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Abstract: In this paper, we have proposed an Incremental Sequential Pattern Tree mining algorithm  to 

retrieve new updated frequent sequential patterns from dynamic sequence database. Sequential Pattern Tree 

stores both frequent and non-frequent items from the old sequence database. So that, our proposed algorithm 

updates the old Sequential Pattern Tree by scanning only the new sequences, does not require to scan the whole 

updated database (old + new) that reduces the execution time in reconstructing the tree. We have compared our 

proposed incremental mining approach with three existing algorithms those are GSP, PrefixSpan and FUSP-

Tree Based mining and we have got satisfactory results.  
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1. INTRODUCTION  

Data mining provides a proficient way to extract useful information and helpful knowledge from large 

amount of data that are explored in a gigantic manner day by day. Sequential pattern mining in transactional 

databases plays an important role in data mining field since it concentrates mostly on modeling customer 

purchase behavior. It is the process of finding the complete set of frequent occurring ordered events or 

subsequences from a set of sequences or sequence database. The advantage to find the sequential patterns is, we 

can find the customer sequences and predict the probability to buy some items in next transactions by the 

customers. For example, if a customer bought bread and egg in one transaction, then, we can predict the 

probability to buy milk by this customer in the next: that is, if {bread, egg} then {milk}. It is widely used in the 

analysis of customer purchase patterns or web access patterns, sequencing or time-related processes such as 

scientific experiments, natural disasters, and in DNA sequences, etc. Agrawal and Srikant first introduced 

sequential pattern mining in 1995 [1]. Based on their study, sequential pattern mining is stated as follows: 

“Given a sequence database or a set of sequences where each sequence is an ordered  list events or elements 

and each event or element is a set of items, and given a user-specific minimum support threshold or min_sup, 

sequential pattern mining is the process of finding the complete set of frequent subsequences, that is, the 

subsequences whose occurrence frequency in the set of sequences or sequence database  is greater than or 

equal to min_sup.”  Past studies developed two major classes of sequential pattern mining methods. First class 

proposed several mining algorithms [1] [2] [3] based on apriori property which states that, every nonempty 

subsequences of a sequential pattern are also a sequential pattern. During mining, the apriori based sequential 

pattern mining algorithms generate huge number of candidate patterns and these algorithms scan the whole 

database multiple times which increase both the time and space complexity. Another class proposed algorithms 

like FreeSpan [4] and PrefixSpan [5] that are based on pattern growth approach. Pattern growth approaches can 

find the complete set of frequent sequential patterns without generating any candidate patterns. But, they 

recursively generate lots of projected databases during mining and they scan each projected database numerous 

times to find the frequent items from projected database which are both space and time consuming. The entire 

discussed sequential pattern mining algorithms {[1], [2], [3], [4], and [5]} are inefficient for dynamic database. 

Because, they work in a one-time fashion: mine the entire database and obtain the complete set of frequent 

sequential patterns. However, in many applications, databases are updated incrementally. For example, customer 

shopping transaction database is updated daily due to the appending of newly purchased items from existing 

customers or insertion of new shopping sequences from new customers. The sequential patterns for the old 

database may become invalid on the updated database, so, it requires mining the updated database for the new 

subsequences. But, it is not proficient way to mine the updated databases from scratch by scanning the whole 

updated database (old + new). However, FUSP-Tree [6] structure works efficiently for incremental mining due 

to its tree structure. But, during mining [7], FUSP-Tree generates lot of projected trees and it scans the whole 

database two times. Also, FUSP-Tree stores only frequent items into the tree. So, during incremental mining, 

when any infrequent item in the old database become frequent in the updated database, in this situation, this 

algorithm rescans the old database to find the count of the infrequent item from the old database, i.e., it scans the 

whole updated database (old + new) to build the new updated FUSP-Tree.  In this paper, we have developed an 
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efficient incremental mining algorithm that updates the Sequential Pattern Tree [8] by scanning only the new 

sequences. Sequential Pattern Tree [8] structure stores both frequent and non-frequent items from the old 

sequence database. So, when new sequences appear, our algorithm updates the old  Sequential Pattern Tree by 

scanning only the new sequences, does not require scanning the whole updated database (old + new) and then, 

the updated new Sequential Pattern Tree is mined from the beginning to retrieve the new frequent sequential 

patterns without re-constructing the intermediate projected trees and candidate sequences. To build this new tree 

structure, we need only one scan of new sequences due to storage of both frequent and non-frequent items in the 

tree that reduces the tree reconstruction time drastically. The technique proposed for incremental mining in this 

paper present a much better performance than that achieved by GSP [2], PrefixSpan [5], and FUSP-Tree Based 

Mining [7] techniques. 

