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Abstract: Various approaches can be taken to achieve vision for robot navigation using back-propagation 

artificial neural networks. An approach is presented in this paper which attempts to detect straight sub-lines 

from 8x8 pixel sized sub-images of pre-processed images, with the goal  of further combining them at a later 

stage to detect longer lines from across the image (mimicking the hierarchical Hough transform which would 

find shorter line segments (analytically), and combine them into longer lines), or otherwise advance the result 

towards generating navigation information for a mobile robot. 

     The approach proceeds by trying to find lines belonging to eight pre-defined categories from sub-images 

using eight back-propagation type artificial neural networks called the stage one networks. Results from these 

stage one networks would then be passed to other back propagation networks (or other means of further 

processing) in further stages set up to ultimately work out the direction the robot should move in. The stage one 

networks are the only ones presented here, and did reasonable well in recognising the target lines. 

 

Keywords:artificial neural networks, back-propagation networks, image processing, line detection, robot 

navigation 

 

I. Introduction 

Various approaches can be taken to achieve vision for robot navigation using artificial neural networks. 

A few of them are discussed later in 1.2 Related Work. This paper presents a method to detect sub-lines using 

artificial neural networks, from images captured by the camera on a mobile robot, which can be further 

processed to determine how a mobile robot should proceed navigationally. 

Artificial neural networks (ANNs) are often used to provide automated solutions on computing 

platforms, where an analytical solution does not exist, or is not ideal. They do not require a person (or persons) 

to analytically develop algorithms to provide solutions, and then implement as a program to generate the 

solution as would be done conventionally. Instead, a suitable ANN is set up which can take suitably pre-

processed samples of the problem, and the correct corresponding solutions for the problem. Counter examples 

are also provided. The ANN, if successful, is able to automatically determine the correct features to use to map 

from problem to solution. 

In working as they do, ANNs are thought of as learning in the way a biological brain often learns. 

Human children, for example, mostly learn to identify oranges by being shown examples of oranges, and 

counter examples like apples and lemons.  This paper presents one of several investigations into replacing all or 

part of an existing analytical method for detecting sub-lines in a digital image, which uses the straight line 

Hough transform followed by a sub-line detection scheme, with an ANN, because the analytical method is not 

ideal, in this case, because it can take too much time [1]. The particular investigation presented attempts, as 

mentioned earlier, to find sub-lines that can be further processed to assist vision-based robot navigation. 

The sub-line detection scheme this work somewhat mimics has been presented in [2] and [3]. [2] 

describes what the Hough transform is and how it has been applied to detect full lines from images captured by 

a mobile robot for self-navigation within an indoor corridor type environment. [3] presents a method to 

determine sub-lines of the lines detected from [2]. 

Before the scheme in [2] can be applied to an image, the image is pre-processed using a scheme 

detailed in [4] which converts the image to a 128x96 pixel sized binary image showing outlines of boundaries of 

major regions of the image. The same pre-processing is applied to images prior to application of the methods 

described in this paper.  

Fig. 1 shows a sample image, fig. 2 shows a pre-processed version of the same image using methods 

from [4], and fig. 3 shows the full lines detected using the scheme from [2]. The lines detected are shown in 

colours other than black, and they are superimposed on the pre-processed version of the image shown in fig.2. 
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Figure 1: Sample captured image 

 

 
Figure 2:Pre-processed version of fig. 1 sample image 

 

 
Figure 3: Full lines detected from fig. 1 sample image 

 

Fig. 4 shows sub-lines found using the scheme described in [3]. The goal of the investigation of this 

paper is to see if ANNs can be trained to detect similar sub-lines. 

 

 
Figure 4: Sub-lines found from fig. 1 sample image 

 
1.1 Back Propagation Networks 

ANNs are computer implementations of mathematical models of biological brains. They are made up of artificial 

neurons, which are mathematical models of biological neurons. They have been described in detail in various publications 

including [5]. Many types of ANNs exist. The ones used in the investigation presented here are Back Propagation Networks 

(BPNs). BPNs are multi-layer ANNs whose training algorithm involves adjustment of weights within the network by 

determining errors in output when a sample input and output has been provided to a network under training, and then 
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propagating the errors from the output back through the network, adjusting weights based on the errors. BPNs have also been 

described in detail in various publications including [5]. A BPN is illustrated in fig. 5. 

