
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. XII (Mar-Apr. 2014), PP 109-115

www.iosrjournals.org

www.iosrjournals.org 109 | Page

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path

Planning

Kiran K Ravulakollu
1
, Shailashree K Sheshadri

1

1
(Dept. of Computer Science and Engineering, Sharda University, Uttar Pradesh, India)

Abstract : The efficiency in path planning algorithms is a crucial issue in mobile agents. For an artificial

agent, observation from environment, navigational behavior and learning methods over occupancy grid maps

are tools for effective path planning. The path generated by the conventional D* algorithm may lead to collision

with the obstacles in real-time scenario and this issue is addressed by Ds* which uses `safety distance’

phenomena, based on weighted cost function. The factors of distance and safety are considered simultaneously

in the cost function, thereby demonstrated efficiency in path planning. An analysis on goal-directed navigation

tasks in mazes using Ds* heuristic approach is carried out and the efficiency is evaluated based on two

parameters - Path length and Execution time.

Keywords: D* search algorithm, Heuristic Search, Occupancy Grids, Path Planning, Safety Distance.

I. INTRODUCTION
Mobile robot vision-based navigation has become the source of numerous research contributions, from

the domains of both vision and control. Vision plays a very important role in applications such as localization,

automatic map construction, autonomous navigation, path following, inspection, monitoring or risky situation

detection. The mobile agent, which uses the artificial intelligence as the base for its functioning, is termed as

mobile agent as it is independent of human interference and possesses the decision-making capability. Path

planning for mobile agent is one of the critical tasks in unstructured, semi-structured and structured

environments for navigation. In this process, it is essential to have a collision-free path between start and

destination position continuously. There are two types for mobile agent path planning [1]: Global Planning or

deliberative technique and local planning or sensor based planning.

Agent navigation includes the following challenges: Modeling the environment in the understandable

way, finding collision-free path from source to destination and sensing the target. The major issue faced during

the path planning is searching for a collision-free time-parameterized path. As the agents move in the terrain,

they need to observe environment, analyze the trajectories based on the obstacles present and learn their

behavior using heuristic based artificial intelligence techniques [2]. With the reduction of possible eventualities,

planning process is expected to speedup.

There are various path-planning methods based on an environment map for mobile robots. For

example, Dijkstra‟s algorithm [3]is a kind of most short-path search method, which it guarantees to find a

shortest path. A* algorithm [4]is like Dijkstra‟s algorithm, and it can use a heuristic to guide itself. Fu and Xu

[5] proposed one kind of A* algorithm based on restricted searching area to compute the fastest path. Chabini

and LAN [6]extends the A* methodology to shortest path problems in dynamic networks, in which arc travel

times are time dependent. A variety of algorithms have been developed to accomplish this re-planning described

in [7][8][9][10][11][12]). In particular, the D* family of algorithms have been widely used for ground based

mobile robot navigation [10][11][12], which are graph-based searches that extend A* while handling the

planning and re-planning simultaneously.

Section II discusses the problem statement and the proposed solution i.e., the Ds* algorithm. Section III

provides some simulation results of the proposed Ds* path planning method and some compared results are

presented with D*. Finally, conclusions are summarized in section IV.

II. PATH PLANNING USING ‘SAFETY DISTANCE’
For optimal path planning of agent, the Ds* heuristic based path planning algorithm is executed, which

consists of: Image Acquisition, Preprocessing Phase and Path Evaluation Phase (Ds*).These algorithms D* and

Ds*are graph-based searches that extend A* to efficiently repair solutions when changes are made to the graph.

As such, they have been shown to be orders of magnitude more efficient than planning from scratch each time

when new environmental information is received. Although these algorithms were initially designed to operate

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 110 | Page

over arbitrary graph representations of the environment, they have typically been used to plan over uniform 8-

connected 2D grid representations for ground vehicles. The use of such representations has a number of

limitations, most notably suboptimal solution paths and significant memory requirements. In an attempt to

improve upon these limitations, interpolation-based re-planning algorithms have recently been developed [11]

[13]. These algorithms produce much better solutions through both uniform grids (thus addressing the path

quality limitation of standard 8-connected 2D grid-based planners) and non-uniform 2D grids (thus allowing for

much less memory-intensive representations to be used).

