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Abstract: We consider the problem of fixed priority scheduling of non-preemptive strict periodic tasks in 

conjunction with sporadic preemptive tasks.  There are few studies about the scheduling problem combining 

these two kinds of tasks. Moreover, only few results are available on scheduling non-preemptive strict periodic 

tasks since their performance analysis gives low success ratios. Also, strict periodic tasks are of great 

importance since they are in charge for example of sensors/actuators or feedback control functions which are 

all critical in feedback control systems. Such tasks must have the highest priorities in order to guarantee a 

correct behavior of the control system. Preemptive sporadic tasks can be used for non-critical functions and 

have lower priorities.We first investigate the scheduling problem of non-preemptive strict periodic tasks by 

recalling an existing schedulability condition. This results in defining the first release times of strict periodic 

tasks that preserves the strict periodicity constraints.  We show that the schedule of strict periodic tasks can 

have transient and permanent phases. Then, assuming that some non-preemptive strict periodic tasks have been 

scheduled, we characterize the release times of the sporadic tasks that maximize their worst case response 
times. We prove that these release times can be restricted to the permanent phase. Finally, for preemptive 

sporadic tasks, we extend the classical worst case response time computation to take into account non-

preemptive strict periodic tasks.  

Keywords: Real-time systems, Preemptive/Non-preemptive scheduling, Strict periods, Sporadic tasks 

 

I. Introduction 
We consider the problem of scheduling non-preemptive strict periodic tasks combined with preemptive 

sporadic tasks. Strict periodic tasks are typically in charge of sensor/actuator or feedback control functions. The 

freshness of the information they use and/or the reactivity of the system are constrained. Indeed, for such tasks it 

is important to control their jitters (the difference between the worst case and the minimum response times) to 

ensure the system's stability [1], [2], [3], [4]. 

We consider the Fixed Priority (FP) scheduling. We assume that all non-preemptive strict periodic 

tasks have the same highest fixed priority, whereas preemptive sporadic tasks have lower (distinct) fixed priority 

than strict periodic tasks. Afterwards, for the sake of clarity, we shall use the term "strict periodic tasks" for 

"non-preemptive strict periodic tasks", and "sporadic tasks" for "preemptive sporadic tasks". 

In section II, we first recall related work for strict periodic and sporadic tasks scheduling, then we give 

the non-preemptive strict periodic task model. In section III, we recall a necessary and sufficient schedulability 

condition for non-preemptive strict periodic tasks, and investigate the transient and permanent phases for such 

tasks. In section IV we show how to determine the worst case scenario for a sporadic task where its Worst Case 
Response Time (WCRT) can be obtained, in the presence of strict periodic tasks. We prove that these release 

times belong only to the permanent phase of strict periodic tasks, and thus that the schedulability analysis for 

sporadic tasks can be restricted to the permanent phase. Finally, for preemptive sporadic tasks, we extend the 

classical necessary and sufficient schedulability condition based on the worst case response time computation 

[5] to take into account non-preemptive strict periodic tasks. 

 

II. System Models And Related Work 
1.1. Related work 

Preemptive scheduling has received considerable attention in thereal-time community. However, we 
can notice that non-preemptive scheduling has received less attention from the real-time community. Yet, non-

preemptive scheduling problems should not be ignored since their resolutions may have great advantages in 

terms of schedulability. On the other hand, these problems are NP-Hard in the strong sense as Jeffay, Stanat and 

Martel [6] showed. 

Baruah and Chakraborty [7]analyzed the schedulability of the non-preemptive recurring task model and 

showed that there exists polynomial time approximation algorithms for both preemptive and non-preemptive 

scheduling. Buttazzo and Cervin [8]used the non-preemptive task model to reduce the jitter of the tasks. A 

comprehensive schedulability analysis of non-preemptive systems was performed by George, Rivierre, and 

Spuri in [9]. The main difference between these works and the works proposed in this paper lies in the type of 
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periods we consider for strict periodic tasks, i.e. strict periods. In the classical periodic model, the difference 

between the start times of two tasks jobs may vary whereas it must be a constant for strict periodic tasks.  

