been shown in 

[14]. 

The first aim of the paper is to synthesize 3-bit reversible circuits using 𝑁𝐶𝑇 library with better 

quantum cost than that shown in the literature. The second aim is to use the synthesized circuits to design a 

reversible circuit that simulates the function of irreversible Boolean functions such as  𝐴𝑁𝐷, 𝑂𝑅,𝑁𝑂𝑇, 
𝑋𝑂𝑅,𝑁𝐴𝑁𝐷 and 𝑁𝑂𝑅 in a single zero-garbage reversible circuit by integrating any three Boolean functions as 

long as this integration keep the reversibility of the circuit. 

The paper is organized as follows:  Sect. 2 gives a short background on the synthesis of reversible 

circuit problem and shows the reduction the problem to permutation group.  Sect. 3 shows the optimization rules 
applied on reversible circuits obtained using Schreier-Sims Algorithm for the strong generating set-finding 

problem [15] to decrease the quantum cost of the circuits.  Sect. 4 shows the results of the experiments. Sect. 5 

shows the results of integrating irreversible Boolean functions in a single 3-bit reversible circuit. The paper ends 

up with a summary and conclusion in Sect. 6. 

 

II. BACKGROUND 
This section will review the basic definitions of reversible circuits, the definition of quantum cost of 

reversible circuits and the basic notions for reversible circuit synthesis, the relationship between reversible logic 

circuits and permutation group theory. 
 

2.1 BASIC DEFINITIONS 

Definition 1: Let 𝑋 =  {0, 1}. A Boolean function f with n input variables 𝑥1 , . . . , 𝑥𝑛  and n output      

variables 𝑦1, . . . , 𝑦𝑛 , is a function 𝑓 ∶  𝑋𝑛  →  𝑋𝑛  , where  𝑥1 , . . . , 𝑥𝑛  ∈ 𝑋𝑛   is called the input vector and 

(𝑦1 , . . . , 𝑦𝑛 )  ∈  𝑋𝑛  is called the output vector. 

Definition 2: An n-input n-output Boolean function is reversible (𝑛 × 𝑛 function) if it maps each input 

vector to a unique output vector, i.e. a one-to-one, onto function (bijection). There are 2𝑛 ! reversible 𝑛 × 𝑛 
Boolean functions. For n = 3, there are 40320 3-in/out reversible functions. 

 

Definition 3: An n-input n-output (n-in/out) reversible gate (or circuit) is a gate that realizes a 𝑛 × 𝑛 

reversible function. 
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Definition 4: When an m-in/out reversible gate U is applied on an n-in/out reversible circuit such 

that 𝑚 ≤  𝑛, then U will be denoted as 𝑈𝑖1𝑖2… 𝑖𝑚
𝑛  where {𝑖1 , 𝑖2 , . . . , 𝑖𝑚 } are the m wires spanned by U in order. 

 
Definition 5: A set of reversible gates that can be used to build a reversible circuit is called a gate 

library L. 

Definition 6:  A universal reversible gate library 𝐿𝑛  is a set of reversible gates such that a cascading of 

gates in 𝐿𝑛  can be used to synthesize any reversible circuit with n-in/out. 

 

Definition 7:  A universal reversible gate sub library  𝑆𝐿𝑛  is a set of reversible gates such that 𝑆𝐿𝑛⊆𝐿𝑛  

that can be used to build any reversible circuit with n-in/out. 

 

Definition 8:  Let a finite set 𝐴 =  {1, 2, . . . , 𝑁} and a bijection 𝛿 ∶  𝐴 →  𝐴, then 𝛿 can be written as, 

 

 
1

 𝛿 (1)
 

2

 𝛿 (2)
 

3

 𝛿 (3)
  
…

…
  

𝑛

 𝛿 (𝑛)
  

(1) 

i.e. 𝛿  is a permutation of A. Let A be an ordered set, then the top row can be eliminated and 𝛿 can be written as, 

 

  𝛿  1 , 𝛿  2 , 𝛿  3 , … , 𝛿 (𝑛)  (2) 

Any reversible circuit with n-in/out can be considered as a permutation 𝛿 and (2) is called the 

specification of this reversible circuit such that 𝑁 = 2𝑛 .  

 

The set of all permutations on A forms a symmetric group on A under composition of mappings [16], 

denoted by 𝑆𝑁  [17]. A permutation group G is a subgroup of the symmetric group 𝑆𝑁  [16]. A universal 

reversible gate library 𝐿𝑛  is called the generators of the group. Another important notation of a permutation is 

the product of disjoint cycles [17]. For example,  1,2,3,4,5,6,7,8
1,2,4,3,7,6,8,5

  will be written as  3, 4 (5, 7, 8). The identity 

mapping “()” is called the unit element in a permutation group. A product 𝑝 ∗ 𝑞 of two permutations 𝑝 and 

𝑞 means applying mapping 𝑝 then 𝑞, which is equivalent to cascading 𝑝 and 𝑞. 

 

2.2 REVERSIBLE CIRCUITS  

The 𝐶𝑛𝑁𝑂𝑇 gate is used as the main reversible gate to build any reversible circuit, since it is proved to 

be universal for reversible logic synthesis [7]. The 𝐶𝑛𝑁𝑂𝑇 gate is defined as shown in Fig.1. 

 
Figure 1: 𝐶𝑛𝑁𝑂𝑇 gate. The control bit line is denoted by , and the target bit line is denoted by ⨁. 

 

The action of 𝐶𝑛𝑁𝑂𝑇 gate is defined as follows, if the control bit lines are set to 1 then the target bit 

line is flipped, otherwise the target bit line is left unchanged. Some special cases of the 𝐶𝑛𝑁𝑂𝑇 gate are defined 

as follows, 𝐶1𝑁𝑂𝑇 gate with no control bit is called 𝑁𝑂𝑇 gate. 𝐶2𝑁𝑂𝑇 with one control bit is called 𝐶𝑁𝑂𝑇 

gate. 𝐶3𝑁𝑂𝑇 with two control bits is called Toffoli gate. For the sake of readability 𝐶1𝑁𝑂𝑇, 𝐶2𝑁𝑂𝑇 and 

𝐶3𝑁𝑂𝑇 will be written shortly as 𝑁, 𝐶 and 𝑇 respectively where the control and/or target bits will be shown in 

the subscript of the gate and the total number of bits will be shown in the superscript. The 𝑁, 𝐶 and 𝑇 gates can 

be used to form a universal library for 3-in/out reversible circuits known as 𝑁𝐶𝑇 library. The main 𝑁𝐶𝑇 library 

consists of 12 gates as shown in Fig.2. 
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Figure 2: The main 𝑁𝐶𝑇 library consists of 12 gates 

 

A gate library with 𝑁 gates is not universal for 3-in/out reversible circuits since it can realize only 8 

possible circuits from the 40320 circuits [18]. For n-in/out reversible circuits, there are n possible 𝑁 gates. There 

are 3 possible 𝑁 gates as shown in Fig.3. 