 
Figure 5: Neurons arranged in layers in a typical back propagation network(Source: [6]) 

 

The training method used for the BPN is summarised as follows: 

backPropTraining 

{ 

initialise iterationCount to 0 

while numOfTrainedPatterns < NumInTraining  

{ 

  Initialise numOfTrainedPatterns to 0 

  forall patternsInTraining, p 

  { 

   place p on the network 

   do forward pass 

   determine error for p 

   do backward pass 

   if error for p is less than threshold 

    increase numOfTrainedPatterns by 1 

  } 

  increase iterationCount by 1 

  

  if iterationCount == maxNumOfIterationsAllowed 

   break 

} 

if iterationCount < maxNumOfIterationsAllowed 

 save network parameters 

else 

 declare that training failed  

}//end backPropTraining 

Inputs to the process include a training set, a network set up with random weights for its links. 

At the heart of the process are two loops, one nested in the other.  

 

1.1.1 Outer Loop 

The outer loop, shown above as a while loop, runs until every pattern p, in the training set conforms to 

the training criteria, i.e., yields an error when passed through the current network, which is less than a pre-

defined threshold. In other words, the outer loop runs until the number of patterns that have conformed, or have 

been trained, numOfTrainedPatterns, equals the total number of patterns NumInTraining.  The loop also 

increments iterationCount by 1 each time it is run, and monitors it so it does not go beyond a predetermined 

threshold, maxNumOfIterationsAllowed. iterationCount is initialised to 0 before the outer loop starts, and if it 

does get to maxNumOfIterationsAllowed, the training process is halted and training is judged to have failed. 

Various networks will be considered in the rest of this paper, different specific information about 

training parameters. 
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1.1.2 Inner Loop 

The inner loop passes individual patterns forward through the network, determines whether or not the 

error from the pass is lower than the error threshold, and update the count of trained patterns, 

numOfTrainedPatterns. It also does a back pass which adjusts the weights of the network to „fit in‟ the current 

pattern better. 

The forward pass, uses the sigmoid function to assign values to nodes. This function is shown: 

NETe
y




1

1
 . . . (1) 

where NET for a particular node is the sum of the product of the weight of all links coming into that 

node, and the value of the node that the particular link originates from. Value is determined for all nodes except 

for those in the input layer. 

Errors are determined for output nodes by subtracting the actual outputs from the node from the target 

outputs, and for the pattern by summing the absolute value of all the errors of its output nodes. Patterns with 

errors exceeding a predefined threshold are counted using the variable numOfTrainedPatterns, as pointed out 

earlier in 1.2.1 Outer Loop. 

A defining step of the training in the back-propagation method is the back pass. It involves propaging 

the error for the pattern back through the network by adjusting the weights on its links using what is known as 

the delta rule. By this rule, an adjustment, i ,  is worked out for each link i  using 

 ii x   . . . (2) 

where  

))(1( iiiii ydyy  . . . (3) 

for the output neurons, and 

  )(),()](1)[()( 11 iiqwqxqxq ppppp   .    . . (4) 

for neuron q  in hidden layer p .  

 in(2) is the learning rate. iy and id  are actual and desired outputs respectively, in (3). For Hidden layer 

neurons, ),(1 iqwp  is the weight of the link ending in layer 1p  (the next layer from the current one p ), 

starting from node q  in layer p  and ending in node i  (which is in layer 1p ). 

 
1.2 Related Work 

1.2.1 The Work of Chang and Others 

The work of [8] discusses a system which enables navigation of a robot in unknown environments. Its 

navigation controller consists of three sub-controllers – the main controller, the avoidance neural network and 

the forward neural network. The controllers get input from infrared and ultrasonic sensors. The main controller 

checks whether or not the area ahead of the robot is safe and transfers control to the forward neural network or 

the avoidance neural network depending on what it finds. 

The system is provided with an initial and a goal position and it works to get from one to the other 

while avoiding obstacles if necessary. [8] conclude that neural network navigation controllers are efficient, 

robust and fault-tolerant. 

The input to their system, infrared and ultrasound data, are different from the visual data employed in 

the current work. However, their use of feed forward neural networks and their conclusions about them are of 

interest to the current work. 

 

1.2.2 The Work of Inigo and Others 

The work of [9] is closely related to the current work in the sense that they use a single camera as input 

to a system they have developed. The system consists of three modules each performing one of three tasks - 

maintaining alignment, obstacle recognition and determining location of the robot relative to a fixed point of 

reference. 

 The system aims at robot navigation using “qualitative navigation behaviour”. The networks try to 

maintain the orientation of the robot while avoiding moving obstacles. The interaction of the three modules 

resulted in the robot moving in a zig-zag fashion.  

A grading system they also developed compares the results of the modules with what a human referee 

decides is the correct response for the given situation. They report that the results for the system as a whole is 

better than the results for any of the modules individually. 
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Their use of neural networks to achieve navigation in a robot relates their work to the current one even though 

the way they use neural networks (for maintaining alignment, obstacle recognition and determining location) is 

different from the line detection approach of this work.  

