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Abstract: The rapidly increasing power of personal mobile devices (smartphones, tablets, etc.) is providing 

much richer contents and social interactions to users on the move. This trend however is throttled by the limited 

battery lifetime of mobile devices and unstable wireless connectivity, making the highest possible quality of 

service experienced by mobile users not feasible. The recent cloud computing technology, with its rich resources 

to compensate for the limitations of mobile devices and connections, can potentially provide an ideal platform to 

support the desired mobile services. Tough challenges arise on how to effectively exploit cloud resources to 

facilitate mobile services, especially those with stringent interaction delay requirements. In this paper, we 

propose the design of a Cloud-based, novel Mobile sOcial tV system (CloudMoV) . The system effectively 

utilizes both PaaS (Platform-as-a -Service) and IaaS (Infrastructure- as- a-Ser-vice) cloud services to offer the 

living-room experience of video watching to a group of disparate mobile users who can interact socially while 

sharing the video. To guarantee good streaming quality as experienced by the mobile users with time-varying 

wire-less connectivity, we employ a surrogate for each user in the IaaS cloud for video downloading and social 

exchanges on behalf of the user. The surrogate performs efficient stream transcoding that matches the current 

connectivity quality of the mobile user. Given the battery life as a key performance bottleneck, we advocate the 

use of burst transmission from the surrogates to the mobile users, and carefully decide the burst size which can 

lead to high energy efficiency and streaming quality. Social interactions among the users, in terms of 

spontaneous textual exchanges, are effectively achieved by efficient designs of data storage with BigTable and 

dynamic handling of large volumes of concurrent messages in a typical PaaS cloud. These various designs for 

flexible transcoding capabilities, battery efficiency of mobile devices and spontaneous social interactivity 

together provide an ideal platform for mobile social TV services. We have implemented CloudMoV on Amazon 

EC2 and Google App Engine and verified its superior performance based on real-world experiments. 

Index Terms: Computers and information processing, Mobile computing, Communications technology, TV, 

Mobile TV. 

 

I. Introduction 
T HANKS to the revolutionary ―reinventing the phone‖ campaigns initiated by Apple Inc. in 2007, 

smartphones nowadays are shipped with multiple microprocessor cores and gigabyte RAMs; they possess more 

computation power than personal computers of a few years ago. On the other hand, the wide deployment of 3G 

broadband cellular infrastructures further fuels the trend. Apart from common productivity tasks like emails and 

web surfing, smartphones are flexing their strengths in more challenging scenarios such as realtime video 

streaming and online gaming, as well as serving as a main tool for social exchanges. 

Although many mobile social or media applications have emerged, truely killer ones gaining mass 

acceptance are still impeded by the limitations of the current mobile and wireless technologies, among which 

battery lifetime and unstable con-nection bandwidth are the most difficult ones. It is natural to resort to cloud 

computing, the newly-emerged computing par-adigm for low- cost, agile, scalable resource supply, to support 

power-efficient mobile data communication. With virtually infi- nite hardware and software resources, the cloud 

can offload the computation and other tasks involved in a mobile application and may significantly reduce 

battery consumption at the mobile devices, if a proper design is in place. The big challenge in front of us is how 

to effectively exploit cloud services to facilitate mobile applications. There have been a few studies on designing 

mobile cloud computing systems, but none of them deal in particular with stringent delay requirements for 

spontaneous social interactivity among mobile users. 

In this paper, we describe the design of a novel mobile social TV system, CloudMoV, which can 

effectively utilize the cloud computing paradigm to offer a living-room experience of video watching to 

disparate mobile users with spontaneous social interactions. In CloudMoV , mobile users can import a live or 

on- demand video to watch from any video streaming site, invite their friends to watch the video concurrently, 

and chat with their friends while enjoying the video. It therefore blends viewing experience and social 

awareness among friends on the go. As opposed to traditional TV watching, mobile social TV is well suited to 
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today’s life style, where family and friends may be separated geographically but hope to share a co-viewing ex-

perience. While social TV enabled by set -top boxes over the traditional TV systems is already available  it 

remains a challenge to achieve mobile social TV, where the concurrently viewing experience with friends is 

enabled on mobile devices. 