1) Image Acquisition

The image of the environment is captured through the camera. At every stage, based on maximum

detection range of camera, the image is captured which is visualized as grid. As the agent moves ahead, the field

of view is incremented which leads to the generation of incremental grids. Integration of partial grids is

considered the final image. As the external sources are used for acquisition, the care must be taken to avoid the

noises and the distortion. Cameras are the fundamental robot inputs for the process of perception, and therefore

the degree to which cameras can discriminate the world state is critical. Camera‟s noise induces a limitation on

the consistency of readings in the same environmental state and, therefore, on the number of useful bits

available from each reading [15]. Often, the source of noise problems is that some environmental features are

not captured by the agent‟s representation and are thus overlooked. The navigation platform considered is a 2D

representation of the environment in terms of occupancy grids. The free space and the obstacles are viewed as

binary images. The configuration space determines the feasible paths available for navigation.

B. Preprocessing Phase

 This phase deals with Localization, Mapping and obstacle detection as well. The environment under

consideration comes via image acquisition. The preprocessing stage is essential to ensure that the agent

understands and learns its environment visually. This phase must achieve the accurate results with minimal

computational overhead.

1) Obstacle Detection

 From the binary image, the obstacles are detected based on the pixel intensity (pixel value=0 is

generally considered as obstacle) as shown in Figure1.

Figure1: The representation of the image in terms of occupancy grids – Binary Image

This image is subjected to corner detection and edge detection, in which Harris corner detector [16] is

used to perform the initial task of locating corners. The edges are detected using threshold canny edge detector.

The full edge detector will not be useful for detecting the obstacles on the image. The resulting edge detection

image will leave only edges from objects that are evident on the image. Now, the boundaries of the obstacles are

extracted and this helps the agent to analyze the free space for navigation as shown in Figure 2.

Figure 2: The boundaries of the obstacle detected

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 111 | Page

C. Path Estimation

There is a continuous path from Start(S) to Target (T) where S is the parent node. The Target (T)

location is user-defined. The total distance D is estimated which is the Euclidean distance from S to T. There

will be „n‟ number of obstacles of definite geometric shape. The agent during navigation, when approaches the

obstacle, then a point called focal point F is defined. As there are n obstacles, there will be n focal points. Let P

be the total length of connected focal lengths F from S to T.

 ∑

(1)

The total path P is evaluated as per the function (1) determines the cost of all the feasible paths

generated at every focal point F. Let denote the line between the current focal point and the Target (T). The

Target point, Current focal point and previous focal point form a triangle. When, the agent is at S, the value of

 [] , which is the constant value. These values are accumulated in an array starting from 0 to last focal

point before the target point. The further values are calculated as defined in (2):

 [] √ (2)

Where, b= distance between the current focal point and previous focal point obtained from the camera,

c = previous value of .

D. Path Execution – Ds* Algorithm

The name of algorithm, D*, was chosen because it resembles A*, except that it is dynamic in nature

that are cost parameters which change during planning. Provided that agent steps are properly coupled to the

algorithm, D* generates optimal trajectories. With D*, we can obtain global knowledge of goal from any

position in environment. Global knowledge is called in our case, as global path information is back-pointer for

direction. Back-pointers are determined from cost calculation to all positions in agent space navigation. D*

algorithm combines local and global planning by makes sufficient use of global environment from sensors. This

algorithm is applied in partially known or changing environment. It produces an optimal path from start to goal

by minimizing a predefined cost function. It has capability of rapid re-planning, and has been used in real time

planning in challenging terrains. The path planning which Sojourner [17] used was D*, that made Sojourner

avoid carefully distinguishing obstacles on the path and replan in real time for the next movement.

1) Issues in D* Algorithm

Commonly, „shape‟ of agent is ignored, and the position of agent is expressed by parameter of state.