Korst et al. proved in [10] a necessary and sufficient schedulability condition for two tasks which can 
be generalized for more than two tasks. In [11]Eisenbrand et al. proposed scheduling algorithms in the case of 

harmonic and non-harmonic strict periodic tasks. We proposed in [12], [13] a schedulability analysis for such 

tasks.  

 

1.2. Systems models 

A non-preemptive strict periodic task τi is denotedτi (Si
0, Ci, Di, Ti), where: 

 Si
0 is the first release time of τi 

 Ci the WCET (Worst Case Execution Time) of τi 

 Di is the relative deadline of τi 

 Ti is the strict period of τi 

 
The start time of the kth job of a strict periodic task τiis given by Si

k= Si
0 + k ∙Ti.Fig. 1 shows an example of a 

strict periodic task. 

 
Fig. 1 model for non-preemptive strict periodic task τi (Si

0
, Ci, Di, Ti) 

 
A preemptive sporadic task is non-concrete, i.e. its first release time can be chosenarbitrarily. A 

preemptive sporadic task τi is therefore denoted (w.r.t. the strict periodic task model) τi(Ci, Di, Ti). Ti is the 

minimum inter-arrival time between two successive jobs of τi. We consider the case Di≤Ti for sporadic tasks. 

The scheduling used in this paper is Fixed Priority (FP) scheduling. Tasks in ΓS have the same highest priority 

while all tasks in ΓNS have distinct lower priority tasks. Furthermore, we assume that task parameters are 

integers multiple of the tick time. 

 

III. Scheduling Strict Periodic Tasks 
1.3. Necessary and sufficient schedulability condition 

For the sake of clarity, we use this notification gi,j for the gcd (Greatest Common Divisor) of two 

periods Ti, Tj: gi,j=gcd(Ti,Tj). Korst et al. gave in [14] a necessary and sufficient schedulability condition for a 

task set. It consists of applying a necessary and sufficient condition valid for only two tasks to all possible pairs 

of tasks.  

 

Theorem1: A task set ΓS ={τi(Si
0,Ci,Di,Ti),I =1..n} is schedulable if and only if for all pairs of tasks (τi,τj) satisfy 

the condition 

Ci≤ (Sj
0 - Si

0) modgi,j≤gi,j - Cj     (1) 

 

Now we characterize the transient and the permanent phases of the schedule considering only strict 

periodic tasks. 
 

1.4. Transient and permanent phases 

The transient phase Φ= [0,ϕ[ ends at a time ϕ≥ 0, which is the smallest time such that the release times 

obtained in any time interval [ϕ+kL, ϕ+(k+1)L[, k∈ℕ*, relatively to ϕ+kL, are the same as those obtained in the 

time interval [ϕ, ϕ+L[, relatively to ϕ. 

By definition, L is the length of the permanent phase. The following theorem gives the time interval 

corresponding to transient phase obtained for the schedule of strict periodic tasks. 

 

Theorem 2We consider a schedule of strict periodic tasks.The transient phase ϕ of this schedule is the time 

interval given by:Φ = [0,ϕ[, where 

ϕ = Maxi=1..n 0, Si
0 + Ci − Ti     (2) 
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Proof 
ϕ is the smallest integer such as the first permanent phase [ϕ, ϕ+L] contains(L/Ti) jobs of each task τi.Thus the 

(
L

Ti
− 1)th  job of τi

(
L

Ti
−1)

must end its execution before (ϕ+ L), thus  

Si
0 +  

L

Ti

− 1 Ti+Ci ≤ ϕ + L 

thus 

    ϕ ≥ Si
0+Ci − Ti      (3) 

 

As ϕ is the smallest integer which satisfies condition (3) then  

ϕ = Max
i=1..n

 0, Si
0 + Ci − Ti . 