In the rest of the paper, section II describes related works; section III introduces our concept of 

Incremental Mining with example. Performance analysis is shown in section IV and finally section V draws 

conclusion that points out the potentiality of our work.  

 

II. REVIEW OF WORKS  
We have studied a set of mining approaches to understand the effectiveness of pattern discovery in data 

mining field. Some of them are described sequentially in this section. 

 

1.1 GSP Algorithm  

GSP (Generalized Sequential Patterns) [2] is a sequential pattern mining algorithm which was proposed 

by Srikant and Agrawal in 1996. GSP is an Apriori based algorithm. It generates lots of candidate sets and it 

tests them by multiple passes. The algorithm to find the sequential patterns is outlined as follows: First, it scans 

the database to find the frequent items, that is, those with equal or greater than minimum support. All of those 

frequent items are length-1 frequent sequences. Second, each of them starts with a seed set of sequential 

patterns to generate new potentially sequential patterns, called candidate sequences. Each candidate sequence 

contains more than one item from which pattern it is generated. The length of each sequence is the number of 

instances of items in a sequence.  All of the candidate sequences have the same length in a given pass. To find 

the frequent sequence, the algorithm then scans the database and discards those candidates which are infrequent. 

Finally, after getting the frequent sequences it makes those sequences as the seed for the next pass. The 

algorithm terminates, when there are no frequent sequences at the end of a pass, or when there are no candidate 

sequences generated. When new sequences come, GSP starts its mining process from the beginning. That 

means, GSP scans the whole updated database (old + new) during incremental mining so that multiple scanning 

of database and candidate sequences generation increase as the size of the database increases. 

 

1.2 PrefixSpan Algorithm 

PrefixSpan [5] is a projection-based, sequential pattern-growth approach for efficient and scalable 

mining of sequential patterns, which is an extension of FP-growth [9]. Unlike apriori-based algorithms it does 

not create large number of useless candidate sets and generates complete set of sequential patterns from large 

databases efficiently. The major cost of PrefixSpan is database projection, i.e., forming projected databases 

recursively. To find the sequential patterns, PrefixSpan recursively projects a sequence database into a set of 

small projected databases and sequential patterns are grown in each projected database by exploring only locally 

frequent fragments. In this approach, sequential patterns from sequence database can be mined by a prefix-

projection method in the following steps: (1) Find length-1 sequential patterns. Scan database once to find all 

the frequent items in sequences. Each of these frequent items is a length-1 sequential pattern. (2) Divide search 

space. The complete set of sequential patterns can be partitioned according to the number of length-1 sequential 

patterns (prefixes) found in step-1. (3) Find subsets of sequential patterns. The subsets of sequential patterns can 

be mined by constructing the corresponding set of projected databases and mining each recursively. During 

incremental mining, PrefixSpan mines the updated database from the scratch by scanning the whole updated 

database (old + new). So that, projected database generation and scanning of each projected database increase at 

the same time as the size of the database raises.  

 

1.3 FUSP – Tree Algorithm 

To efficiently mine the sequential patterns, Lin et al.2008 proposed the FUSP-tree [6] structure and its 

maintenance algorithm. FUSP-tree consists of one root node labeled as „root‟ and a set of prefix subtrees as the 

children of the root. Each node in the prefix subtrees contains item-name; which represents the node contains 

that frequent item, count; the number of sequences represented by the section of the path reaching the node, and 

node-link; links to the next node of that item in the next branch of the FUSP-tree. The FUSP-tree contains a 

Header-Table which store frequent item, their count and the link of first occurrence node in the tree of that item. 

This table helps to find appropriate items or sequences in the tree. The construction process is similar to FP-tree 
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[9] i.e. the construction process is executed tuple by tuple from first sequence to last. To create this tree, it 

requires two scans of large database which increases the tree construction time. Mining process of FUSP-Tree 

[7] is almost similar to PrefixSpan [5] and FP-growth [9] algorithms. After the FUSP-Tree [6] is maintained, the 

final frequent sequences can then be found by a recursive method from the tree. This method finds the 

sequential patterns from the FUSP-Tree structure by generating set of small projected trees from the large tree 

recursively. It generates no candidate sets but it generates many projected trees for each prefix sequence which 

require more memory [7]. During incremental mining, when any infrequent item in the old database become 

frequent in the updated database, in this situation, this algorithm rescans the old database to find the support of 

the infrequent item from the old database, i.e., it scans the whole updated database (old + new) to update the old  

FUSP-Tree structure due to storage of frequent items only. So that scans of database increases at the same time 

as the size of the database raises.  

