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Abstract: Mobile robot path planning problem is an important combinational content of artificial intelligence 

and robotics. Its mission is to be independently movement from the starting point to the target point make robots 

in their work environment while satisfying certain constraints. Constraint conditions are as follows: not a 
collision with known and unknown obstacles, as far as possible away from the obstacle, sports the shortest path, 

the shortest time, robot-consuming energy minimization and so on. In essence, the mobile robot path planning 

problem can be seen as a conditional constraint optimization problem. To overcome this problem, ant colony 

optimization algorithm is used. 
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I. Introduction 
Robot path planning is about finding a collision free motion from one position to another. Efficient 

algorithms for solving problems of this type have important applications in areas such as: industrial robotics, 

computer animation, drug design, and automated surveillance [1,2]. By representing synthetic, simulated 

humans as robots, we can use motion planning algorithms to develop convincing computer generated animation. 

There are many traditional techniques used in past in robot control such as PID. Problem with PID control is 

that they perform process efficiently over very limited range of environment. It is very difficult to have highly 

accurate performance especially at high speed of processes. This is because of PID control i.e. PID is linear and 

not suitable for non-linear system with varying dynamic parameters and PID requires precise knowledge of 

dynamic model. This may explain the dominant role of soft computing techniques in robotics. During the last 

four decades, researchers have proposed many techniques for control and automation. There are various step 

involved in designing of control system. These are modeling, analysis, simulation, implementation and 

verification. In conventional/traditional techniques of control, the prime objectives had been precision and 

uncertainty. However, in soft computing, the precision and certainty can be achieved by techniques of fuzzy 
logic, neural network, evolutionary algorithm, and hybrid. The main emphasis of the paper is to explore the 

efficient and accurate procedure based on soft-computing algorithm to provide the online learning mechanism 

which performs better in dynamic, unstructured environment of robot [3]. Many techniques are used for this. 

 

1.1 Particle Swarm Optimization (PSO)  
Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by iteratively 

trying to improve a candidate solution with regard to a given measure of quality. PSO optimizes a problem by 

having a population of candidate solutions, with dubbed particles, and moving these particles around in the 

search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's 

movement is influenced by its local best known position and is also guided toward the best known positions in 

the search-space, which are updated as better positions are found by other particles. This is expected to move the 
swarm toward the best solutions. PSO is a meta heuristic as it makes few or no assumptions about the problem 

being optimized and can search very large spaces of candidate solutions. However, meta heuristics such as PSO 

do not guarantee an optimal solution is ever found. More specifically, PSO does not use the gradient of the 

problem being optimized, which means PSO does not require that the optimization problem be differentiable as 

is required by classic optimization methods such as gradient descent and Quasi-Newton methods. PSO can 

therefore also be used on optimization problems that are partially irregular, noisy, change over time. 

 

1.2 Genetic Algorithm (GA)  
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. This 

heuristic is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms 

belong to the larger class of evolutionary algorithms (EA), which generate solutions to optimization problems 

using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. In a 
genetic algorithm, a population of strings called chromosomes or the genotype of the genome, which encodes 

candidate solutions called individuals, creatures, or phenotypes to an optimization problem, evolves toward 
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better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are 

also possible. The evolution usually starts from a population of randomly generated individuals and happens in 

generations. In each generation, the fitness of every individual in the population is evaluated, multiple 
individuals are stochastically selected from the current population (based on their fitness), and modified 

(recombined and possibly randomly mutated) to form a new population. The new population is then used in the 

next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level has been reached for the population. If the 

algorithm has terminated due to a maximum number of generations, a satisfactory solution may or may not have 

been reached. 

 

1.3 Tabu Search 
Tabu search is a local search method used for mathematical optimization. Local searches take a 

potential solution to a problem and check its immediate neighbors in the hope of finding an improved solution. 

Local search methods have a tendency to become stuck in suboptimal regions or on plateaus where many 
solutions are equally fit. Tabu search enhances the performance of these techniques by using memory structures 

that describe the visited solutions or user-provided sets of rule. If a potential solution has been previously visited 

within a certain short-term period or if it has violated a rule, it is marked as "taboo" so that the algorithm does 

not consider that possibility repeatedly. 