 

IV. Combining Strict Periodic And Sporadic Tasks 
In this section, we study the schedulability of a combination of strict periodic and sporadic tasks. We 

assume that a set of non-preemptive strict periodic tasks have already been scheduled with the highest priority, 

and a set of preemptive sporadic tasks is to be scheduled with lower (but different) priorities. 

 

We use the following notations: 

 ΓS (resp. ΓNS) denotes the task set corresponding to strict periodic (respectively sporadic) tasks. 

 hpNS(i) denotes the set of tasks in ΓNS having higher priority than a task τi in ΓNS. 

 

1.5. Schedulability analysis for sporadic tasks 

In order to study the schedulability of sporadic tasks when tasks with strict periods have been scheduled, we 
have to determine the critical instants for a sporadic tasks where the WCRT can be reached. 

It has been proved in [5] that a critical instant occurs when the release time of a sporadic task is equal 

to the release time of all higher priority tasks. As strict periodic tasks have all higher priority than all the 

sporadic tasks, we define the set of critical instants Ψ which contains all the start times of the strict periodic jobs 

in the transient and the permanent phases: [0,ϕ+L[. 

To consider tasks with strict periods, we have to study all cases of release times in Ψ and compute the 

WCRT of a sporadic task τi when its first release time corresponds to the release time of a strict periodic task. 

For a sporadic task τi, this results in first releasing, at the release time of a strict periodic task in Ψ all higher 

priority sporadic tasks than τi at the same time.However, rather than testing all the release times of strict 

periodic tasks in Ψ, some release times are useless and will be thus removed from Ψ according to lemma 1. 

 
Lemma 1 Consider a sequence of consecutive executions of strict periodic tasks with no slack between the 

executions. Then only the release time of the first strict periodic task in the sequence should be considered for 

the computation of worst case response time of a sporadic task. 

 

Proof 
Consider a sequence seq of consecutive executions of strict periodic tasks corresponding to a subset of tasks in 

ΓS. Let 0 be the time origin corresponding to the release time of the first strict periodic tasks in the sequence seq. 

As sporadic tasks have smaller priority than strict periodic tasks, a sporadic task released at time Ti≥ 0 can start 

its execution only when all strict periodic tasks in seq are completed and will terminate at the same time for any 

release time Ti belonging to [0, duration(seq)], where duration(seq) is the sum of the execution times of all strict 

periodic tasks in seq. The response time of a sporadic task is therefore maximum when a sporadic task is 

released at time 0. Hence the lemma.       
 

Thus, if ∃Si
k, Sj

l∈Ψ such as Si
k-Sj

l=Cj, then Si
kis removed from Ψ. 

 

Finally, we limit the release times in Ψ only to the release times of strict periodic tasks in the 

permanent phase according to lemma 2. 

 

Lemma2 In the set Ψ, only the release times which belong to the permanent phase of strict periodic tasks should 

be considered to study the WCRT of sporadic tasks. 

 

ProofFor strict periodic tasks, the time interval [L, ϕ+L[in the permanent phase contains the release time pattern 
corresponding to all the release times of the transient phase [0,ϕ[. The transient phase may contain less jobs than 

in the permanent phase. Thus, jobs of the permanent phase are more critical than those of the transient phase for 

sporadic tasks.           
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The following theorem gives the computational requirements at time t for a sporadic task τi released at time 

S∈Ψ. 
 

Theorem 3 Consider a strict periodic task set ΓS and a sporadic task sethpNS(i) already scheduled. Let τi be a 

sporadic task released at time S∈Ψ.The sum of the computational requirements at time t (w.r.t time S) are given 

by 

Wi t = Ci +   
t

Tj
 τj∈hp NS (i) Cj +   

t−sj

Tj
 τj∈ΓS Cj    (4) 

where sj is the relative start time Sjk according to a release time S given by 

 

sj = Sj
0 +  

S−S j
0

Tj
 Tj − S       (5) 

Proof 

Consider that a sporadic task τi is first released at time S∈Ψ.  The sum of the computational requirements at 

time t (w.r.t time S) Wi(t) is the sum of the following computational requirements: 
1. one execution of τi starting at time S: Ci; 

2. all strict periodic tasks (all with higher priority than τi):  

  
t − sj

Tj
 

τj∈ΓS

Cj; 

3. all sporadic tasks with higher priority than τi: 

  
t

Tj
 

τj∈hp NS (i)

Cj . 