 

III. PROPOSED APPROACH  
Here, we have described our proposed Incremental Sequential Pattern Tree Mining approach with 

example for finding new updated frequent sequential patterns from the updated sequence database. The algorithm 

for Incremental Sequential Pattern Tree mining is given in Algorithm 1. 

Algorithm 1: (Incremental Sequential Pattern Tree Mining: mining new updated frequent subsequences from 

updated sequence database) 

Input: Old Sequential Pattern Tree, New Sequence Database and Minimum Support Threshold (min_sup). 

Output: The complete set of new updated frequent sequential patterns. 

Method: 

1. Scan only new sequence database once and update the old Sequential Pattern Tree using Algorithm 2. 

2. Then, recursively mines the new updated Sequential Pattern Tree to find the new updated frequent 

sequential patterns using mining algorithm proposed in [8]. 

 
1.4 Incremental Sequential Pattern Tree Mining 

In our study, we have extended Sequential Pattern Tree structure for incremental sequential pattern 

mining process. When new sequences come, each new sequence is inserted as branch into the old Sequential 

Pattern Tree and the items in the old Header Table is also updated using the Algorithm 2 presented in this 

section. When sequence database is updated with new sequences, it is not required to scan the entire sequence 

database (old + new), only needs to scan the new sequences to update the existing Sequential Pattern Tree and 

Header Table that reduces the reconstruction time of the tree. Then, initiate the sequential pattern mining 

process from the beginning using the Algorithm that present in [8] to find the new updated frequent sequential 

patterns from the updated Sequential Pattern Tree. 

Algorithm 2: (Construction of Incremental Sequential Pattern Tree from new Sequence Database) 

Input: New Sequence Database, Old Sequential Pattern Tree T with old Header Table. 

Output: New Updated Sequential Pattern Tree, T´ with updated Header Table. 

Method: 

1 Scan the new sequence database.  

2 Initially, set  current _node = root of T. 

3 for each new sequence Si till the end of new sequence database 

3.1 for each event ej in Si 

3.1.1 for each item I in the ej 

3.1.1.1 if current_node has a child node c which c.label = I and c.transaction ID = j, then set c.count += 1 and 

current_node = c. 

3.1.1.2 Otherwise, 

3.1.1.2.1 Create a New node label with I 

3.1.1.2.2 New node.count = 1. 

3.1.1.2.3 New node.transaction ID = j. 

3.1.1.2.4 Store New node in the current_node's successor link. 

3.1.1.2.5 Set current_node = New node. 

3.1.1.3 end if  

3.1.1.4 For the new branch of each distinct item I, increment the count of the corresponding item I in the 

Header Table of T if item I already exist in the old Header Table; otherwise, add item I in the Header 

Table of T and set count to 1. 

3.1.2 end for 

3.2 end for 

4  current_node = root of T. 

5 end for 
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1.5 Example Incremental Sequential Pattern Tree Mining 

In this section, we have described our proposed incremental sequential pattern mining approach with a 

suitable example. Old Sequential Pattern Tree for the old sequence database shown in Table 1 is given in Fig 1 

[8]. Table 2 shows new sequence database that is appended with the old sequence database shown in Table 1. 

Scan only the new sequence database once and insert the first sequence (ad)c(ae) as existing branch into the old 

tree shown in Fig 1. Only the count of each node in this branch increment. The next sequence f(bc)(ae)  is 

inserted into the old tree as a new branch using Algorithm 2. Create a node (f: 1: 1) and insert it as child node of 

the Root node and then, derives the branch “(f: 1: 1) → (b: 1: 2) → (c: 1: 2) → (a: 1: 3) → (e: 1: 3)".  Header 

Table is also updated accordingly. After insertion of the second sequence of Table 2, we can find the complete 

new updated Sequential Pattern Tree and updated Header Table which is shown in Fig 2. 