 

1.4 Simulated Annealing (SA) 

Simulated annealing (SA) is a generic probabilistic meta heuristic for the global optimization problem 

of locating a good approximation to the global optimum of a given function in a large search space. It is often 

used when the search space is discrete. For certain problems, simulated annealing may be more efficient than 

exhaustive enumeration— provided that the goal is merely to find an acceptably good solution in a fixed amount 

of time, rather than the best possible solution. The name and inspiration come from annealing in metallurgy, a 

technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce 
their defects. The heat causes the atoms to become unstuck from their initial positions (a local minimum of the 

internal energy) and wander randomly through states of higher energy; the slow cooling gives them more 

chances of finding configurations with lower internal energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm attempts to replace the current 

solution by a random solution (chosen according to a candidate distribution, often constructed to sample from 

solutions near the current solution). The new solution may then be accepted with a probability that depends both 

on the difference between the corresponding function values and also on a global parameter T (called the 

temperature), that is gradually decreased during the process. The dependency is such that the choice between 

the previous and current solution is almost random when T is large, but increasingly selects the better or 

"downhill" solution (for a minimization problem) as T goes to zero. The allowance for "uphill" moves 

potentially saves the method from becoming stuck at local optima—which are the bane of greedier methods. 

 

1.5 Reactive Search Optimization (RSO) 
Reactive Search Optimization (RSO) defines local-search heuristics based on machine learning, a 

family of optimization algorithms based on the local search techniques. It refers to a class of heuristics that 

automatically adjust their working parameters during the optimization phase. Reactive Search Optimization 

(RSO), like all local search techniques, is applied to the problem of finding the optimal configuration of a 

system; such configuration is usually composed of continuously or discretely varying parameters, while the 

optimality criterion is a numerical value associated to each configuration. In most cases, an optimization 

problem can be reduced to finding the (global) minimum of a function whose arguments are the configuration 

parameters, seen as free variables in the function's domain space. 

Reactive Search Optimization advocates the integration of sub-symbolic machine learning techniques 

into search heuristics for solving complex optimization problems. The word reactive hints at a ready response to 
events during the search through an internal feedback loop for online self-tuning and dynamic adaptation. In 

Reactive Search the past history of the search and the knowledge accumulated while moving in the 

configuration space is used for self-adaptation in an autonomic manner: the algorithm maintains the internal 

flexibility needed to address different situations during the search, but the adaptation is automated, and executed 

while the algorithm runs on a single instance and reflects on its past experience. 

 

1.6 Ant colony algorithms  

In the natural world, ants (initially) wander randomly, and upon finding food return to their colony 

while laying down pheromone trails. If other ants find such a path, they are likely not to keep traveling at 

random, but to instead follow the trail, returning and reinforcing it if they eventually find food. 
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Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The 

more time it takes for an ant to travel down the path and back again, the more time the pheromones have to 

evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone density 
becomes higher on shorter paths than longer ones. Pheromone evaporation also has the advantage of avoiding 

the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first 

ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution 

space would be constrained. 

 

II. Overcoming The Problem Of ACO 
Various approaches to overcome the problem of ACO i.e. mitigating stagnation which include:- evaporation, 

aging and pheromone smoothing . 

The Approaches to alleviate stagnation is pheromone control. Pheromone control adopts several 
approaches to reduce the influence from past experience and encourage the exploration of new paths that are 

non-optimal. 

 

2.1 Evaporation 

To reduce the effect of past experience, an approach called evaporation is used in conjunction in 

optimal path from being excessively high and preventing ants from exploring the other paths. In each iteration, 

the pheromone value ij  in all edges are decremented by a factor p such that   ij ←ij (1-p)  

 

2.2 Aging 

A past experience can also be reduced by controlling the amount of pheromone deposited for each ant 

according to its age. This approach is known as aging. In aging, an ant deposits lesser and lesser amount of 
pheromone as it moves from one obstacle to other obstacle. Aging is based on the rationale that ―old ants are 

less successful in locating the optimal paths since they take longer time to reach their destination. Both aging 

and evaporation encourage discoveries of new paths that are previously non-optimal 

 

2.3 Limiting and smoothing pheromone 

Limiting the amount of pheromone in every path, by placing an upper bound on the amount of 

pheromone for every edge(i,j), the preference of an ant for optimal path is reduced. This approach prevents the 

situation of generating a dominant path. A variation of such an approach is called pheromone smoothing.  