The D* algorithm mainly focuses on generating the shortest path which sometimes becomes less practical and

obsolete in the complicated environment with many obstacles* sets agent transition from start to goal across

directional arcs. It maintains a list of states queued for cost expansion, initially with goal state set to zero. This

list is called the open list, as it contains states “open” for expansion. The state with the minimum path cost on

the open list is repeatedly expanded, propagating path-cost calculations to its neighbours. As agent moves, it

may detect new obstacles or absence of expected obstacles.

When obstacle is detected, arc of the path passing through this obstacle is marked with a large value

and the adjoining states are set on open list for cost correction. Encountering unexpected obstacles will set off a

“raise” wave, a wave of increasing cost, through neighbouring states. When this wave meets with states that are

able to lower path costs, these “lower” states are put on the open list to recalculate new optimal paths. When it

detects the absence of an expected obstacle, the arc of the path passing through this missing obstacle is assigned

a small cost, denoting an empty space, and the adjoining state is put on the open list as a lower state, setting off

a “lower” wave, a wave of decreasing cost. D* is able to determine how far the raise and lower waves need to

propagate while providing the optimal path for robot traverse continuously [18].

2) Ds* Algorithm

The Ds* algorithm consists of three functions: Safety-State (Figure 3), Process-State and Modify-Cost.

After applying the implemented algorithm on different grid maps, we found that it generates a path from the

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 112 | Page

start point in front of the robot to the goal location. This path is efficient in terms of the minimum cost required

to reach the target (i.e. the cost function is the min path length). Ds* will provide the shortest, lowest cost path

and also automatically gives the smoothest path. Relative position between the current position and that of the

next move must be taken into consideration to improve performance.

The Safety-State () function estimates the criteria whether the agent can pass through the obstacles and

the convergence of the algorithm. A safe and a distance movement characteristic of the node are considered in

the proposed method, thus it can determine an appropriate path that avoids the collision with obstacles and

moves to the destination quickly for the agent which is calculated by safe (n) represented in (3). This value is

calculated using the minimum distance between the obstacles, the distance towards the target from the current

focal point and the entire distance between Source and Target. To generate a smooth path, size of the agent is

considered by considering the number of nodes equal to the size of an agent when testing the candidate

successor nodes. This leads to the testing more than one node together to direct the possible direction of

movement.

 { (

)

(3)

 represents the agent size, represents distance of the agent at the focal point towards the

target point (T) and is the minimum distance of between the obstacles which has to be greater than the

 .To determine that the agent leaves the obstacle boundary when the target becomes visible or when it is able

to pass through the obstacles without collision, the convergence of the algorithm is important which is provided

by(4).

 (4)

This equation provides the guarantee that the distance to the target from the current focal point F

always decreases at least by between successive focal points. This ensures that algorithm always

converges.

Safety-State(kmin,As){

F=Free Space; R=Maximum Range of the Camera;

if no obstacle

then F = R;

elseif target not visible

then

else \\leave obstacle when the target is visible

end

if (As>kmin)

then calculate safe(n)

 compute f(n) = g(n)+h(n);

end if

end if
Figure 3: Pseudocode for Safety-State function

After the safe(n) is calculated the other 2 functions Process-State and Modify-Cost are calculated and

modified according to g(n) and h(n) which determines the heuristic cost.

 = OPEN list = Ds* maintains this list to store the path costs of already visited node. The value is

taken from which is an arc cost function.

The actual cost of the current path from the source node S to the current expanding node n is given by:

 (5)

The traditional D* algorithm in the path planning is chiefly focusing on calculating the shortest path.

However, the shortest path becomes less practical and helpful in the complicated environment with many

obstacles. The concern of this paper is how to arrive at the destination in the most safe and fastest way.

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 113 | Page

Therefore, g(n) (the actual cost of the current path from the start node S(0, 0) to the current expanding node

n) is modified as per (5).

 = = Ds* maintains the sum of the arc costs from State to Target which is calculated

using Euclidean distance.In this paper, the grip map is used and the distance relation between two nodes is

described in Figure, where d denotes the direct distance of two nodes.