 
Figure 3: The 3 possible 𝑁 gates for 3-bit reversible circuits. 

 

𝑁1
3:  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 ⊕ 1, 𝑥2 , 𝑥3 ≡  1, 5  2, 6  3, 7  4, 8 , 

𝑁2
3:  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 ⊕ 1,𝑥3 ≡  1, 3  2, 4  5, 7  6, 8 , 

𝑁3
3:  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 , 𝑥3 ⊕ 1 ≡  1, 2  3, 4  5, 6  7, 8 . 

 

(3) 

A gate library with 𝐶 gates can realize a total of 168 reversible circuits [18]. There are 6 possible               

𝐶 gates for the 3-in/out reversible circuits as shown in Fig.4. 

 
 Figure 4: The 6 possible 𝐶 gates for 3-bit reversible circuits. 

 

𝐶12
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2⨁𝑥1, 𝑥3 ≡  5, 7  6, 8 , 

𝐶13
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 , 𝑥3⨁𝑥1 ≡  5, 6  7, 8 , 

𝐶23
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 , 𝑥3⨁𝑥2 ≡  3, 4  7, 8 , 

         𝐶21
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 ⊕𝑥2 , 𝑥2 , 𝑥3 ≡  3, 7  4, 8 ,  

𝐶32
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 ⊕𝑥3 , 𝑥3 ≡  2, 4  6, 8 , 

𝐶31
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1⨁𝑥3, 𝑥2 , 𝑥3 ≡  2, 6  4, 8 . 

   (4) 

 

The 𝑇 gate is the smallest reversible gate that is proved to be universal for non-reversible computation 

as it is proved to function as 𝑁𝐴𝑁𝐷 gate by initializing the target bit to 1 [7]. A gate library with 𝑇 gate is not 

universal for reversible computation since it can realize only 24 possible 3-in/out reversible circuits [18]. There 

are three possible 𝑇 gates for the 3-in/out reversible circuits as shown in Fig.5. 
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Figure 5: The 3 possible Toffoli (𝑇) gates for 3-bit reversible circuits. 

𝑇123
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2 , 𝑥3⨁𝑥1𝑥2 ≡  7, 8 , 

𝑇132
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1 , 𝑥2⨁𝑥1𝑥3 , 𝑥3 ≡  6, 8 , 

𝑇321
3 :  𝑥1 , 𝑥2 , 𝑥3 

𝑦𝑖𝑒𝑙𝑑𝑠
     𝑥1⨁𝑥2𝑥3 , 𝑥2 , 𝑥3 ≡  4, 8 . 

 

    (5) 

For 3-bits reversible circuits, there are 40320 possible 3-in/out reversible circuits. The 𝑁 gate, the 𝐶  

gate and the 𝑇 gate (𝑁𝐶𝑇 library) can used to synthesize all 40320 possible 3-in/out reversible circuits.  

 

2.3 QUANTUM COST 
  The quantum cost of a reversible circuit refers to optimization measurement as well as the number of 

𝐶𝑛𝑁𝑂𝑇 gates used in the circuit. The quantum cost of a reversible circuit is measured by the number of 

elementary gates required to build the 𝐶𝑛𝑁𝑂𝑇  gate [19], i.e. the number of 2-qubit gates used in its 

implementation as a quantum circuit. In this paper, the cost of 𝑁 gate is ignored as in [13] to be able to compare 

results, i.e. the cost of 𝑁 is equal zero, and the cost of any 2-qubit gate is 1 and the quantum cost of 𝑇 is equal 5 

as shown in Fig.6. 

 
Figure 6: Decomposition of a 𝑇 gate as 5 elementary gates. 

 

When implementing a reversible circuit, there are four elementary quantum gates that will be used: 𝑁 

gate, 𝐶 gate, Controlled-V and Controlled-V+ gates, where  𝑉𝑉+ = 𝑉+𝑉 = 𝐼 , 𝑉𝑉 = 𝑉+𝑉+ = 𝑁, and 𝐼 is the 

identity gate [19]. 

III. OPTIMIZATION RULES TO REDUCE QUANTUM COST 
Optimization rules will be used to identify and classify similarity of gates among a circuit when 

decomposed to a sequence of quantum gates. Decomposition of 3-bit reversible circuits can be used to decrease 

the quantum cost. Optimization is done by removing and/or combining (merging) adjacent gates act on the same 

qubit lines [20]. For example, the cost of the sequence of reversible gates [𝑇123
3 , 𝐶12

3 ] is 4 instead of 6 as shown 

in Fig.7, the cost of the sequence of reversible gates [𝑇123
3 , 𝐶21

3 ] is 5 instead of 6 as shown in Fig.8 and the cost 

of the sequence of reversible gates [𝑇321
3 , 𝑇132

3 ] is 9 instead of 10, because the sequence of gate 𝐶32
3  and gate 𝑉32

3   

can be combined as one gate [𝐶32
3 𝑉32

3 ] [20] as shown in Fig.9. The optimization rules used in this paper to 

decrease the quantum cost of the 3-bits reversible circuits are shown in Table 1. 

 
Figure 7: Decomposition of 3-bit reversible circuit [𝑇123

3 , 𝐶12
3 ] as 4 elementary gates. 

 
Figure 8: Decomposition of 3-bit reversible circuit [𝑇123

3 , 𝐶21
3 ] as 5 elementary gates. 
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Figure 9: Decomposition of 3-bit reversible circuit [𝑇321

3 , 𝑇132
3 ] as 9 elementary gates. 

 

Table 1: Comparison of quantum cost using the proposed optimization rules and the existing work [21]. 

NCT Circuits 

Quantum Cost 

[21] Proposed 

rules 

3

12

3

123CT  6 4 

3

21

3

123CT  6 5 

3

13

3

132CT  6 4 

3

31

3

132CT  6 5 

3

23

3

321CT  6 5 

3

32

3

321CT  6 4 

3

132

3

321TT  10 9 

3

132

3

123TT  10 9 

3

123

3

132TT  10 9 

 
IV. EXPERIMENTAL RESULTS 

Experiments on 3-bits reversible circuits’ synthesis are presented using the 𝑁𝐶𝑇 library, the Schreier-

Sims algorithm [14] is implemented using the group-theory algebraic software GAP [22]. This algorithm deals 

with minimal number of generator problems, which is more reasonable in practice because the gates have 

different costs. Some papers discussed these problems by other methods such as [13] and [14] but the Schreier-
Sims algorithm realized in GAP [22] gives the similar minimal length problems result as shown in [13] and [14] 

and better results to minimize the quantum cost by applying the optimization rules as will be shown later. 