      

The following theorem gives a schedulability necessary and sufficient condition for set of sporadic task. 

 

Theorem 4 Consider a strict periodic task set ΓS already scheduled. A sporadic task set ΓNS is schedulable if and 

only if 

∀τi ∈ ΓNS: Ri   ≤ Di     (6) 
where Ri is the WCRT of τi∈ΓNS, which is the solution of Ri=W(Ri) computed by iteration. 

 

Proof 
The proof is identical to the one given in [5]which states that the Worst Case Response Time of any task should 

be less than or equal to its deadline.          

 

Example 

We use the Rate-Monotonic algorithm to schedule the following tasks.Consider the strict periodic task set  

Γ
S
 ={τ1(0,1,4,4), τ2(1,1,6,6), τ3(2,1,12,12)}, and the sporadic task setΓ

NS
 ={ τ4(2,6,8), τ5(2,12,12)} to be 

scheduled. 

 
For (τ1, τ2), g1,2=2 and condition (1) is satisfied:  

1≤ (1-0)mod 2 ≤ 2-1 ⟹ 1≤ 1≤ 1. 

 

For (τ1,τ3), g1,3= 4 and condition (1) is satisfied: 

1≤ (2-0)mod 4 ≤ 4-1 ⟹ 1≤ 2≤ 3. 

 

For (τ2,τ3),g2,3 = 6 and condition (1) is satisfied: 

1≤ (2-1)mod 6 ≤ 6-1 ⟹1≤1≤ 5. 

Thus, ΓS is schedulable. 
According to theorem 2,the schedule of ΓS has no transient phase. The permanent phase starts at time 0 

and has a lengthL= lcm(T1,T2,T3)= 12, thus Ψ={0,1,2,4,7,8} corresponding to the release times of tasks ΓS in the 

time interval [0, L[. After pruning the release times of strict periodic tasks according to lemma 1 we have: 

Ψ={0,4,7}. 

From theorem 3 we have: 

W4 t = 2 +  
t − s1

4
 +  

t − s2

6
 +  

t − s2

12
 , 

And 
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W4 t = 2 +  
t

8
 . 2 +  

t − s1

4
 +  

t − s2

6
 +  

t − s2

12
 . 

 

According to theorem 4, the response times of τ4 and τ5 for the release times in S∈Ψ are given by: 

 

S s1 s2 s3 R4 R5 

0 0 1 2 6 12 

4 0 3 4 3 7 

7 1 0 7 4 9 

 

As R4≤ D4 and R5≤ D5, τ4 and τ5 are schedulable as shown in Fig.2. 

 

 
Fig. 2 scheduling diagram of strict periodic and sporadic tasks 

 

V. Conclusion 
In this paper we have considered the problem of scheduling, with fixed priorities, strict periodic tasks 

in conjunction with sporadic tasks. Strict periodic tasks have the highest priority. We first present a necessary 

and sufficient schedulability condition valid for strict periodic tasks. This results in defining the first release 

times of strict periodic tasks preserving the strict periodicity constraints. Then, we show that the schedule of 

strict periodic tasks can have a transient and a permanent phase. We characterize the duration on both phases 

and show that we only need to consider the permanent phase for the schedulability of sporadic tasks. The release 

time of sporadic tasks can be chosen arbitrarily. We show that a worst case response time analysis can be used 

for sporadic tasks. The worst case response time of a sporadic task is obtained by releasing all sporadic tasks 

synchronously, at the release time of a strict periodic tasks in the permanent phase. We also show how to prune 

the times to consider (corresponding to the release times of strict periodic tasks) in the permanent phase. We 

give the schedulability condition for sporadic tasks based on the worst case response time computation of the 

tasks. 
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