 
1.2.3 The Work of Dempsey and McVey 

In an attempt to address the relatively slow processing speed associated with the (hardware) 

implementations of the Hough transform which has kept it from being widely used despite its importance as a 

robust and noise-resistant feature identification algorithm, [1] have proposed the use of ANNs-like circuitry to 

map from image space to parameter space and a modified Hopfield optimisation network to detect peaks in 

Hough transform parameter space (two important but time consuming steps in the Hough transform). They 

report tremendous improvement in processing time. The current work only considers software implementations 

of ANNs. 

 

II. Sub-Lines Detection from Sub-Image 
To prepare for the BPN to be used, the pre-processed 128 x 96 sized image obtained from the scheme 

of [4] is broken down to 8 x 8 sized sub-images. Fig.6 illustrates this.  

 

 
Figure 6:Pre-processed image broken down into 8x8 sized sub-images 

 

Sub-images are labelled with identification codes illustrated in fig. 7. The sub-image at the top-left 

position is labelled 0. Subsequent sub-images going right are labelled with consecutive numbers until the end of 

the row. The labelling is continued on the next row from the left. 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 

Figure 7: Sub-image labelling order 

 

The 64 pixels in the sub-images constituted input to the neural networks used. 8 separate neural 

networks are trained to determine if the sub-images contain lines from each of the 8 categories detailed in table 

1.  
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Table 1: Lines Categorisation 
Category ID Description Minimum 

  

Maximum 

  

Range Size Direction of Distance 

Measurement 

0 Vertical  
 

 -5 (or 175) 4  10 left to right 

1 Vertical 

Backslash 

 

 

 5 24  20 bottom left to top right 

2 Backlash  
 

 

25  64  40 bottom left to top right 

3 Horizontal 
Backslash 

 
 

 65 84  20 bottom left to top right 

4 Horizontal   85 94  10 bottom to top 

5 Horizontal slash  
 

 95 114  20 bottom right to top left 

6 Slash  

 

 115 154  40 bottom right to top left 

7 Vertical Slash  
 

 

 155 174 (or -6)  20  bottom right to top left 

 
Output from each of these networks is a binary digit which indicates whether the sub-image contains a line of the 

category the network is trained to detect. These networks are described further in 2.1 Line Recognition and Categorisation 

from Sub-Images. 

 
2.1 Training for Recognition of Lines in Categories from Sub-Images 

8 networks were set up to recognise lines in each of the categories described earlier, from 8 x 8 sized sub-images 

extracted by breaking the image down. The networks therefore have 64 binary inputs. Each network has a single output 

which has a value of 1 if a line which falls into the corresponding category is detected in the input sub-image and 0 

otherwise. The networks also have 1 inner layer with 9 neurons. 

A training set was developed incrementally from sub-images taken from 5 randomly selected images. Training was 

performed, and the network was tested with a fresh random image. Sub-images which are not correctly identified are added 

to the training set, and the network is re-trained. This was done until further additions to the training set did not significantly 

improve the recognition rate in fresh random images. 216 sub-images were derived in this way.  

In the training for each network, further sub-images were included which contain clear instances of lines in the 

category. This was necessary because certain categories do not occur commonly in actual images so there were not enough 

of them to properly train the networks. The final training set contained 226 to 263 sub-images for the various categories. The 

target outputs were adjusted appropriately for each sub-image in the training set, when training for each category. 

 

III. Results 
Final testing was performed for each category with at least all the 192 sub-images from a complete 

image.The sub-sections which follow discuss the specific training information and testing results for each line 

category in more detail. 

 
3.1 Vertical Category Lines Recognition 

Lines in this category have   values in the range -5° to 4°. How lines within this category appear in 

sub-images is illustrated in the fig. 8. For the purpose of this illustration, they are both drawn to pass through the 

centre of the image with 0 . The figure shows various possible appearances of the lines in sub-images, and 

was used as a guide during training.  

 
Figure 8: Possible appearances of extreme vertical category lines in sub-images 
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Figure 9: Broken down image used for testing 

 

Fig.10 shows results from testing with image from fig. 9.Red lines in a sub-image indicate that a 

vertical line was found in the sub-image. Note that the red lines are drawn in the middle of the sub-image and do 

not indicate the actual position within the sub-image where the line was found. Information about the actual 

position or arrangement of pixels in the line, or whether more than one vertical line exists, is not obtained with 

this approach. 