Figure 4: Distance relation between two nodes

The h (n) is the heuristic estimation of the minimum cost of a path from the current expanding node n

to the target node T denoted by (6):

 √

 (6)

Based on Ds* algorithm, the optimum path, is determined by tracing back through prev (T) from the

start node T firstly and back to the start node S finally, where prev (n) =FN, and Fnis the current focal point of

the n
th

step.

III. EXPERIMENTAL RESULTS

The evaluation criteria for the Ds* algorithm is based on qualitative analysis. The environment is

depicted in terms of occupancy grids as a binary image. The 0‟s represent obstacles or blockage in path while

1‟s represent free space. With this the nodes and partial graph structures are generated which acts as an input to

the Ds* algorithm. The Ds* algorithm is implemented using the ROBOTICS-9.8 toolbox available in

MATLAB.The proposed Ds* algorithm is shown in Figure 5, where S= (1, 4) is a start node, T= (6, 1) is a goal

node.

5 gs(n)

=18

gs(n)

=25

4 S(1) gs(n)

=18

3 gs(n)

=15(2)

gs(n)

=16

2 (3) (4) (8) (9) (10)

1 (5) (6) (7) Target(T)

0 1 2 3 4 5 6

Figure 5: Example explanation of the proposed Ds* algorithm, where (1, 4) is a start node and (6, 1) has a lowest score.

As shown in Figure, there are ten searching steps to find the optimal path S=(1,4)-(1,3)-(1,2)-(2,1)-

(3,1)-(4,1)-(4,2)-(5,2)-(6,2)-(6,1)=T. The Ds* algorithm uses 4-connectivity for calculation. The gs(n)

determines the actual cost of the current node navigated and whichever step generates the minimum gs(n), that

path is chosen for navigation.

Start and Target

Node
Obstacles

D* Path

Ds* Path

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 114 | Page

Outputs of Ds*path planning approach:

Figure 6: Path generated from Ds* path planning. S(2, 6) and T(16, 16), As = 0.5 units. Execution Time = 48ms.

In this experiment, the agent size considered is half the grid block. The D* takes 21 steps and 56ms to

reach the target. The Ds* takes 26 steps but reaches the target quickly in 48 sec. This is due to the safe distance

value which gets added to the distance function. The number of steps taken to reach the target is more due to the

agent size constraint. This proves the efficiency of Ds* algorithm.

Figure 7: Example 1 - The path generated by both D* and Ds*

In this experiment, the agent size considered is one grid block. The D* takes 20 steps and 22ms to

reach the target. The Ds*takes 21 steps but reaches the target quickly in 18 sec. This is due to the safe distance

value which gets added to the distance function. The number of steps taken to reach the target is more due to the

agent size constraint. This proves the efficiency of Ds* algorithm. When the agent reaches the wall or the

boundary, it follows the standard wall avoidance algorithm to navigate towards the target.

Figure 8: Example 2 - The path generated by both D* and Ds*

In this experiment, the agent size considered is one grid block. The D* takes 24 steps and 26 ms to

reach the target. The Ds* takes 19 steps but reaches the target quickly in 28 sec. This is due to the safe distance

value which gets added to the distance function. The number of steps taken to reach the target is more due to the

agent size constraint. This proves the efficiency of Ds* algorithm. When the agent reaches the wall or the

boundary, it follows the standard wall avoidance algorithm to navigate towards the target.

Ds* Heuristic Approach using ‘Safety Distance’ for Agent Path Planning

www.iosrjournals.org 115 | Page

For execution of Ds*, the size of the agent considered is 1 unit rather than a point- mass agent. The

navigation is done by first considering the size of an agent with the periphery of the obstacle encountered. If an

agent can move between the obstacles, then safe (n) value is calculated based on(4).

