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Abstract: Sparse matrix-vector multiplication is an important operation when it comes to sparse matrix 

computations. Very large and sparse matrices are used in many engineering and scientific operations. Hence 

the matrix needs to be partitioned properly. Even though the matrix is partitioned and stored appropriately 

there still exists a possibility, the performance achieved is not significant. Thus, the need to address these issues. 

System proposes an integrated analytical and profile based performance modelling that accurately measures the 

kernel execution time of various SpMV CUDA kernels for a given target sparse-matrix. Based on this the 

designed optimal solution auto-selection algorithm automatically reports the SpMV optimal solution for a target 

sparse-matrix. The system is evaluated on NVIDIA GeForce GTX 680 and NVIDIA Quadro 8000. The system is 

further extended to one more matrix storage format. 
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I. Introduction 
Sparse matrix is a matrix that consists of very few non-zero elements. Large sparse-matrices are used in various 

engineering and scientific applications. Sparse matrix-vector multiplication is a very important operation when 

it comes to solving linear system and partial differential equations. When solving matrix-vector multiplication 

operations the term Ax of the equation Ax=y needs to be computed iteratively, which is tedious when it comes 

to large sparse-matrices. Also the SpMV CUDA Kernel is an important kernel and is an integral part of various 

iterative solvers such as sparse matrix conjugate gradient solver and a regular-grid multigrid solver [5]. This 

kernel is computed iteratively and hence there is a need to accurately model the performance of the SpMV 

CUDA Kernel and optimize the same. Hence the need for storing and partitioning the sparse matrix arises. 

Again after storing and partitioning the matrix, the performance achieved is not significant. Hence the need to 

address these issues as well.  

The system proposes and integrated performance modeling technique that predicts the kernel execution 

times of CSR, COO, ELL and HYB [2] kernels for a target sparse matrix. Based on this performance modeling 

technique the optimized solution i.e. execution time of target sparse matrix, and optimal storage format will be 

reported using a dynamic-programming based auto-selection algorithm [1]. 

The following sections describe the methodology in detail. Section 2 describes related work. Section 3 

describes the system in detail. Section 4 describes the experimental setup, Section 5 results and Section 6 

describes the conclusion, whilst acknowledgement and references follow it.  

 

II. Related Work 
SpMV CUDA kernels for various matrix storage formats viz. DIA, COO, CSR, ELL and HYB have been 

proposed and implemented previously by Bell and Garland [2] and same are used in the system. Apart from 

these two basic computational kernels viz. a sparse matrix conjugate gradient solver and a regular-grid multigrid 

solver were proposed and implemented by J. Bolz et al. [5].  

Various SpMV CUDA Kernel optimization techniques have been proposed. These include 

performance-model driven approach for partitioning sparse matrix into appropriate formats, and auto-tuning 

configurations of CUDA kernels [4]; optimization of single precision matrix multiplication kernels for the short 

vector SIMD architecture of the SPE of IBM’s CELL BE processor [6]; optimization of two operations viz. a 

sparse matrix times a dense vector and a sparse matrix times a set of dense vectors [7].  

Other optimization techniques proposed were: optimization of SpMV Kernel on CUDA GPUs with 

focus on exploitation of synchronization-free parallelism, optimization of thread mapping based on the affinity 

towards optimal memory access pattern, optimized off-chip memory access to tolerate the high access latency, 

and exploitation of data reuse [8]; optimization of ATLAS and BeBOP kernels using the AEOS (Automated 

Empirical Optimization of Software) approach for dense and sparse operations respectively [9];   auto-tuning 

framework for automatically computing and selecting CUDA parameters for SpMV [10]; new implementations 

of SpMV for GPUs called ELLR-T [11]; system-independent representation of sparse matrix formats [12]; 
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optimized implementation of sparse matrix-vector multiplication on NVIDIA GPUs using CUDA programming 

model is presented with inclusion of optimized CSR storage format, optimized threads mapping, and avoiding 

divergence judgment [13]; non-parametric and self-tunable approach to data representation for computing 

SpMV [14]; and examination of sparse matrix-vector multiply (SpMV) across a broad spectrum of multicore 

designs [23].  