 
Figure 10: Results of test for vertical category 

 
3.2 Vertical Backslash Category Lines Recognition 

Lines in this category have   values in the range 5° to 24°. How lines with these extreme   values for 

this category appear in sub-images is illustrated in the fig. 9. For the purpose of this illustration, they are both 

drawn to pass through the centre of the image where 0 . 

 
Figure 11: Possible appearances of extreme vertical backslash category lines in sub-images 

 

Note that some lines in this category appear like vertical lines in within some sub-images. 

Test results for the random image which is shown in fig. 9 are illustrated in fig.12.  

 

 
Figure 12: Results of test for vertical backslash category 
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3.3 Backslash Category Lines Recognition 

Lines in this category have   values in the range 25° to 64°. How lines with these extreme   values 

for this category appear in sub-images is illustrated in fig.13. For the purpose of this illustration, they are both 

drawn to pass through the centre of the image with 0 . 

 

 
Figure 13: Possible appearances of extreme backslash category lines in sub-images 

 

Test results for the image shown in fig. 9, are illustrated in fig.14. 

 
Figure 14: Results of test for backslash category 

 

3.4 Horizontal Backslash Category Lines Recognition 

Lines in this category have   values in the range 65° to 84°. How lines with these extreme   values 

for this category appear in sub-images is illustrated in fig.15. For the purpose of this illustration, they are both 

drawn to pass through the centre of the image with 0 . 

 
Figure 15: Possible appearances of extreme horizontal backslash category lines in sub-images 

 

Test results for the usual random image, the one shown in fig. 9, are illustrated in fig.16. 

 

 
Figure 16: Results of test for horizontal backslash category 
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3.5 Horizontal Category Lines Recognition 

Lines in this category have   values in the range 85° to 94°. How lines with these extreme   values 

for this category appear in sub-images is illustrated in fig.17. For the purpose of this illustration, they are both 

drawn to pass through the centre of the image with 0 . 

 
Figure 17: Possible appearances of extreme horizontal category lines in sub-images 

 

Test results for the random image shown in fig. 9, are illustrated in fig.18. 

 
Figure 18: Results of test for backslash category 

 

3.6 Horizontal Slash Category Lines Recognition 

Lines in this category have   values in the range 95° to 114°. Their appearance is similar to the 

appearance of horizontal backslash lines. 

Results for test with the image in fig. 9 are illustrated in fig.19. 

 
Figure 19: Results of test for horizontal slash category 

 
3.7 Slash Category Lines Recognition 

Lines in this category have   values in the range 115° to 154°. Their appearance is similar to the 

appearance of backslash lines. 

Results for test with the image in fig. 9 are illustrated in fig. 20. 

 
Figure 20: Results of test for slash category 
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3.8 Vertical Slash Category Lines Recognition 

Lines in this category have   values in the range 155° to 174°. Their appearance can be deduced from 

the appearance of lines in the vertical backslash category. 

Results for test with the image in fig. 9 are illustrated in fig.20 

 

 
Figure 21: Results of test for vertical slash category 

 
3.9 Aggregated Results 

All the results from the various networks are put together in an 8-tuple vector for each sub-image when 

the networks have all run. Table 2 summarises the configuration for each vector. 

 

Table 1: Configuration of results vector 
Vector Position Meaning of Possible Value 

0 1 

0 No vertical line found Vertical line found 

1 No vertical backslash line found Vertical backslash line found 

2 No backslash line found Backslash line found 

3 No horizontal backslash line found Horizontal backslash line found 

4 No horizontal line found Horizontal line found 

5 No horizontal slash line found Horizontal slash line found 

6 No slash line found Slash line found 

7 No vertical slash line found Vertical slash line found 

 

As an example, the vector 00011100 from a sub-image would mean that for the particular sub-image, a 

horizontal backslash line, a horizontal line, and a horizontal slash line were found. 

An example from an actual sub-image is shown in figure 22. Fig.22a is a typical sub-image, and fig.22b is the 

results vector obtained when it is processed as described.  

 

0  0  0  0  0  0  0  0 

0  1  1  0  1  0  0  0 

0  1  0  0  1  0  0  0 

0  1  0  0  0  0  0  0 

0  0  0  0  1  0  0  0 

0  1  0  0  0  0  0  0 

0  1  0  0  1  0  0  0 

0  0  1  0  1  0  0  0      1 1 0 0 0 0 0 1 

 

Figure 22: Sample combined result of sub-lines detection in sub-image using ANNs 

 

(a) Sample sub-image (b) Sample result vector for fig.22a sub-image 

In this example, the result shows that there is a vertical line (the first element of the vector is 1), a vertical 

backslash line (the second element of the vector is 1) and a vertical slash line (the eight element of the vector is 

1). 