Table 2 and Table 3 show the results for the main 𝑁𝐶𝑇 gate library as a universal reversible library for 

reversible computation since it can realize the 40320 possible 3-in/out reversible circuits. Table 3 gives the same 

result as Table 2 with more details on the cost of minimum length. The main 𝑁𝐶𝑇 gate library synthesizes the 

best maximum length circuits, where the best maximum length = 8 gates with cost = 21 and maximum cost = 25 

with circuit length = 7. Using group-theory algebraic software GAP [22] shows that the average length of a 

reversible circuit synthesized with 𝑁𝐶𝑇 library is 5.865 which is similar to that shown in [13] and [14]. 

Table 4 and Table 5 show the results for the sub-libraries of the main 𝑁𝐶𝑇 gate library which 
synthesize the best maximum cost circuits, where the best maximum cost = 17 with circuit length = 7 and  

maximum length = 12 with cost = 14. Table 5 gives the same result as Table 4 with more details on the length of 

minimum cost. Using group-theory algebraic software GAP [22] and apply the optimization rules to calculate 

the quantum cost of reversible circuits show that the average cost of reversible circuits synthesized with 𝑁𝐶𝑇 

library is 11.459. 

Table 2: Number of circuits with minimum length 
Mini- 

length 

NCT- 

Circuits 

NCT- 

Circuits[14] 

NCT- 

Circuits[13] 

0 1 1 1 

1 12 12 12 

2 102 102 102 

3 625 625 625 

4 2780 2780 2780 

5 8921 8921 8921 

6 17049 17049 17049 

7 10253 10253 10253 

8 577 577 577 

Total 40320 40320 40320 

Average 5.865 5.865 5.865 
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Table 4: Number of circuits with minimum cost. 
Mini- 

Cost 

NCT- 

Circuits 

NCT- 

Circuits[14] 

NCT- 

Circuits[13] 

0 8 8 8 

1 48 48 48 

2 192 192 192 

3 408 408 408 

4 528 480 480 

5 541 288 288 

6 1127 592 592 

7 2413 1962 2016 

8 3566 3887 4128 

9 2430 2916 2496 

10 2545 1299 672 

11 5257 3683 2880 

12 6260 7221 7488 

13 3983 6059 7488 

14 1672 1465 384 

15 3389 3562 1600 

16 4102 4201 5568 

17 1851 2049 3584 

Total 40320 40320 40320 

Average 11.459 11.769 11.983 

 

Table 3: There are number of circuits with minimum length and cost. 

 

 

 

 

Table 5: There are number of circuits with minimum cost and length. 

Mini- 

Length 
Cost #circuits 

Mini- 

Length 
Cost #circuits 

Mini- 

Length 
Cost #circuits 

Mini- 

Length 
Cost #circuits 

 1 0 3 4 4 78 5 16 285 7 11 789 

1 1 6 4 5 101 5 17 29 7 12 1257 

1 5 3 4 6 274 5 18 14 7 13 1644 

2 0 3 4 7 668 5 19 36 7 14 904 

2 1 24 4 8 280 5 20 12 7 15 1104 

2 2 24 4 9 96 6 4 45 7 16 1663 

2 4 3 4 10 310 6 5 168 7 17 1254 

2 5 18 4 11 384 6 6 129 7 18 380 

2 6 24 4 12 134 6 7 492 7 19 158 

2 9 3 4 13 10 6 8 1347 7 20 66 

2 10 3 4 14 56 6 9 1671 7 21 27 

3 0 1 4 15 48 6 10 845 7 22 2 

3 1 18 4 16 6 6 11 2032 7 23 1 

3 2 117 4 18 1 6 12 2986 7 24 4 

3 3 51 4 19 1 6 13 2457 7 25 1 

3 4 12 5 3 75 6 14 839 8 9 3 

3 5 52 5 4 375 6 15 1376 8 10 2 

3 6 155 5 5 101 6 16 1588 8 11 17 

3 7 105 5 6 326 6 17 752 8 12 25 

3 8 1 5 7 835 6 18 88 8 13 19 

3 9 25 5 8 1639 6 19 143 8 14 46 

3 10 55 5 9 523 6 20 75 8 15 89 

3 11 27 5 10 714 6 21 16 8 16 171 

3 13 1 5 11 1390 7 6 14 8 17 136 

3 14 4 5 12 1413 7 7 78 8 18 46 

3 15 1 5 13 383 7 8 147 8 19 20 

4 2 51 5 14 273 7 9 465 8 20 2 

4 3 282 5 15 496 7 10 295 8 21 1 

Mini- 

Cost 
Length #circuits 

Mini- 

Cost 
Length #circuits 

Mini- 

Cost 
Length #circuits 

Mini- 

Cost 
Length #circuits 

0 1 3 6 7 42 11 4 228 14 9 127 

0 2 3 6 8 2 11 5 1020 14 10 60 

0 3 1 7 3 69 11 6 2026 14 11 13 

1 1 6 7 4 511 11 7 1443 14 12 2 

1 2 24 7 5 916 11 8 441 15 3 1 

1 3 18 7 6 755 11 9 77 15 4 31 

2 2 24 7 7 155 11 10 4 15 5 276 

2 3 117 7 8 7 12 4 74 15 6 891 

2 4 51 8 3 1 12 5 812 15 7 1184 
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V. INTEGRATION OF IRREVERSIBLE BOOLEAN FUNCTIONS IN A REVERSIBLE CIRCUIT 
This section shows that if a set of irreversible Boolean function can be integrated by an even parity 

permutation that has a cycle representation, then the set of irreversible Boolean functions can be realized  by a 

reversible circuit using 𝑁𝐶𝑇 library. This provides a concrete realizations for several families of Boolean 

functions such as 𝐴𝑁𝐷 𝑥1 ∧ 𝑥2 , 𝑂𝑅 𝑥1 ∨ 𝑥2 , 𝑁𝑂𝑇 𝑥1 , 𝑋𝑂𝑅 𝑥1⨁𝑥2 , 𝑁𝐴𝑁𝐷 𝑥1 ↑ 𝑥2 , 𝑁𝑂𝑅 𝑥1 ↓ 𝑥2 . 

For the sake of readability, this will be written shortly as 𝐴𝑁𝐷, 𝑂𝑅,𝑁𝑂𝑇,𝑋𝑂𝑅, 𝑁𝐴𝑁𝐷,   and 𝑁𝑂𝑅 respectively. 