We design CloudMoV to seamlessly utilize agile resource support and rich functionalities offered by 

both an IaaS (In-frastructure- as-a -Service) cloud and a PaaS (Platform-as-a-Ser-vice) cloud. Our design 

achieves the following goals. 

 

A. Encoding Flexibility 

Different mobile devices have differently sized displays, customized playback hardwares, and various 

codecs. Traditional solutions would adopt a few encoding formats ahead of the release of a video program. But 

even the most  platforms, if not only to the current hottest models. CloudMoV customizes the streams for 

different devices at real time, by offloading the transcoding tasks to an IaaS cloud. In particular, we novelly 

employ a surrogate for each user, which is a virtual machine (VM) in the IaaS cloud. The surrogate downloads 

the video on behalf of the user and transcodes it into the desired for-mats, while catering to the specific 

configurations of the mobile device as well as the current connectivity quality. 

 

B. Battery Efficiency 

A breakdown analysis conducted by Carroll. indicates that the network modules (both Wi -Fi and 3G) 

and the display contribute to a significant portion of the overall power consumption in a mobile device, 

dwarfing usages from other hardware modules including CPU, memory, etc. We target at energy saving coming 

from the network module of smartphones through an efficient data transmission mechanism design. We focus 

on 3G wireless networking as it is getting more widely used and challenging in our design than Wi- Fi based 

transmis-sions. Based on cellular network traces from real-world 3G carriers, we investigate the key 3G 

configuration parameters such as the power states and the inactivity timers, and design a novel burst 

transmission mechanism for streaming from the surrogates to the mobile devices. The burst transmission 

mechanism makes careful decisions on burst sizes and opportunistic transitions among high/low power 

consumption modes at the devices, in order to effectively increase the battery lifetime. 

 

C. Spontaneous Social Interactivity 

Multiple mechanisms are included in the design of CloudMoV to enable spontaneous social, co-

viewing ex-perience. First, efficient synchronization mechanisms are proposed to guarantee that friends joining 

in a video program may watch the same portion (if they choose to), and share immediate reactions and 

comments. Although synchronized playback is inherently a feature of traditional TV, the current Internet video 

services (e.g., Web 2.0 TV) rarely offer such a service. Second, efficient message communication mechanisms 

are designed for social interactions among friends, and different types of messages are prioritized in their 

retrieval frequencies to avoid unnecessary interruptions of the viewing progress. For example, online friend lists 

can be retrieved at longer intervals at each user, while invitation and chat messages should be delivered more 

timely. We adopt textual chat messages rather than voice in our current design, believing that text chats are less 

distractive to viewers and easier to read/write and manage by any user. 

These mechanisms are seamlessly integrated with function-alities provided by a typical PaaS cloud, via an 

efficient design of data storage with BigTable and dynamic handling of large volumes of concurrent messages. 

We exploit a PaaS cloud for social interaction support due to its provision of robust under-lying platforms (other 

than simply hardware resources provided by an IaaS cloud), with transparent, automatic scaling of users’ 

applications onto the cloud. 

 

D. Portability 

A prototype CloudMov system is implemented following the philosophy of ―Write Once, Run 

Anywhere‖ (WORA): both the front-end mobile modules and the back-end server mod-ules are implemented in 

―100% Pure Java‖ with well-de-signed generic data models suitable for any BigTable-like data store; the only 

exception is the transcoding module, which is im-plemented using ANSI C for performance reasons and uses no 

platform-dependent or proprietary APIs. The client module can run on any mobile devices supporting HTML5, 

including An-droid phones, iOS systems, etc. To showcase its performance, we deploy the system on Amazon 

EC2 and Google App Engine, and conduct thorough tests on iOS platforms. Our prototype can be readily 

migrated to various cloud and mobile platforms with little effort. 

The remainder of this paper is organized as follows. In Section II, we compare our work with the 

existing literature and highlight our novelties. In Section II, we present the architecture of CloudMoV and the 

design of individual mod-ules. A real -world prototype implementation follows and is described in Section III, 
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Fig. 1.  The architecture of CloudMoV. 