Similarly various SpMV CUDA Kernel performance modelling techniques were also proposed. These 

include integrated analytical and profile-based CUDA performance modelling approach that accurately predicts 

the kernel execution times of sparse matrix-vector multiplication for CSR, ELL, COO, and HYB SpMV CUDA 

kernels (previous work) [3]; pruning optimization space to reduce tuning time for a program [15]; a performance 

model-driven framework for automated performance tuning (autotuning) of sparse matrix-vector multiply 

(SpMV) on systems accelerated by graphics processing units (GPU); a modelling framework that produces 

accurate estimates when moving single-GPU applications to a multiple-GPU platform [17];  and optimization of 

SpMV based on ELLPACK from two aspects: (a) enhanced performance for the dense vector by reducing cache 

misses, and (b) reduce accessed matrix data by index reduction [18]. 

 Other performance modeling techniques include: a microbenchmark-based performance model for 

NVIDIA GeForce 200-series GPUs [19]; compiler-based approach to application performance modelling on 

GPU architectures [20].; a memory parallelism aware analytical model that estimates execution cycles for the 

GPU architecture S. Hong and H. Kim [21]; and a performance model that combines several known models of 

parallel computation viz. BSP, PRAM, and QRQW [22].  

 

III. Proposed System 
3.1 System Architecture 

 
Fig. 1: System Architecture 
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The Fig 1 shows the system architecture. Initially the various matrix storage formats for a general sparse-matrix 

that is an integral part of the sparse matrix-vector multiplication computation is implemented using a single 

parallel program called kernel on GPU. First the performance of the SpMV CUDA kernels will be modelled 

based on the hardware features of the GPU and then based on the performance modelling the optimal solution 

will be reported using the dynamic-programming based SpMV optimal solution auto-selection algorithm [1]. 

The two phases viz. performance modeling and optimization are explained in brief in the following subsections.  

 

3.2 Performance Modeling 

The performance modeling comprises of two phases viz. instrumentation and modeling. In the instrumentation 

phase first the size of matrix strip is calculated then based on the GPU hardware features the benchmark 

matrices are generated. The properties and execution times are then recorded and are provided as input to the 

modeling phase. Except for the COO kernel the number of matrix strips and non-zero elements per row for a 

target matrix are calculated. In the modeling phase the parameterized models are instantiated as per the 

experimental results of the benchmark matrices. Finally the execution times of SpMV kernel for a target sparse 

matrix is estimated [1].  

 

3.3 Optimization Analysis 

Based on the performance modelling, the optimal solution will be reported using the dynamic-programming 

based SpMV optimal solution auto-selection algorithm [1]. For a given target sparse matrix, the algorithm will 

look for all possible storage strategies and checks if the performance can be improved further when the target 

matrix is partitioned into one or more matrix blocks and each one of them is stored in an appropriate storage 

format. If such a situation is found then, the optimal solution, including the storage strategy, the storage format 

for each matrix block, and the predicted overall execution time, will be reported by the algorithm; else, for the 

entire matrix, if a single storage format has the best SpMV performance, then the storage format, and its 

corresponding predicted overall execution time, will be reported as the optimal solution [1].  The algorithm is 

based on the following recursive equation which defines the value of an optimal solution in terms of optimal 

solution to sub problems [1] 

 

 

 
 

Algorithm: SpMV Optimal Solution Auto-Selection Algorithm [1] 

 

Input: A target sparse matrix and SpMV CUDA Kernel matrix storage formats 

 

Output: SpMV Kernel execution times and optimal solution for target matrix i.e. storage strategy, storage 

format and target matrix execution time. 

 

Variables and Data Structures: 

 is the number of matrix strips; 

 stores the minimum predicted execution times of the matrix block ; 

 stores optimal storage format (e.g., CSR, ELL, COO, or HYB) of the matrix block ; 

 stores the minimum predicted execution time of  matrix strips starting from  to ; 

 records the index  which splits  matrix strips starting from  to  into two matrix blocks:  

and . Note that if  equals to , all strips from  to  are in the same matrix block. 