There exist 8 basics combination of three different irreversible Boolean functions which are        

{{𝐴𝑁𝐷,𝑂𝑅, 𝑁𝑂𝑇}, {𝐴𝑁𝐷,𝑁𝑂𝑇, 𝑋𝑂𝑅}, {𝐴𝑁𝐷,𝑁𝑂𝑇, 𝑁𝑂𝑅}, {𝑂𝑅,𝑁𝑂𝑇,𝑋𝑂𝑅}, {𝑂𝑅,𝑁𝑂𝑇,𝑁𝐴𝑁𝐷}, 

{𝑁𝑂𝑇, 𝑋𝑂𝑅,𝑁𝐴𝑁𝐷}, {𝑁𝑂𝑇,𝑋𝑂𝑅, 𝑁𝑂𝑅}, {𝑁𝑂𝑇, 𝑁𝐴𝑁𝐷,𝑁𝑂𝑅}} . Each basic combination of three different 

irreversible Boolean functions has 6 possible permutations, and then we have totally 48 possible combinations 
of three different irreversible Boolean functions. For example, the reversible circuit to implement the set 

{𝐴𝑁𝐷,𝑂𝑅, 𝑁𝑂𝑇} has six different forms, i.e. (𝐴𝑁𝐷,𝑂𝑅, 𝑁𝑂𝑇) means that the first output line will be 

𝐴𝑁𝐷 𝑥1 ∧ 𝑥2 , the second output line will be 𝑂𝑅 𝑥1 ∨ 𝑥2  and the third line will be 𝑁𝑂𝑇 𝑥1  which is 

different from (𝐴𝑁𝐷,𝑁𝑂𝑇, 𝑂𝑅)  which means that the first output line will be 𝐴𝑁𝐷 𝑥1 ∧ 𝑥2 , the second output 

line be 𝑁𝑂𝑇 𝑥1  and the third output  line will be 𝑂𝑅 𝑥1 ∨ 𝑥2  as shown in Fig.10. 

Setting the input to  𝑥1 , 𝑥2 , 0 , i.e. the third bit is initialized to 0, all the possible combinations of   three 

different irreversible Boolean functions can be integrated by an even parity permutation that has a cycle 

representation and can be realized by reversible circuit as will be shown in Table 6. For example, the 

combination of (𝐴𝑁𝐷,𝑂𝑅, 𝑁𝑂𝑇) can be integrated by a cyclic permutation equal (1, 2) (3, 4, 5) and can be 

realized by reversible circuit [𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝑁3

3 , 𝐶12
3 ] with best minimum cost equal 8 as shown in Fig.10. 

 

 
Figure 10: The reversible circuit realizes the combination of (𝐴𝑁𝐷, 𝑂𝑅,𝑁𝑂𝑇) with the input  𝑥1 , 𝑥2 , 0 . 

 

Setting the input to  𝑥1 , 𝑥2 , 1 , i.e. the third bit is initialized to 1,  all the possible combinations of three 
different irreversible Boolean functions can be integrated by an even parity permutation that has a cycle 

representation and can be realized by reversible circuit as will be shown in Table 7. For example, the 

combination of three different irreversible Boolean functions (𝑂𝑅, 𝐴𝑁𝐷,𝑁𝑂𝑇) can be integrated by a cyclic 

permutation equal (4, 6, 5) (7, 8) and can be realized by reversible circuit [𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝐶12

3 ] with best 

minimum cost equal 8 as shown in Fig.11. 

3 3 51 8 4 174 12 6 2366 15 8 700 

3 4 282 8 5 1283 12 7 2018 15 9 273 

3 5 75 8 6 1531 12 8 799 15 10 33 

4 2 3 8 7 513 12 9 186 16 4 3 

4 3 12 8 8 56 12 10 5 16 5 122 

4 4 78 8 9 8 13 3 1 16 6 756 

4 5 387 9 2 3 13 4 8 16 7 1321 

4 6 48 9 3 22 13 5 170 16 8 1110 

5 1 3 9 4 74 13 6 1378 16 9 670 

5 2 18 9 5 332 13 7 1395 16 10 120 

5 3 57 9 6 1318 13 8 618 17 5 11 

5 4 120 10 2 3 13 9 292 17 6 203 

5 5 140 10 3 43 13 10 109 17 7 424 

5 6 202 10 4 228 13 11 12 17 8 323 

5 7 1 10 5 618 14 3 4 17 9 369 

6 2 18 10 6 908 14 4 42 17 10 353 

6 3 123 10 7 579 14 5 180 17 11 155 

6 4 298 10 8 153 14 6 445 17 12 13 

6 5 429 10 9 13 14 7 545    

6 6 215 11 3 18 14 8 254    
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Figure 11: The reversible circuit realizes the combination of (𝐴𝑁𝐷, 𝑂𝑅,𝑁𝑂𝑇) with the input  𝑥1 , 𝑥2 , 1 . 

 

All the possible combinations of three different irreversible Boolean functions with the input  𝑥1 , 𝑥2 , 1  
realize the reversible circuits with best minimum cost and length, while all the possible combinations of three 

different irreversible Boolean functions with different arrangement with the input  𝑥1 , 𝑥2 , 0  realize the 

reversible circuits with worst cost and length as shown in Table 8, i.e. setting the input vector to  𝑥1 , 𝑥2 , 1  gives 

better results. 

 
Table 6: All the possible Reversible circuits’ realizations of Boolean functions combination with 

input  𝑥1 , 𝑥2 , 0 . 

All possible 

Combination 

Cyclic 

permutation 

 