 

II. Cloudmov: Architecture And Design 
As a novel Cloud -based Mobile sOcial tV system, CloudMoV provides two major functionalities to 

participating mobile users: 

(1) Universal streaming. A user can stream a live or on -de-mand video from any video sources he 

chooses, such as a TV program provider or an Internet video streaming site, with tai-lored encoding formats and 

rates for the device each time. (2)Co-viewing with social exchanges. A user can invite multiple friends to 

watch the same video, and exchange text messages while watching. The group of friends watching the same 

video is referred to as a session. The mobile user who initiates a ses-sion is the host of the session. We present 

the architecture of CloudMoV and the detailed designs  in the following. 

 

A. Key Modules 

Fig. 1 gives an overview of the architecture of CloudMoV. A  surrogate (i.e., a virtual machine (VM) 

instance), or a VM surrogate equivalently,iscreatedforeachonlinemobileuserinan IaaS cloud infrastructure. The 

surrogate acts as a proxy between the mobile device and the video sources, providing transcoding services as 

well as segmenting the streaming traffic for burst transmission to the user. Besides, they are also responsible for 

handling frequently exchanged social messages among their corresponding users in a timely and efficient 

manner, shielding mobile devices from unnecessary traffic and enabling battery efficient, spontaneous social 

interactions. The surrogates exchange social messages via a back-end PaaS cloud, which adds scalability and 

robustness to the system. There is a gateway server in CloudMoV that keeps track of participating users and 

their VM surrogates, which can be implemented by a standalone server or VMs in the IaaS cloud. 

The design of CloudMoV can be divided into the following major functional modules. 

Transcoder. It resides in each surrogate, and is respon-sible for dynamically deciding how to encode the video 

stream from the video source in the appropriate format, dimension, and bit rate. Before delivery to the user, the 

video stream is further encapsulated into a proper trans-port stream. In our implementation, each video is 

exported  as MPEG-2 tansport streams, which is the de facto standard nowadays 

to deliver digital video.    

Reshaper. The reshaper in each surrogate receives the en- coded transport stream from the transcoder, chops it 

into segments, and then sends each segment in a burst to the mobile device upon its request (i.e., a burst 

transmission mechanism), to achieve the best power efficiency of the de vice. The burst size, i.e., the amount of 

data in each burst, is carefully decided according to the 3G technologies im-plemented by the corresponding 

carrier.   

Social Cloud. The social cloud is built on top of any gen- eral PaaS cloud services with BigTable-like data store 

toyield better economies of scale without being locked down to any specific proprietary platforms. Despite its 

imple- mentation on Google App Engine (GAE) as a proof of con- cept, our prototype can be readily ported to 

other platforms. It stores all the social data in the system, including the on- line statuses of all users, records of 

the existing sessions, and messages (invitations and chat histories) in each ses- sion. The social data are 

categorized into different kinds and split into different entities (in analogy to tables and rows in traditional 

relational database, respectively) . The social cloud is queried from time to time by the VM  surrogates. 

 Messenger. It is the client side of the social cloud, residing in each surrogate in the IaaS cloud. The 

Messenger perio- dically queries the social cloud for the social data on beh- alf of the mobile user and pre-

processes the data into a light-weighted format (plain text  les), at a much lower frequency. The plain text files 

are asynchronously delivered from the surrogate to the user in a traffic friendly manner, i.e., little trafic is 

incurred. In the,reverse direction, the messenger disseminates this user’s messages (invitations and chat 
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messages) to other users via the data store of the social cloud. 

 Syncer. The syncer on a surrogate guarantees that viewing progress of this user is within a time window of 

other usersin the same session (if th e user chooses to syn- chronize witho thers). To achieve this, the syncer 

period- ically retrievesthe current playback progress of the session host and instructs its mobile user to adjust 

its playback po- sition. In this way, friends can enjoy the ―sitting together‖ viewing experience. Different from 

the design of communication among messagers, syncers on different VM surrogates communicate directly with 

each other as only limited amounts of trafic are involved. 