Table I. COMPARITATIVE ANALYSIS

Algorithm
Occupancy

Grid No.
Agent Size

Path Length

(Nodes)
Execution Time (ms)

D*

Figure6

NA

21 56

Figure7 20 22

Figure 8 24 26

Ds*

Figure 6 0.5 unit 25 48

Figure 7 1 units 20 18

Figure 8 1 units 19 28

The path length depends on the gs(n) which indirectly depends on the safe (n). The accuracy of the

algorithm depends on the distance estimation and accurate mapping of focal points. The execution time depends

on the heuristic estimation of the path as explained in (6).

IV. CONCLUSIONS
The path generated by D* can lead to collision as it cannot generate safe paths and sub-optimal paths.

Through this paper, we have proposed a modified D* algorithm, which guarantees planning of optimal path for

mobile agents ensuring the safety and quick navigation. Application of cosine rule for estimating node distance

is stabilized with the help of 3 different levels, in term of grid complexities. The variation in the path length is

caused due to the safety distance parameter, which in some cases is greater than the path cost of D*. Finally, the

paper concludes that a safety distance criterion is valid and modified D* can always guarantee safe path

planning along with improvisation in performance at cases. Furthermore, the criteria can be verified on more

complex environments with greater branching factor to validate efficiency and capabilities.

REFERENCES
[1] H. Zhang, J. Butzke, and M. Likhachev, “Combining global and local planning with guarantees on completeness”, In IEEE

International Conference on Robotics and Automation, 2012.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations, Cambridge, MA: MIT Press, 2005.

[3] M. Barbehenn, “A note on the complexity of Dijkstra‟s algorithm for Graphs with Weighted Vertices”, IEEE Transaction on
Computers, vol.47, no.2, 1998.

[4] T. Goto, T. Kosaka, and H. Noborio, “On the heuristics of A* or a algorithm in ITS and robot path-planning,” 2003 IEEWRSJ Intl,

Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003.
[5] M. Fu and B. Xue, “A path planning algorithm based on dynamic networks and restricted searching area”, IEEE International

Conference on Automation and Logistics, pp.1193-1197, 2007.

[6] I. Chabini and L. Shan, “Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic
networks”, IEEE Trans. on Intelligent Transportation Systems, vol.3, no.1, pp.60-74, 2002.

[7] A. Barto, S. Bradtke, and S. Singh, “Learning to Act Using Real-Time Dynamic Programming,” Artificial Intelligence, vol. 72, pp.81–

138, 1995.
[8] T. Ersson and X. Hu, “Path planning and navigation of mobile robots in unknown environments,” in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems (IROS), 2001.

[9] G. Ramalingam and T. Reps, “An incremental algorithm for a generalization of the shortest-path problem,” Journal of Algorithms, vol.
21, pp. 267–305, 1996.

[10] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning,” in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1995.
[11] S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation in unknown terrain,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2002.

[12] D. Ferguson and A. Stentz, “The Delayed D* Algorithm for Efficient Path Replanning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[13] D. Ferguson and A. Stentz, “Multi-resolution Field D*,” in Proceedings of the International Conference on Intelligent Autonomous

Systems (IAS), 2006.
[14] A. Cherubini and F. Chaumette, “A redundancy-based approach for obstacle avoidance in mobile robot navigation”, IEEE/RSJ Int.

Conference on Intelligent Robots and Systems, 2010.

[15] N.M.Wardhana, H. Johan, andH. S. Seah, “Enhanced waypoint graph for surface and volumetric path planning in virtual
worlds,”TheVisual Computer, vol. 29, no. 10, pp. 1051–1062, 2013.

[16] C.J. Harris and M. Stephens, “A combined corner and edge detector”, 4th Alvey Vision Conference, Manchester, 1988.
[17] D. Bo, X. Xiao-ming, C. Zi-xing, Current Status and Future Development of Mobile Robot Path Planning Technology, Control

Engineering of China, 12(3):198-202, May 2005.

[18] J. Guo, L. Liu, Q. Liu, Y. Qu, “An Improvement of D* algorithm for Mobile Robot Path Planning in Partial Unknown Environment”,
Second International Conference on Intelligent Computation Technology and Automation, 2009.