Reversible circuit 
Quantum 

cost 

Circuit 

Length 

(AND, OR, NOT) (1,2)(3,4,5) [𝐶12
3  , 𝐶13 

3 , 𝑇321 
3 , 𝑁3

3  , 𝐶12
3 ] 8 5 

(AND, NOT, OR) (1,3,4)(2,5)(6,7) [𝐶13
3  , 𝐶23

3  , 𝐶32
3  , 𝑇321

3 , 𝑇123
3  , 𝑁2

3] 13 6 

(OR, AND, NOT) (1,2)(3,6) [𝑁3
3 , 𝐶12

3  , 𝑇123
3 , 𝑇321

3 , 𝐶12
3  , 𝐶23

3 ] 13 6 

(OR, NOT,  AND) (1,3,7,6) [𝐶32
3 , 𝑁3

3 , 𝑇123
3 , 𝑇321

3 , 𝑁2
3, 𝑇132

3 , 𝑁3
3] 16 7 

(NOT, AND, OR) (1,5,2)(3,6)(4,7) [ 𝑁1
3, 𝐶12

3 , 𝑇321
3 , 𝑇123

3 , 𝐶32
3 , 𝑁3

3] 12 6 

(NOT, OR, AND) (1,5,3,7,4) [ 𝐶31
3 , 𝑁3

3 , 𝑇123
3 , 𝑇132

3 , 𝑁1
3, 𝑁3

3] 10 6 

(AND, NOT, XOR) (1,3,4)(2,7,5) [ 𝑁2
3, 𝑁3

3 , 𝑇321
3 , 𝑁3

3 , 𝐶13
3 , 𝑇321

3 , 𝑁3
3, 𝐶32

3 ]  12  8 

(AND, XOR, NOT) (1,2)(3,4,7,5) [ 𝐶13
3 , 𝑇132

3 , 𝑇321
3 , 𝑁3

3] 11 4 

(NOT,  AND, XOR) (1,5,2)(3,6,7) [ 𝑁3
3, 𝐶31

3 , 𝑇132
3 , 𝑁3

3 , 𝐶23
3 , 𝑇132

3 , 𝑁3
3] 12 7 

(NOT, XOR, AND) (1,5,3,7,2) [ 𝑁2
3, 𝑁3

3 , 𝑇132
3 , 𝑁3

3 , 𝐶31
3 , 𝑇123

3 , 𝑁1
3 , 𝑁2

3 ] 11 8 

(XOR, AND, NOT) (1,2)(3,6,7) [𝑁3
3 , 𝑇321

3 , 𝑇132
3 , 𝑁3

3 , 𝐶23
3 , 𝑇132

3 , 𝑁3
3] 15 7 

(XOR, NOT, AND) (1,3,7,2) [𝑁1
3 , 𝑁3

3 , 𝑇321
3 , 𝑁2

3, 𝑇132
3 , 𝑁3

3 , 𝑇123
3 , 𝑁1

3 , 𝑁2
3]     15 9 

(AND, NOT, NOR) (1,4,7,5) [𝑁1
3 , 𝑁3

3 , 𝑇321
3 , 𝑇132

3 , 𝑁3
3 , 𝑇123

3 , 𝐶31
3 ] 15 7 

(AND, NOR ,NOT) (1,4,7,5)(2,3) [𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝑁2