Mobile Client. The m any speci c client software in order to use CloudMoV ,as long as it has an HTML5 

compatible browser (e.g.,Mobile Safari, Chrome, etc.) and supports the HTTP LiveStreaming protocol. Both 

are widely supported on most state-of-the-art smartphones. mobile client is not required to install 

Gateway. The gateway provides authentication services for users to log into the CloudMoV system, and stores 

users’ credentials in a permanent table of a MySQL database it has installed. It also stores information of the 

pool of currently available VMs in the IaaS cloud in another in-memory table. After a user successfully logs in 

to the system, a VM  surrogate will be assigned from the pool to the user. The in-memory table is used to 

guarantee small query latencies, since the VM pool is updated frequently as the gateway reserves and destroys 

VM instances according to the current workload. In addition, the gateway also stores each user’s friend list in a 

plain text  le (in XML formats), which is immediately uploaded to the surrogate after it is assigned to the user.  

 

B. Loosely Coupled Interfaces 

       Similar in spirit to web services, the interfaces between different modules in CloudMov, i.e., mobile 

users, VM surrogates, and the social cloud, are based on HTTP, a universal standard for all Internet-connected 

devices or platforms. Thanks to the loose coupling between users and the infrastructure, almost any mobile 

device is ready to gain access to the CloudMoV services, as long as it is installed with an HTTP browser. The 

VM surrogates provisioned in the IaaS cloud cooperate with the social cloud implemented on a PaaS cloud 

service via HTTP as well, with no knowledge of the inner components and underlying technologies of each 

other, which contributes significantly to the ortability and easy maintenance of the system. For social message 

exchanges among friends, CloudMoV em- ploys asynchronous communication. All the exchanged messages 

are routed via the surrogates to the social cloud, which efficiently organizes and stores the large volumes of 

data in a Big Table-like data store. The VM surrogates query the social cloud frequently and processes the 

retrieved data into XML files, for later retrieval by users in an asynchronous fashion. Such a design effectively 

separates the mobile users from the social cloud to signi cantly simplify the architecture, while the extra delay 

introduced at the VM surrogates is ignorable. 

 

C. Pipelined Video Processing 

Both live streaming of realtime contents and on-demand streaming of stored con tents are supported in 

CloudMoV. Video processing in each surrogate is designed to work on the  fly, i.e., th e transcoder conducts 

realtime encoding from the video source, the encoded video is fed immediately into the reshaper for 

segmentation and transmission, and a mobile user can start viewing the video as soon as the  first segment is 

received. To support dynamic bit rate switch, the transcoder launches multiple threads to transcode the video 

into multiple bit rates once the connection speed between the surrogate and the mobile user changes. The IaaS 

cloud where the surrogates are deployed, represents an ideal platform for implementing such computation 

intensive jobs. 

 

D. Burst Transmissions 

1) 3 G Power States: Different from Wi-Fi which is more similar to the LANed Internet access, 3G 

cellular services suffer from the limited radio resources, and therefore each user equipment (UE) needs to be 

regulated by a Radio Resource Control (RRC) state machine. Different 3G carriers may customize and deploy 

complex states in their respective cellular networks. Different states indicate different levels of allocated radio 

resources, and hence different levels of energy consumptions. For ease of implementation, we consider three 

basic states in our design, which are commonly employed by many carriers,namely CELL_DCH (a dedicated 

physical channel is allocated to the UE in both the uplink and the downlink), CELL_FACH (no dedicated 

channel is allocated but the UE is assigned a default common transport channel in the uplink), and IDLE, in 

decreasing order of power levels. Contrary to intuition, the energy consumption for data transmission depends 

largely on the state a UE is working in, but has little to do with the volume of data transmitted, i.e., a UE may 

stay at a high-power state (CELL_DCH) for data transmission even the data rate is very low. A 3G carrier may 

commonly transfer a UE from a high-power state to a low-power state (state demotion), for releasing radio 

channels allocated to this UE to other users. For example, if a UE working at a high-power state does not incur 

any data traffic for a p reconfigured period of time (measured by a critical inactivity timer), the state of the UE 

will be transferred to a low-power one; when the volume of data traffic rises, the UE―wakes up‖ from a low-
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power state and moves to a high-powerone. Timeouts of the critical inactivity timers for state transitions are 

properly set by the carrier to guarantee Performance in both delay and energy consumption, since extra delay 

and energy consumption are potentially incurred for acquiring new radio channels when the UE transits from a 

low-p ower state to a high-power one later (state promotion). 