 

III. Proposed Solution For Robotic Path Planning 

 
Fig1: Layout of Robot Path Planning 

 

3.1 Source 

Robot starts walking from source point (Xs,Ys) and it is fixed 

 

3.2 Robot Moves one step 

From source point(Xs,Ys), Robot is moving towards the destination point by taking one step ahead and 

changes the value of (Xs,Ys) to (Xsnew,Ysnew) by using the below equations : 
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Xsnew = Xprev + step*cos(e)   (1) 

Ysnew = Yprev + step*sin(e)   (2) 

Where, Xprev,Yprev denotes where the robot is currently situated in which we add the step size multiplied by 
cos(ө)and sin(ө) respectively which will gives the robot’s next position. Where ө is dynamic angle and it can be 

calculated by : 

Ө = Tan-1(Xprev/Yprev)  (3) 

   

3.3 Flag Setting 

Robot sees the value of the flag, if it's value is zero, it indicates that there is no obstacle and robot can 

take a step ahead and can reach to the destination point. 

 

3.4 Encounter with obstacle 

Whenever the robot encounter with obstacle, it has to stop moving means there is no increase in the 

step size and robot has to take three steps back. In our proposed work, twenty obstacle are generated randomly 
which is of rectangular shape. Number of obstacles is fixed which is a constraint in our work. 

Obstacle (oopsV) can be generated by the following pseudo code : 

oopsV=20; 

x=100*rand(1,oopsV); 

y=100*rand(1,oopsV); 

l=10*rand(1,oopsV); 

w=10*rand(1,oopsV); for m=1:oopsV 

plot([x(1,m) x(1,m)+w(1,m)], [y(1,m) y(1,m)]); plot([x(1,m) x(1,m)], [y(1,m) y(1,m)+l(1,m)]); plot[x(1,m) 

x(1,m)+w(1,m)],[y(1,m)+l(1,m) y(1,m)+l(1,m)]); 

 plot([x(1,m)+w(1,m)x(1,m)+w(1,m)],[y(1,m) y(1,m)+l(1,m)]); 

end 

In this pseudo code initialize the number of obstacles oopsV=20 and obstacles are generated in the moving 
space of 100*100 and whose length and width varies between 0 1o 10 dynamically. 

 

3.5Take three step back 

Whenever the robot encounter with obstacle, robot stop moving and take three step back by using the 

following equation : 

Xsnew = Xprev-3*step*cos(e)   (4) 

Ysnew = Yprev-3*step*sin(e)    (5) 

Ө =Tan-1(Xprev/Yprev)     (6) 

 

3.6Destination 

Finally robot has to reach at the point (XT,YT), which is fixed. Robot has to bypass the obstacle and by 
following optimal.  

Path has to reach to target point.  

 

3.7Apply the ACO algorithm to bypass the obstacle 
ACO is a met heuristic algorithm inspired by the real ant for the forage for food. ACO is applied to the 

problems which can be described by the graphs so that feasible solution can be expressed in terms of paths on 

the graph. It was first applied to TSP. Among the feasible paths, ACO is used to find out the optimal one i.e. 

locally or globally optimal. This algorithm is implemented in two steps. In first step, the edge is selected on the 

basis of probability formula. Assume that ant k is located at node i, uses the pheromone ij deposited on the 

edge (i,j) to compute the probability of choosing next node. 
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0    otherwise  

        

Where α denotes the degree of importance of pheromone trail and Ni 
(k) indicates the set of neighbors of 

ant k when located at node i except the predecessor node i.e. the last node visited by ant k. This will prevent the 

ant k from  returning to the same node. An ant travels from node to node until it reaches the destination node 

and comes back to the source node. In second step, once all the ants complete their tour, then global 

optimization of the pheromone trail takes place. 

N  

 ij =(1-  )  +  ij
(k)   

k 1                               (8) 

 Where,   (0,1] is the evaporation rate and   ij ( k ) is the amount of pheromone deposited on the 

edge (i,j) selected by the best ant k. The aim of pheromone updating is to increase the pheromone value 

associated with optimal path. The pheromone deposited on arc (i, j) by the best ant k is ij ( k )  . 

Where,   

 

( k )  

= 

Q 

(9) 

 

Lk 

 

ij    

    

Here Q is a constant and Lk is the length of the path traversed by the best ant k. This equation is also 

implemented as : 
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IV. Conclusion 
Ant colony optimization is to be applied for robot–motion control such as navigation and obstacle 

avoidance in an efficient manner. From this, money can be saved and reliability can be increased by allowing 

them to adapt themselves according to the environment without further programming. Ant colony optimization 

(ACO) takes inspiration from the foraging behavior of ant species. These ants deposit pheromone on the ground 

in order to mark some favorable path. 
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