3 , 𝑇132
3 , 𝑁3

3] 12 6 

(NOT, AND, NOR) (1,6,7,3,5) [𝑁2
3 , 𝑁3

3 , 𝐶31
3 , 𝑇123

3 , 𝑁2
3 , 𝑇132

3 , 𝑁3
3] 11 7 

(NOT, NOR, AND) (1,7,2,3,5) [𝑁2
3 , 𝐶12

3 , 𝐶31
3 , 𝑇123

3 , 𝑇132
3 , 𝑁1

3] 11 6 

(NOR, AND, NOT) (1,6,5)(2,7,3 [𝑁1
3 , 𝐶32

3 , 𝑇123
3 , 𝑁2

3 , 𝐶32
3 , 𝐶31

3 , 𝑇123
3 , 𝑁2

3] 13 8 

(NOR, NOT, AND) (1,7,2,5) [𝑁2
3 , 𝑁3

3 , 𝐶21
3 , 𝑇132

3 , 𝑁3
3 , 𝑇123

3 , 𝑇321
3 , 𝑁2

3] 16 8 

(OR, NOT, XOR) (1,3,8)(5,6,7) [𝑁3
3 , 𝐶13

3  , 𝑇321
3 , 𝑇123

3 , 𝐶32
3 , 𝑁3

3] 12 6 

(OR, XOR, NOT) (1,2)(3,8)(5,7) [𝑇321
3 , 𝑁3

3 , 𝑇132
3 , 𝐶13

3 , 𝑇321
3 ] 14 5 

(NOT, OR, XOR) (1,5,4)(3,8,7) [𝐶31
3 , 𝑁3

3 , 𝑇132
3 , 𝐶23

3 , 𝑇132
3 , 𝑁1

3 , 𝑁3
3] 12 7 

(NOT, XOR, OR) (1,5,4)(2,7)(3,8) [𝑁1
3 , 𝐶12

3 , 𝐶32
3 , 𝑇321

3 , 𝑁3
3 , 𝑇123

3 , 𝑁2
3] 12 7 

(XOR, OR, NOT) (1,2)(3,8,5,7) [𝑁3
3 , 𝑇321

3 , 𝐶12
3 , 𝐶23

3 , 𝑇132
3 ] 12 5 

(XOR, NOT, OR) (1,3,8)(2,7)(5,6) [𝑁1
3 , 𝑇132

3 , 𝑁3
3, 𝐶21

3 , 𝐶12
3 , 𝑇123

3 , 𝑁1
3] 12 7 

(OR, NOT, NAND) (1,4)(3,8)(5,6,7) [𝑁1
3 , 𝐶21

3 , 𝐶13
3 , 𝑇321

3 , 𝐶32
3 , 𝑁3

3 , 𝑇123
3 , 𝑁1

3] 13 8 

(OR, NAND, NOT) (1,4)(3,8)(5,7) [𝑁1
3 , 𝑇123

3 , 𝑁2
3, 𝐶32

3 , 𝑇321
3 , 𝑇321

3 , 𝑁1
3] 16 7 

(NOT, OR, NAND) (1,6)(3,8,7)(4,5) [𝑁1
3 , 𝐶12

3 , 𝑁1
3 , 𝑇321

3 , 𝑁3
3 , 𝑇123

3 , 𝑁1
3 , 𝐶32

3 ] 12 8 

(NOT, NAND, OR) (1,7,2)(3,8)(4,5) [𝑁1
3 , 𝑁2

3, 𝑇321
3 , 𝑇123

3 , 𝐶12
3 , 𝐶32

3 , 𝑁3
3] 10 7 

(NAND, OR, NOT) (1,6)(3,8,5,7) [𝐶13
3 , 𝑇123

3 , 𝑁1
3 , 𝐶31

3 , 𝑇132
3 , 𝐶13

3 ] 11 6 

(NAND, NOT, OR) (1,7,2)(3,8)(5,6) [𝑁3
3 , 𝐶21

3 , 𝐶31
3 , 𝑇132

3 , 𝑇123
3 , 𝐶31

3 ] 12 6 

(NOT, XOR, NAND) (1,6,7)(3,8)(4,5) [𝐶32
3 , 𝑇321

3 , 𝑁3
3, 𝑇123

3 , 𝐶12
3 , 𝑁1

3] 10 6 

(NOT, NAND, XOR) (1,7)(3,8)(4,5) [𝑁1
3 , 𝑇123

3 , 𝑁1
3, 𝑁2

3 , 𝑇321
3 , 𝐶21

3 , 𝑇123
3 , 𝑁1

3] 14 8 

(XOR, NOT, NAND) (1,4,7)(3,8)(5,6) [𝑁2
3 , 𝑁3

3 , 𝐶21
3 , 𝑇132

3 , 𝑇123
3 , 𝑁1

3 , 𝑁2
3] 10 7 

(XOR, NAND, NOT) (1,4,5,7)(3,8) [𝑁1
3, 𝑇123

3 , 𝐶21
3 , 𝑁2

3 , 𝐶32
3 , 𝑇123

3 , 𝑁1
3] 11 7 

(NAND,NOT,XOR) (1,7)(3,8)(5,6) [𝑁1
3 , 𝑁3

3 , 𝑇321
3 , 𝑇132

3 , 𝑁1
3 , 𝐶13

3 , 𝑇321
3 , 𝑁3

3] 15 8 

(NAND,XOR,NOT) (1,6,5,7)(3,8) [𝑁3
3 , 𝑇132

3 , 𝐶31
3 , 𝐶13

3 , 𝑇321
3 , 𝑁3

3] 11 6 

(NOT,XOR,NOR) (1,6,5,3,7) [𝑁2
3 , 𝑁3

3 , 𝑇132
3 , 𝐶31

3 , 𝑁3
3 , 𝑇123

3 , 𝑁2
3] 10 7 

(NOT, NOR,XOR) (1,7)(2,5)(3,6) [𝑁2
3 , 𝑇123

3 , 𝑁1
3, 𝑁2

3 , 𝐶32
3 , 𝑇123

3 , 𝑁2
3 , 𝑇321

3 ] 16 8 

(XOR, NOT, NOR) (1,4,3,7) [𝑁1
3 , 𝑁3

3 , 𝑇321
3 , 𝑇132

3 , 𝑁3
3 , 𝑇123

3 , 𝑁1
3] 14 7 

(XOR, NOR, NOT) (1,4,7)(3,6) [𝑁2
3 , 𝑇123

3 , 𝑁1
3, 𝑇321

3 , 𝐶32
3 , 𝐶13

3 , 𝑇321
3 ] 15 7 

(NOR, NOT, XOR) (1,7)(2,5)(3,4) [𝑁2
3 , 𝑁3

3 , 𝑇321
3 , 𝑁3

3, 𝐶13
3 , 𝑇132

3 , 𝑇321
3 , 𝑁2

3 , 𝑁3
3] 16 9 

(NOR, XOR, NOT) (1,6,7)(3,4,5) [𝑁1
3 , 𝑁2

3 , 𝑇321
3 , 𝐶13

3 , 𝐶32
3 , 𝑇321

3 ] 12 6 

(NOT, NAND, NOR) (1,8,5,3,7) [𝑁1
3 , 𝐶12

3 , 𝐶31
3 , 𝑇123

3 , 𝑁2
3 , 𝑇132

3 ] 12 6 
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(NOT, NOR, NAND) (1,8,7)(2,5)(3,6) [𝑁2
3 , 𝑇123

3 , 𝑁1
3 , 𝐶32

3 , 𝑇321
3 , 𝐶13

3 ] 12 6 

(NAND, NOT, NOR) (1,8,3,7) [𝑁1
3 , 𝑁3

3 , 𝐶21
3 , 𝑇132

3 , 𝑁3
3 , 𝑇123

3 , 𝑁1
3 , 𝑇321

3 ] 16 8 

(NAND, NOR, NOT) (1,8,7)(3,6) [𝑁2
3 , 𝑇123

3 , 𝑁1
3, 𝐶21

3 , 𝐶31
3 , 𝐶13

3 ] 8 6 

(NOR, NOT, NAND) (1,8,7)(2,5)(3,4) [𝐶23
3 , 𝑁2

3 , 𝑇132
3 , 𝐶23

3 , 𝐶21
3 , 𝑁2

3 , 𝑇132
3 ] 13 7 

(NOR, NAND, NOT) (1,8,7)(3,4,5) [𝑁1
3 , 𝑇123

3 , 𝑁2
3, 𝐶32

3 , 𝐶31
3 , 𝑇123

3 ] 12 6 

 
 

Table 7: All the possible Reversible circuits’ realizations of Boolean functions combination with 

input 𝑥1 , 𝑥2 , 1 . 

All possible 

Combination 

Cyclic permutation 

 
Reversible circuit 

Quantum 

cost 

Circuit 

Length 

(AND, OR, NOT) (3,6)(7,8) [𝐶23
3 , 𝐶21

3 , 𝑇132
3 , 𝑇123

3 , 𝐶21
3 ] 11 5 

(AND, NOT, OR) (2,3,8,6) [𝑁1
3 , 𝐶32

3 , 𝑇123
3 , 𝑇321

3 , 𝑇132
3 , 𝑁1

3] 15 6 

(OR, AND, NOT) (4,6,5)(7,8) [𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝐶12