 

Steps:  

1: Begin 

2: Initialize T [1, 1] ←E [1, 1] 

3: Initialize S [1, 1] ←1 

4: Initialize j←2  

5: repeat  

6: for each j in N do 

7: Assign T [1, j] ←E [1, j] 

8: Assign S [1, j] ←j 

9: initialize k←1  
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10: repeat  

11: for each k in j-1 do 

12: compute q ← T [1, k] +E [k+1, j] 

13: If q<T [1, j] then 

14: Assign T [1, j] ←q 

15: Assign S [1, j] ←k 

16: end if 

17: end for 

18: end for 

19: Print “Optimal Time: T [1, N]” 

20: Call procedure Print Optimal Strategy 

 

Procedure: Printing Optimal Strategy 

Steps: 

1: if j=1 

2: Print “Optimal Strategy: [1, 1]” 

3: Print “Optimal Format: F [1, 1]” 

4: else if S [1, j] =1 then 

5: Print “Optimal Strategy: [1, 1], [2, j]”S 

6: Print “Optimal Format: F [1, 1], F [2, j]” 

7: else if S [1, j] =j then 

8: Print “Optimal Strategy: [1, j]” 

9: Print “Optimal Format: F [1, j]” 

10: else 

11: PRINT_OPTIMAL_STRATEGY (S [1, j], S); 

12: Print “, [S [1,j]+1, j], F [S [1, j]+1, j]” 

13: endif 

14: endif 

15: Endif 

 

3.4 Extension to other SpMV storage format 

The system is further extended to diagonal (DIA) matrix storage format i.e. the execution time of DIA SpMV 

CUDA kernel for a given target matrix is calculated. From the execution times of the DIA kernel it can be 

observed that the DIA kernel although is one of the most appropriate matrix storage formats but takes slightly 

longer time for execution when compared to other SpMV CUDA kernels viz. CSR, COO, ELL and HYB. Thus, 

it can be loosely inferred that the DIA format is not one of the most preferred formats for the SpMV operation. 

 

IV. Experimental setup 
The system is implemented on the NVIDIA GeForce GTX 680 and NVIDIA Quadro 8000 graphics cards using 

CUDA toolkit 6.5/7.0 and NVIDIA Nsight Eclipse. The CUDA toolkit can be downloaded for free at 

www.nvidia.com/getcuda. The specifications for NVIDIA GeForce GTX 680 are as given in Table 1.  

 

Table 1. Nvidia Geforce GTX 680 Specifications 
CUDA Cores 1536 

Base Clock (MHz) 1006 

Boost Clock (MHz) 1058 

Texture Fill Rate (Billion/Sec) 128.8 

Memory speed 6.0 Gbps 

Standard      Memory Configuration 2048 MB 

Memory Interface Width 256-bit GDDR5 

Memory Bandwidth (GB/sec) 192.2 

Bus Support PCI Express 3.0 

Certified for Windows 8 Yes 

 

 

 

 

 

 

 

4.1 Data Sets 
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The data sets are the matrices used for study from various engineering and scientific applications together given 

in “The University of Florida Sparse-Matrix Collection” [24] available for download at http://www.cise.ufl.edu/ 

research/sparse/matrices/.  Examples of some matrices are as given below in Table 2. 

 

Table 2. Examples of Some Matrix Data Sets 

 

Matrix Name Description #Rows #Columns #Nonzeros 

linverse Statistical problem 11999 11999 95977 

1138_bus power network problem 1138 1138 2596 

Harvard500 directed graph 500 500 2636 

conf5_0-4x4-10 theoretical/quantum 

chemistry problem 

3072 3072 119808 

conf5_0-4x4-14 theoretical/quantum 

chemistry problem 

3072 3072 119808 

conf5_0-4x4-

18.mtx 

theoretical/quantum 

chemistry problem 

3072 3072 119808 

conf5_0-4x4-22 

 

theoretical/quantum 

chemistry problem 

3072  

 

3072 119808 

cant 

 

2D/3D problem 62451  

 

62451 2034917 

 

V. Results 
The execution times obtained for the matrix storage formats CSR, COO, ELL, HYB and DIA for some sample 

matrices evaluated NVIDIA Quadro 8000 and NVIDIA GeForce GTX are given in the Table 3 and Table 4 

respectively. The execution times for the same using graph are shown in Fig.2 and Fig.3 that follow. These 

execution times were obtained using CUDA toolkit 6.5/7.0. These are just some sample results obtained on a 

few matrices. Based on the execution times of the matrix storage formats the optimal storage format is 

predicted. As compared to the previous work [1] obtained results are better than the previous results.  