 

Table 1 Old Sequence Database 

Sequence ID  Sequences 

10  a(abc)(ac) 

20 (ad)c(ae) 

30 a(abc)(af) 

40 (ab)(ad) 
 

Table 2 New Sequence Database 

 

 

Sequence ID  Sequences 

50  (ad)c(ae) 

60 f(bc)(ae) 

 

 
Figure 1 Old Sequential Pattern Tree Along with  

Header Table for Table 1 

 
Figure 2 Updated Sequential Pattern Tree Along with  

Updated Header Table 

 
Suppose the minimum support threshold for the updated sequence database is 50% or 3 (6*50% = 3) as 

the total sequences for the updated sequence database is 6 (old + new). So, item e: 3 that is infrequent in the old 

database (4*50% = 2) become frequent in the updated database. Only item f: 2 is non frequent for the updated 

database. Then, initiate the sequential pattern mining process from the beginning of the Updated Sequential 

Pattern Tree shown in Fig 2 using the mining method that was proposed in [8]. The first item in the Header Table 

is 'a'. Find the first occurrence nodes labeled as 'a' using depth-first-search from each suffix branch of the Root 

node of the tree. The first occurrence nodes of item 'a' are (a: 5: 1) and (a: 1: 3) shown in Fig 2. The sum of counts 

of these nodes is 6 ≥ minimum support threshold. Transaction IDs of these nodes are not matched with the 

transaction ID of Root node, 0. So, the frequent sequential pattern is (a) and now the list of mined frequent 

sequential patterns is {(a): 6}. The mining of frequent 2-sequences that start with item 'a' would continue with the 

suffix trees rooted at node (a: 5: 1) and (a: 1: 3). Again, the first occurrence nodes labeled as 'a' from suffix tree of 

root node (a: 5: 1) are (a: 2: 2), (a: 2: 3) and (a: 1: 2) shown in Fig 2. The sum of counts of these nodes is 5 ≥ 

minimum support threshold. Transaction IDs of these nodes are not matched with the transaction ID of node (a: 5: 

1). So, the frequent sequential pattern is (a)(a) and now the list of mined frequent sequential patterns is {(a): 6, 

(a)(a): 5}. No frequent 3-sequences exist for (a)(a) sequence. So, stop here. Backtrack and start again for item 'b' 

in the Header Table and find the first occurrence nodes (b: 2: 2) and (b: 1: 1) labeled as 'b' from the suffix tree 

rooted at node (a: 5: 1) shown in Fig 2. The sum of counts of these nodes is 3 ≥ minimum support threshold. 

Transaction ID of node (b: 1: 1) is matched with the transaction ID of node (a: 5: 1) and so, node (b: 1: 1) is 

considered as i-relation node of (a: 5: 1).  The parent node of node (b: 2: 2) is (a: 2: 2) where label of node (a: 2: 

2) is same as root node‟s label (a: 5:1). That‟s why node (b: 2: 2) is also considered as i-relation node of (a: 5: 1). 

So, (ab) is the new frequent sequential pattern and this time, the list of mined frequent sequential patterns is {(a): 

6, (a)(a): 5, (ab): 3}. By continuing this process, the complete new updated frequent sequential patterns for the 

updated database are {(a): 6, (a)(a): 5, (ab): 3, (ab)(a): 3, (a)(c): 4, (a)(c)(a): 4, (ad): 3, (ae): 3, (b): 4, (b)(a): 4, 

(bc): 3, (bc)(a): 3, (c): 5, (c)(a): 5, (c)(ae): 3, (c)(e): 3, (d): 3, (e): 3}. 
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From the above discussion, we can conclude that, our proposed incremental approach updates the old 

tree by scanning only the new sequences once and finds new updated frequent sequential patterns by mining the 

updated tree from the beginning. 

 

IV.             PERFORMANCE ANALYSIS 
Here, we represent a performance comparison of proposed Incremental Sequential Pattern Tree Mining 

approach with GSP, PrefixSpan and FUSP-Tree Based mining on both synthetic and real-life datasets. All the 

experiments were conducted on a 2.80-GHz Intel(R) Pentium(R) D processor with 1.5GB main memory, 
running on Microsoft Windows 7. All the programs were written in NetBeans IDE 6.8 with JDK 6. We did not 

directly compare our data with those in some published reports running on different machines. Instead, we also 

implemented GSP, PrefixSpan and FUSP-Tree Based mining algorithms to the best of our knowledge based on 

the published reports on the same machine and compared these four algorithms in the same running 

environment. 