3 ] 8 4 

(OR, NOT, AND) (2,3)(4,7)(5,8,6) [𝑁1
3 , 𝑁3

3 , 𝐶21
3 , 𝐶32

3 , 𝑇123
3 , 𝑁1

3 , 𝐶12
3 , 𝑇321

3 , 𝑁2
3] 13 7 

(NOT, AND, OR) (2,5,8,4,6) [𝑁2
3 , 𝐶31

3 , 𝑇123
3 , 𝑁2

3 , 𝑇132
3 ] 11 5 

(NOT, OR, AND) (2,5)(3,6)(4,7,8) [𝑁1
3 , 𝐶12

3 , 𝐶23
3 , 𝑇321

3 , 𝑇123
3 , 𝐶32

3 , 𝑁3
3] 13 7 

(AND, NOT, XOR) (2,3,6)(5,8) [𝐶23
3 , 𝐶12

3 , 𝑇321
3 , 𝐶32

3 , 𝐶23
3 ] 7 5 

(AND, XOR ,NOT) (3,6)(5,8) [𝑁3
3 , 𝑇321

3 , 𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝑁3

3] 12 6 

(NOT, AND, XOR) (2,5,4,6)(3,8) [𝐶31
3 , 𝐶13

3 , 𝐶23
3 , 𝑇132

3 , 𝑇321
3 ] 13 5 

(NOT, XOR, AND) (2,5,4,7,8)(3,6) [𝑁3
3 , 𝑇321

3 , 𝑁2
3 , 𝐶12

3 , 𝑇321
3 , 𝑇123

3 , 𝑁1
3 , 𝑁2

3] 16 8 

(XOR, AND, NOT) (3,8)(4,6,5) [𝐶13
3 , 𝐶21

3 , 𝑇132
3 , 𝑇321

3 , 𝑇123
3 ] 17 5 

(XOR, NOT, AND) (2,3,4,7,8)(5,6) [𝑁1
3 , 𝑇321

3 , 𝑁2
3 , 𝑇132

3 , 𝑁3
3, 𝑇123

3 , 𝑁1
3 , 𝑁2

3] 15 8 

(AND, NOT, NOR) (1,6)(2,4,3)(5,8) [𝑁1
3 , 𝑁3

3 , 𝐶21
3 , 𝐶12

3 , 𝐶32
3 , 𝑇123

3 , 𝑇321
3 ] 13 7 

(AND, NOR ,NOT) (1,6)(2,4)(5,8) [𝑁2
3 , 𝑁3

3 , 𝑇123
3 , 𝑇321

3 , 𝑁3
3, 𝐶32

3 , 𝑇123
3 , 𝑁2

3] 16 8 

(NOT, AND, NOR) (1,2,6)(3,8)(4,5) [𝑁1
3, 𝑁3

3 , 𝐶12
3 , 𝑇321

3 , 𝑇123
3 , 𝐶32

3 ] 12 6 

(NOT, NOR, AND) (1,4,2,6)(3,8) [𝑁1
3 , 𝑁3

3 , 𝑇123
3 , 𝑇132

3 , 𝐶31
3 , 𝐶13

3 ]  10 6 

(NOR, AND, NOT) (1,6)(2,7,8)(4,5) [𝑁3
3 , 𝑇321

3 , 𝑇123
3 , 𝑁1

3 , 𝐶12
3 , 𝐶32

3 ] 12 6 

(NOR, NOT, AND) (1,6)(2,7,8)(3,4) [𝑁3
3 , 𝐶23

3 , 𝑇132
3 , 𝑁1

3 , 𝑁3
3 , 𝐶23

3 , 𝐶21
3 , 𝑇132

3 , 𝑁3
3] 13 9 

(OR, NOT, XOR) (2,3)(4,8,5) [𝐶23
3 , 𝐶12

3 , 𝐶32
3 , 𝐶23

3 , 𝑇321
3 ] 9 5 

(OR, XOR, NOT) (4,8,5)(6,7) [𝐶12
3 , 𝐶13

3 , 𝑇321
3 ] 7 3 

(NOT, OR, XOR) (2,5)(3,6,4,8) [𝐶13
3 , 𝐶21

3 , 𝐶31
3 , 𝐶13

3 , 𝑇132
3 , 𝑇321

3 ] 14 6 

(NOT, XOR, OR) (2,5,6,4,8) [𝑁2
3 , 𝑇132

3 , 𝐶31
3 , 𝑇123

3 , 𝑁2
3] 10 5 

(XOR, OR, NOT) (3,4,8)(6,7) [𝑇321
3 , 𝐶23

3 , 𝑇132
3 , 𝑇123

3 ] 14 4 

(XOR, NOT, OR) (2,3,4,8) [𝑁1
3 , 𝑇321

3 , 𝑇132
3 , 𝑇123

3 , 𝑁1
3] 13 5 

(OR, NOT, NAND) (2,4,8,5) [𝑁2
3 , 𝐶32

3 , 𝑇123
3 , 𝑇321

3 , 𝑁2
3, 𝑇132

3 ] 16 6 

(OR, NAND, NOT) (2,4,8,5)(6,7) [𝑁2
3 , 𝐶13

3 , 𝑇321
3 , 𝑁2

3 , 𝐶12
3 , 𝑇321

3 ] 12 6 

(NOT, OR, NAND) (2,6,4,8,3) [𝑁1
3 , 𝐶31

3 , 𝑇123
3 , 𝑇132

3 , 𝑁1
3] 10 5 

(NOT, NAND, OR) (2,7,6,4,8) [𝐶32
3 , 𝐶31

3 , 𝑇123
3 , 𝑇132

3 ] 11 4 

(NAND, OR, NOT) (2,6,7)(3,4,8) [𝐶23
3 , 𝑇132

3 , 𝐶21
3 , 𝐶31

3 , 𝑇123
3 ] 13 5 

(NAND, NOT, OR) (2,7,4,8) [𝐶32
3 , 𝐶31

3 , 𝑇123
3 , 𝑇321

3 , 𝑇132
3 ] 16 5 

(NOT, XOR, NAND) (1,2,6,4,8) [𝑁1
3 , 𝑁2

3 , 𝐶31
3 , 𝑇132

3 , 𝑇123
3 , 𝑁1

3 , 𝑁2
3] 10 7 

(NOT, NAND, XOR) (1,6,4, 8)(2,7) [𝐶12
3 , 𝑁1

3, 𝐶23
3 , 𝑇321

3 , 𝑇132
3 , 𝑁3

3] 11 6 

(XOR, NOT, NAND) (1,2,4,8) [𝑁1
3 , 𝑇321

3 , 𝑁1
3 , 𝑇132

3 , 𝑇123
3 , 𝑁1

3 , 𝑁2
3] 14 7 

(XOR, NAND, NOT) (1,2,4,8)(6,7) [𝑇321
3 , 𝐶12

3 , 𝐶32
3 , 𝐶23

3 , 𝑇132
3 , 𝑁3

3] 13 6 

(NAND, NOT, XOR) (1,4,8)(2,7) [𝑁1
3 , 𝐶21

3 , 𝐶12
3 , 𝑁1

3 , 𝐶13
3 , 𝑇321

3 , 𝑁3
3] 8 7 

(NAND, XOR, NOT) (1,4,8)(2,6,7) [𝑁2
3 , 𝑁3

3 , 𝑇321
3 , 𝐶13

3 , 𝑁1
3 , 𝐶12

3 , 𝑇321
3 , 𝑁3

3] 12 8 

(NOT, XOR, NOR) (1,8)(2,6,3)(4,7) [𝑁2
3 , 𝐶31

3 , 𝑁3
3, 𝑇123

3 , 𝐶12
3 , 𝑇321

3 ] 10 6 

(NOT, NOR, XOR) (1,8)(2,7,4,6) [𝑁3
3 , 𝐶12

3 , 𝑇321
3 , 𝐶23

3 , 𝑇132
3 , 𝑁1

3 , 𝐶12
3 ] 12 7 

(XOR,NOT, NOR) (1,8)(2,4,7)(5,6) [𝑁1
3 , 𝑁2

3 , 𝑁3
3 , 𝑇132

3 , 𝑇123
3 , 𝐶21

3 , 𝐶12
3 ] 10 7 

(XOR, NOR, NOT) (1,8)(2,4,6,5) [𝑁1
3 , 𝐶21

3 , 𝑇132
3 , 𝐶31

3 , 𝑁3
3 , 𝐶23

3 , 𝑇132
3 ] 12 7 

(NOR,NOT,XOR) (1,8)(2,7,6) [𝑁2
3 , 𝐶12

3 , 𝐶23
3 , 𝐶21

3 , 𝐶12
3 , 𝑇321

3 , 𝑁2
3] 9 7 

(NOR, XOR, NOT) (1,8)(2,6,3) [𝑁1
3 , 𝐶31

3 , 𝐶12
3 , 𝐶13

3 , 𝑁1
3, 𝑇321

3 ] 8 6 