 

Table 3. Kernel Execution Times for various matrix formats for a given matrix on NVIDIA Quadro 8000. 

 

Matrix 

Name 

Kernel Execution Time for Matrix Storage Format (ms) Optimal 

Storage 

Format CSR COO HYB ELL DIA 

1138_bus 0.00044992 

 

0.00068544 

 

0.00066336 

 

6.78E-05 

 

0.000853824 

 

CSR/ELL 

Harvard500 0.000237536 

 

0.000679648 

 

0.00065408 

 

0.000359872 

 

0.00100627 

 

CSR/ELL 

conf5_0-

4x4-10 

0.0005736 

 

0.000632 

 

0.000762304 

 

0.00011968 

 

0.000332608 

 

CSR/ELL 

conf5_0-

4x4-14 

0.000543488 

 

0.000645856 

 

0.000629696 

 

0.000119616 

 

0.000334176 

 

CSR/ELL 

conf5_0-

4x4-18.mtx 

0.000543104 

 

0.000633856 

 

0.000616288 

 

0.000119904 

 

0.000333568 

 

CSR/ELL 

conf5_0-

4x4-22 

 

0.000555488 

 

0.000635296 

 

0.000624608 

 

0.000118464 

 

0.000332416 

 

CSR/ELL 

cant 

 

0.00152851 

 

0.00264931 

 

0.00149952 

 

0.00197549 

 

0.00144506 

 

HYB 

 

 

 

http://www.cise.ufl.edu/
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Fig. 2: Execution Times for Various Matrices 

 

 

Table 3. Kernel Execution Times for various matrix formats for a given matrix on NVIDIA GeForce 

GTX 680. 

 

Matrix 

Name 

Kernel Execution Time for Matrix Storage Format (ms) Optimal 

Storage 

Format CSR COO HYB ELL DIA 

1138_bus 4.144e-05 0.000588064 0.00058192 6.5664e-05 0.00115475 ELL 

Harvard500 5.008e-05 0.000573472 0.000567648 0.000426752 0.00132701 CSR 

conf5_0-

4x4-10 

4.208e-05 0.000242368 0.000230496 6.1856e-05 0.000161408 ELL 

conf5_0-

4x4-14 

4.1984e-05 0.000231808 0.000231232 6.2048e-05 0.000160608 ELL 

conf5_0-

4x4-18.mtx 

4.0096e-05 0.000206976 0.000231872 6.5856e-05 0.00016 ELL 

conf5_0-

4x4-22 

 

3.98E-05 

 

0.000239904 

 

0.000228608 

 

6.14E-05 

 

0.000160576 

 

ELL 

cant 

 

0.00207782 

 

0.00340995 

 

0.00188157 

 

0.00245386 

 

0.00208189 

 

HYB 
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Fig. 3: Execution Times for Various Matrices (NVIDIA GeForce GTX 680) 
 

 

VI. Conclusion 
Sparse-matrix vector multiplication is tedious and when carried out repeatedly becomes more difficult. GPU 

makes this job much easier but require efficient storage strategies, performance modelling and optimization 

techniques. Hence, an integrated performance modelling and optimization analysis system for SpMV CUDA 

kernels is proposed. The system is evaluated using NVIDIA GeForce GTX 680 and NVIDIA Quadro 8000 

using CUDA toolkit 6.5/7.0 and significant results have been obtained. The system is further extended to one 

more matrix storage format i.e. the DIA kernel. From the execution times of the DIA kernel one can loosely 

infer that the DIA kernel is not one of the most preferred formats when it comes to sparse matrix vector 

multiplication operation. 
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