 

1.6 Datasets 

We have used four datasets, three real-datasets, BMS-WebView-1 [10], BMS-WebView-2 [10], and 

BMS-POS [10], as well as a Synthetic dataset T10I4D100K [10] for evaluation of experimental results. We use 

these datasets by considering each transaction as a sequence and each item of the transaction as a single item 

element in that sequence. Obviously, while considering these datasets for sequential pattern mining, they will 

also generate long sequential patterns. The properties of these datasets, in terms of the number of distinct items, 

the number of sequences, the maximum sequence size, the average sequence size, and type are shown below by 

Table 3. 

Table 3 Properties of Experimental Datasets 
Dataset Distinct 

Items 

No. of 

Sequences 

Max 

Size 

Avg 

Size 

Type 

T10I4D100K 870 100000 29 10.1 Synthetic 

BMS-WebView-1 497 59602 267 2.5 Real 

BMS-WebView-2 3340 77512 161 5.0 Real 

BMS-POS 1657 515597 164 6.5 Real 

 

1.7 Experimental Result 

In this section, we have presented our performance analysis between GSP, PrefixSpan, FUSP-Tree 

Based mining, and Incremental Sequential Pattern Tree Mining method for incremental mining by using above 

four datasets. During incremental mining, new sequences are added to the old sequence database i.e. size of the 

sequence database increases and minimum support threshold remain same. 

Comparisons between four algorithms for different incremental databases from above four datasets are 

shown below. 
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Figure 3 Comparison Between Execution Time and 

Various size of  Datasets for T10I4D100K 

 
Figure 4 Comparison Between Execution Time and 

Various size of  Datasets for BMS-WebView-1 

 
Figure 5 Comparison Between Execution Time and 

Various size of  Datasets for BMS-WebView-2 

 
Figure 6 Comparison Between Execution Time and 

Various size of  Datasets for BMS-POS 

 

 
Figure 7 Comparison Between No. of Sequential 

Patterns and Various size of  Datasets for 

T10I4D100K 

 

 
Figure 8 Comparison Between No. of Sequential 

Patterns and Various size of  Datasets for BMS-

WebView-1 

 

 
Figure 9 Comparison Between No. of Sequential 

Patterns and Various size of  Datasets for BMS-

WebView-2 

 

 
Figure 10 Comparison Between No. of Sequential 

Patterns and Various size of  Datasets for BMS-POS 
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All the experimental results in Fig 3, 4, 5, and 6 are depicted to show the execution time of the four 

algorithms at various incremental databases. It can be observed from these Figures that, the execution times of 

our proposed incremental approach much better than GSP, PrefixSpan and FUSP-Tree Based mining for both 

synthetic and real-datasets. Thus, we can conclude that, our proposed approach achieves better performance than 

other three existing methods for incremental mining. Because, during incremental mining, our proposed 

approach updates the old Sequential Pattern Tree by scanning only the new sequences once that reduces the both 

scans of database and tree construction time considerably. This is also to be pointed out that, our proposed 

approach generates same number of frequent sequential patterns for different size of databases as generated by 

GSP, PrefixSpan, and FUSP-Tree Based mining algorithms that shown in Fig 7, 8, 9,  and 10 respectively.  

V. CONCLUSION  
Though GSP, PrefixSpan, and FUSP-Tree Based mining find the entire frequent sequential patterns but 

for incremental database these approaches cannot work efficiently. GSP and PrefixSpan algorithms scan the 

both old large database and new incremental database to find the new updated frequent sequential patterns that 

means they start from the scratch so that both space and time complexity of these algorithms raise as the size of 

the database increases. FUSP-Tree Based mining algorithm scans the whole updated database (old + new) 

during tree construction time if infrequent items in the old database become frequent in the updated database 

that increases the FUSP-Tree construction time considerably. For this reason, we have proposed an incremental 

mining algorithm which updates the old Sequential Pattern Tree for the incremental database by scanning only 

the new sequences once and then, the updated Sequential Pattern Tree is mined to find the new frequent 

sequential patterns from the beginning. Because of storing both frequent and infrequent items in the Sequential 

Pattern Tree and scanning only the new sequences, our approach can reduce the scans of whole updated 

database as well as tree reconstruction time significantly. We can strictly notify that, our approach works well 

than GSP, PrefixSpan, and FUSP-Tree Based mining for dynamically updated database. Also, our approach can 

find out all the frequent sequential patterns like GSP, PrefixSpan and FUSP-Tree Based mining can do. We have 

cleared this expectation from the graphical result which is already shown in our performance analysis section.  
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