(NOT, NAND, NOR) (1,2,8)(3,6)(4,7) [𝑁1
3 , 𝑁2

3, 𝑁3
3 , 𝑇321

3 , 𝑇123
3 , 𝐶12

3 , 𝐶32
3 ] 10 7 

(NOT, NOR, NAND) (1,4,6,2,8) [𝑁1
3 , 𝑁2

3 , 𝐶31
3 , 𝑇123

3 , 𝐶32
3 , 𝑇123

3 , 𝑁1
3 , 𝑁2

3] 12 8 

(NAND, NOT, NOR) (1,2,8)(4,7)(5,6) [𝐶21
3 , 𝐶31

3 , 𝑇132
3 , 𝑇123

3 , 𝐶31
3 , 𝑁3

3]  12 6 

(NAND, NOR, NOT) (1,2,8)(4,6,5) [𝑁2
3 , 𝑇123

3 , 𝑁1
3 , 𝐶32

3 , 𝐶31
3 , 𝑇123

3 , 𝑁1
3 , 𝑁2

3] 12 8 

(NOR, NOT, NAND) (1,6,2,8) [𝑁1
3 , 𝑇321

3 , 𝑁2
3 , 𝑇132

3 , 𝑇123
3 , 𝑁1

3, 𝑁2
3, 𝐶31

3 ] 15 8 

(NOR, NAND, NOT) (1,2,8)(3,6) [𝑁1
3 , 𝑇123

3 , 𝐶32
3 , 𝑁3

3 , 𝐶31
3 , 𝐶13

3 ] 8 6 
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Table 8: Comparison between the possible combinations of Boolean functions which realize the reversible 

circuits with best minimum cost and length while the inputs  𝑥1 , 𝑥2 , 0  and  𝑥1 , 𝑥2 , 1 . 
Input  𝑥1, 𝑥2, 0  

Basic Possible 

 Combinations 

Reversible  

Circuits implementation 
Mini-Cost Length 

(AND, OR, NOT) [𝐶12
3  , 𝐶13 

3 , 𝑇321 
3 , 𝑁3

3  , 𝐶12
3 ] 8 5 

(AND, XOR ,NOT) [ 𝐶13
3 , 𝑇132

3 , 𝑇321
3 , 𝑁3

3] 11 4 

(NOT, NOR,AND)  𝑁2
3 , 𝐶12

3 , 𝐶31
3 , 𝑇123

3 , 𝑇132
3 , 𝑁1

3  11 6 

(XOR, OR, NOT) [𝑁3
3 , 𝑇321

3 , 𝐶12
3 , 𝐶23

3 , 𝑇132
3 ] 12 5 

(NOT, NAND,OR) [𝑁1
3 , 𝑁2

3 , 𝑇321
3 , 𝑇123

3 , 𝐶12
3 , 𝐶32

3 , 𝑁3
3] 10 7 

(XOR, NOT, NAND) [𝑁2
3 , 𝑁3

3 , 𝐶21
3 , 𝑇132

3 , 𝑇123
3 , 𝑁1

3 , 𝑁2
3] 10 7 

(NOT, XOR, NOR) [𝑁2
3 , 𝑁3

3 , 𝑇132
3 , 𝐶31

3 , 𝑁3
3 , 𝑇123

3 , 𝑁2
3] 10 7 

(NAND, NOR, NOT) [𝑁2
3 , 𝑇123

3 , 𝑁1
3 , 𝐶21

3 , 𝐶31
3 , 𝐶13

3 ] 8 6 

Input  𝑥1, 𝑥2, 1  
Basic Possible 

 Combinations 

Reversible  

Circuits implementation 
Mini-Cost Length 

(OR, AND, NOT) [𝐶12
3 , 𝐶13

3 , 𝑇321
3 , 𝐶12

3 ] 8 4 

(AND, NOT, XOR) [𝐶23
3 , 𝐶12

3 , 𝑇321
3 , 𝐶32

3 , 𝐶23
3 ] 7 5 

(NOT, NOR, AND) [𝑁1
3 , 𝑁3

3 , 𝑇123
3 , 𝑇132

3 , 𝐶31
3 , 𝐶13

3 ] 10 6 

(OR, XOR, NOT) [𝐶12
3 , 𝐶13

3 , 𝑇321
3 ] 7 3 

(NOT, OR, NAND) [𝑁1
3 , 𝐶31

3 , 𝑇123
3 , 𝑇132

3 , 𝑁1
3] 10 5 

(NAND ,NOT, XOR) [𝑁1
3 , 𝐶21

3 , 𝐶12
3 , 𝑁1

3 , 𝐶13
3 , 𝑇321

3 , 𝑁3
3] 8 7 

(NOR, XOR, NOT) [𝑁1
3 , 𝐶31

3 , 𝐶12
3 , 𝐶13

3 , 𝑁1
3 , 𝑇321

3 ] 8 6 

(NOR, NAND, NOT) [𝑁1
3 , 𝑇123

3 , 𝐶32
3 , 𝑁3

3 , 𝐶31
3 , 𝐶13

3 ] 8 6 

 

VI. CONCLUSION 
By reducing the representation of the reversible circuit synthesis problem to permutation group, 

Schreier-Sims Algorithm for the strong generating set-finding problem is used to synthesize reversible circuits 

with minimal length. Applying the proposed optimization rules on the synthesized circuits gives better quantum 

cost to be 11.459 better than other results shown in the literature.  The minimal length of a reversible circuit is 

obtained by using the main 𝑁𝐶𝑇 library which the minimal quantum cost is obtained from using a sub library 

from the main 𝑁𝐶𝑇 library. 
Digital logic design is a well established area of research where classical Boolean functions in used in 

the construction process. Classical Boolean functions are mainly irreversible and cannot be used directly in the 

reversible circuits’ synthesis. It was shown how to integrate any three Boolean functions in a single reversible 

circuit using the 𝑁𝐶𝑇 library. It was shown that the order of the Boolean function in the output vector affects the 

efficiency of the circuit. There are two ways to initialize the input vector,  𝑥1 , 𝑥2 , 0  and  𝑥1 , 𝑥2 , 1 . It was 

shown that initializing the input vector to  𝑥1 , 𝑥2 , 1  gives better results with respect to the length and the 

quantum cost of the circuit. 
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