2) Transmission Mechanism: In CloudMoV, we aim at maximum conservation of the battery capacity of the 

mobile de-vice, and design a burst transmission mechanism for streaming between the surrogate and the device. 

Using the HTTP live streaming protocol [ the mobile device sends out requests for the next segment of the video 

stream from time to time. The surrogate divides the video into segments, and sends each seg-ment in a burst 

transmission to the mobile device, upon such a request. When the mobile device is receiving a segment, it 

operates in the high-power state (CELL_DCH); when there is nothing to receive, it transfers to the low-power 

state (IDLE) via the intermediate state (CELL_FACH), and remains there until the next burst (segment) arrives.  

3) Burst Size: To decide the burst size, i.e., the size of the segment transmitted in one burst, we need to take 

into consideration characteristics of mobile streaming and energy consumption during state transitions. For 

video streaming using a fixed device without power concerns, it is desirable to download as much of a video as 

what the connection bandwidth allows; how-ever, for streaming over a cellular network, we should avoid 

downloading more than what is being watched for one main reason: users may switch among channels from 

time to time and those prefetched contents are probably never watched, leading to a waste of the battery power 

and the cellular data fee due to their download. Hence, the bursty size should be kept small, to minimize battery 

consumption and traffic charges. On the other hand, state transitions introduce latency and energy over-heads, 

so the burst should be large enough to avoid frequent state transitions; otherwise, such overheads may diminish 

the energy saving achieved by an intelligent state transition mech-anism. We next derive a lower bound on the 

burst size, which guarantees positive energy saving by such intelligent state transition. 

Let B be the average available bandwidth over a wireless connection, S be the burst size in the 

CELL_DCH state, and b be the video playback rate at the mobile user.PDCH ,PFACH, and PIDLE denote the 

power levels at states CELL_DCH, CELL_FACH, and IDLE, respectively. is the timeout of the critical 

inactivity timer (the transition time) for state transition from CELL_DCH to CELL_FACH, and Tfach IDLE 

transition from CELL_FACH to IDLE. Let ,PIDLEFACH, PFACHDCH, and PIDLEDCH be the 

energy needed for state promotion denoted by the respective subscript. We ignore the delay overhead in the 

state promotion from a low-power state to a high-power state, since its value is small—less than one second— 

based on our real-life measurements as reported in Section V. We consider two cases: (1) transmission of a 

video according to our burst transmission mechanism, with Pburst(t) being the power level at time t during the 

transmission; (2) continuous transmission of the video stream whenever there are transcoded contents  ready, 

with Pcount(t) being the power 

  Level at time t during the transmission. An illustration of power consumption in both cases is given in 

Fig.2.The burst transmission operates at state CELL_DCH to send a total amount of data S for a duration of 

S/B ;then it transits to state IDLE via state CELL_FACH, and remains there for duration S/b — S/B – 

TDCHFACH – tFACH IDLE (S/b is the time taken for the mobile user to play the segment of size ). Note 

that the power consumption level during transition periods tDCHFACH and tFACHIDLE, remains at 

PDCH and PFACH, respectively, although no data is transmitted then. The continuous transmission always 

operates at the high-power state CELL_DCH with power level Pcount(t) = PDCH. We calculate the overall 

energy saving (∆E ) by burst transmission of the video over the time span T (multiples of S/b ), as compared to 

the continuous transmission, as follows:  

 
The burst size S should be chosen such that positive nergysaving, , ∆E > 0, can be achieved. A lower bound of 

the burstsize can be decided using ∆E > 0 . We also see that the larger 
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Fig. 2. Power consumption over time 

 

III. Cloudmov: Prototype Implementation 
Following the design guidelines in Section II, we have im-plemented a real -world mobile social TV 

system, and deployed it on the Google App Engine (GAE) and Amazon EC2 clouds, which are the two most 

widely used public PaaS and IaaS cloud platforms. 

GAE, as a PaaS cloud, provides rich services on top of Google’s data centers and enables rapid 

deployment of Java- based and Python-based applications. Data store, a thin layer built on top of Google’s 

famous BigTable , handles ―big‖ data queries well with linear and modular scalability even for high- throughput 

usage scenarios. Hence, GAE is an ideal platform for implementing our social cloud, which dynamically 

handles large volumes of messages. On the other hand, GAE imposes many constraints on application 

deployment, e.g. , lack of support for multi-threading, fi le storage, etc., which may hinder both computation-

intensive jobs and content distribution applications. 

 

A. Client Use of CloudMov 

All mobile devices installed with HTML5 compatible browsers can use CloudMoV services, as long as 

the HTTP Live Streaming (HLS) protocol is supported. The user first connects to the login page of CloudMoV, 

as illustrated in the top left corner of Fig. 3. After the user successfully logs in through the gateway, he is 

assigned a VM surrogate from the VM pool (the hostnames of available VMs, e.g., ec2-50-16-xx-xx.com-pute- 

1.amazonaws.com, are maintained in an in-memory table of a MySQL database deployed in the gateway). Then 

the user is automatically redirected to the assigned VM surrogate, and welcomed by a portal page as shown on 

the right-hand side of Fig. 3. Upon user login, the portal collects the device configuration information by 

examining the ―User-Agent‖ header values, and this information will be sent to its surrogate for decision making 

of the video encoding formats. The client starts to play the video as soon as the first segment is received. 

 

B. VM Surrogates 

All the VM surrogates are provisioned from Amazon EC2 web services and tracked by the gateway. 

We create our own AMI (ami-b6f220df) based on Linux kernel 2.6.35.14, the default image Amazon provides. 

Due to the intensive computation involved, we propose to implement all the video processing related tasks using 

ANSI C, to guarantee the performance. In particular, we install FFmpeg together with libavcodec as the 

groundsill library  to develop the transcoding, segmentation and reshaping modules on the VM surrogates. We 

have also installed a Tomcat web server (version 6.5) to serve as a Servlet container and a file server on each 

surrogate. Both FFmpeg and Tomcat are open source projects. Once a VM surrogate receives a video 

subscription request from the user, it downloads the video from the source URL,  

 

 
Fig. 3.  Client UI of CloudMoV. 
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Fig. 4.  ―Friend‖ and ―Chat‖ tabs. (a) ―Friend tab‖. (b) ―Chat tab‖. 

 

In real time with H264/AAC codecs. The high-quality stream has a ―480  272‖ resolution with 24 

frames per second, while the low- quality one has a ―240  136‖ resolution with 10 frames per second. A mobile 

user dynamically requests segments of these two different video streams, according to his current network 

connection speed. The transcoded stream is further exported to an MPEG-2 transporting stream (.ts), which is 

segmented for burst transmission to the user. The burst sizes depend on both the network bandwidth and video 

bit rate. We evaluate the impact of different burst sizes on the streaming quality and energy consumption in Fig. 

5 shows the streaming architecture in our customized VM image. Here, the modules on social message 

exchanges are omitted, which will be presented in Fig. 6. 

C. Data Models in the Social Cloud 

 

We use GAE mainly as the back-end data store to keep the transient states and data of CloudMoV, including 

users’ online  

presence status, social messages (invitation and chat messages) in all the sessions. With Jetty as the underlying 

Servlet con-tainer, most Java-based applications can be easily migrated to GAE, under limited usage constraints, 

where no platform -specific APIs are enforced for the deployment. GAE provides both 

 

 
Fig. 5.  Streaming architecture in each customized VM image (ami-b6f220df). 

 

 
Fig. 6. Social message exchanges via Google App Engine 827 

 

Its Java Persistence API (JPA 1.0, part of JSR 220) adapter and a set of proprietary low-level APIs to 

map the relational data. We choose to use the former only in CloudMoV such that CloudMoV can be easily 

migrated to other PaaS clouds as well. Once a user logs in to the system and enters the URL of a video to watch, 

a session ID is generated for the new session (corresponding to viewing of this video), by combining the user’s 

―username‖ in the system with the time stamp when the session is created. The gateway delivers an HTTP 

request to a Servlet listener running on GAE, to notify it that an entry for the newly joined user should be added, 

with the user’s ―username‖ as the key and other information (URL of the subscribed video, the session ID, etc.) 
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as the value. This entry will then be periodically retrieved through a public Servlet interface by surrogates 

representing the user’s friends, in order to learn the updated status of the user over time. The default interval for 

retrieving updates of friends’ online status is five minutes. When the user goes offline, the user online status 

record will be deleted. 

Whenever a user decides to join a session hosted by his friend upon invitation, his VM surrogate 

switches to download the video of the session, and at the same time sends an HTTP request to the social cloud, 

for updating the session ID in this user’s entry to the new one. If the user wishes to synchronize his playback 

progress with that of the session host, his VM sur-rogate synchronizes with the session host to maintain the 

play-back ―currenttime‖ value (HTML5 property). 

The social cloud maintains a ―Logs‖ entry for each existing session in CloudMoV, with the session ID 

as the primary key and an array list as the value, which corresponds to individual messages in this session. 

When a user in a session posts a com-ment, this message is first sent to his VM surrogate, which fur-ther injects 

the message into the social cloud via another Servlet listener. The message is stored as a ―Message‖ entry in the 

social cloud, with the message content as the value, and an auto-gen-erated integer as the key. Entries ―Logs‖ 

and ―Message‖ are an-notated by a @OneToMany relationship, to facilitate the data management. VM 

surrogates of users in the same session send periodical HTTP query requests to the social cloud for the latest 

comments from others. The default interval for retrieval of new comments is 10 seconds. The retrieved 

messages are stored and updated on the surrogates, which process them into well-formed XML formats for 

efficient parsing at the user devices. The user devices retrieve the XML files from the surrogates at a lower fre-

quency (with default interval 1 minute), in order to minimize the power consumption and the traffic. Fig. 6 

presents social mes-sage exchanges among a mobile user, his VM surrogate, and the GAE. 

A large number of entries in the social cloud becomes out-dated very soon, since users may switch 

from one session to another, quit the system, and so on. We launch a cron job behind the scene every 10 minutes 

to clear those outdated entries. For example, for sessions of which everybody has left, their ―Logs‖ entries and 

all the associated ―Message‖ entries are deleted in a single transaction. 

 

IV. Concluding Remarks 
This paper presents our view of what might become a trend for mobile TV, i.e., mobile social TV based 

on agile resource supports and rich functionalities of cloud computing services. We introduce a generic and 

portable mobile social TV frame-work, CloudMoV, that makes use of both an IaaS cloud and a PaaS cloud. The 

framework provides efficient transcoding ser-vices for most platforms under various network conditions and 

supports for co -viewing experiences through timely chat ex-changes among the viewing users. By employing 

one surrogate VM for each mobile user, we achieve ultimate scalability of the system. Through an in-depth 

investigation of the power states in commercial 3G cellular networks, we then propose an en-ergy-effi cient 

burst transmission mechanism that can effectively increase the battery lifetime of user devices. 

We have implemented a realistic prototype of CloudMoV, de-ployed on Amazon EC2 and Google App 

Engine, where EC2 instances serve as the mobile users’ surrogates and GAE as the social cloud to handle the 

large volumes of social mes-sage exchanges. We conducted carefully designed experiments on iPhone 4S 

platforms. The experimental results prove the superior performance of CloudMoV, in terms of transcoding 

efficiency, power saving, timely social interaction, and scala-bility. The experiments also highlight the 

drawbacks of the cur-rent HTTP Live Streaming protocol implementation on mobile devices as compared to our 

proposed burst transmission mechanism which achieves a 29.1% increase of battery lifetime. 

Much more, however, can be done to enhance CloudMoV to have product-level performance. In the 

current prototype, we do not enable sharing of encoded streams (in the same format/bit rate) among surrogates 

of different users. In our future work, such sharing can be enabled and carried out in a peer-to-peer fashion, e.g., 

the surrogate of a newly joined user may fetch the transcoded streams directly from other surrogates, if they are 

encoded in the format/bit rate that the new user wants. 

For implementing social interactions, most BigTable- like data stores (including GAE) support 

memcache which is a highly efficient secondary storage on the data stores. We seek to integrate memcache 

support into CloudMoV, by possibly memcaching the data ( e.g., chat histories) of sessions where friends chat 

actively, so as to further improve the query perfor-mance. To sustain the portability of the system, we will stick 

to standard API interfaces, i.e., JCache (JSR 107), in our system. 
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