It is important to remember that although all the lines in the example appear to be vertical lines in the 

sub-image, they may in fact be parts of a vertical backslash line, or a vertical slash line as suggested by the 

results vector, and as can be seen by studying fig.9.  

The combined results are illustrated graphically in fig.23 below. Note that some of the coloured lines in 

the fig. overlap. 
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Figure 23: Results from line detecting networks for image in fig. 9 

 

Different colours are used to represent the different lines found in each sub-image. The first line found 

in each sub-image is coloured red, the second one is blue, the third one is green, etc. Table 3 summarises all the 

colours corresponding to the orders in which the lines are found: 

 

Table 3:Colours used to indicate different lines found in a sub-image 
Line-Find Position Colour Sample Line 

0 red 
 

1 blue 

 
2 green 

 
3 teal 

 
4 maroon  
5 navy 

 
6 lime 

 
7 dark gray 

 

 

Again it should be noted that the system developed cannot specify where in the sub-image a line was 

found, and all lines are shown centred in the sub-image in which they were found. 

 The full set of results for the image from fig. 9 is shown in table 4. 

 

Table 4: All Results for Image in Fig 9 
Sub-Image Number 

/Result Vector 

Sub-Image Number /Result 

Vector 

Sub-Image Number /Result 

Vector 

Sub-Image Number 

/Result Vector 

0 1 1 0 0 0 0 0 1  

1 0 1 0 1 1 1 0 0  

2 0 0 0 0 0 0 0 0  
3 0 0 0 0 0 0 0 0  

4 0 0 0 0 0 0 0 0  

5 0 0 0 0 0 0 0 0  
6 1 1 0 1 0 1 0 1  

7 0 0 1 1 0 1 1 1  

8 0 0 0 0 0 0 0 0  
9 0 0 0 0 0 0 0 0  

10 0 0 0 0 0 0 0 0  

11 0 0 0 0 0 0 0 0  

12 0 0 0 0 0 0 0 0  

13 0 0 0 0 0 0 0 0  

14 0 0 0 0 0 0 0 0  
15 0 0 1 1 1 1 1 1  

16 1 1 0 1 1 1 0 1  

17 1 1 0 0 1 1 0 1  
18 0 1 0 0 0 1 0 0  

19 0 0 0 0 1 0 0 0  

20 0 0 0 1 1 1 0 0  
21 0 0 0 0 0 0 0 1  

22 1 0 0 0 0 0 0 1  

23 0 0 0 0 0 0 0 0  
24 0 0 0 0 0 0 0 0  

25 0 0 0 0 0 0 0 0  

26 0 0 0 0 0 0 0 0  
27 0 0 0 0 0 0 0 0  

28 0 0 0 0 0 0 0 0  

48 1 1 0 0 0 1 0 1  

49 1 1 0 1 1 1 0 1  

50 1 1 0 0 1 1 1 1  
51 1 1 0 1 1 0 0 1  

52 0 0 0 0 1 1 1 1  

53 1 0 1 0 0 1 1 0  
54 0 1 0 1 1 1 1 1  

55 0 0 0 0 0 0 0 0  

56 0 0 0 0 0 0 0 0  
57 0 0 0 0 0 0 0 0  

58 0 0 0 0 0 0 0 0  

59 0 0 1 0 0 0 0 0  

60 0 0 1 0 0 0 0 0  

61 0 0 0 0 0 0 0 0  

62 0 0 0 0 0 0 0 0  
63 0 0 0 0 0 0 0 0  

64 1 1 1 0 0 0 0 1  

65 1 1 1 1 1 1 1 1  
66 1 1 0 0 0 0 0 1  

67 0 0 0 0 0 0 0 0  

68 1 1 0 0 0 0 0 1  
69 1 0 0 0 1 1 0 1  

70 1 1 1 0 0 1 0 1  

71 0 0 0 0 0 0 0 0  
72 0 0 0 0 0 0 0 0  

73 0 0 0 0 0 0 0 0  

74 0 0 0 0 0 0 0 0  
75 0 0 0 0 0 0 0 0  

76 0 0 0 0 0 0 0 0  

96 1 1 0 0 0 1 0 1  

97 0 0 0 0 0 0 0 0  

98 1 0 1 0 0 1 1 0  
99 0 0 0 0 0 0 0 0  

100 1 1 0 0 0 0 0 1  

101 0 0 0 0 1 0 0 0  
102 1 1 0 0 0 0 0 1  

103 0 0 0 0 0 0 0 0  

104 0 0 0 0 0 0 0 0  
105 0 0 0 0 0 0 0 0  

106 0 0 0 0 0 0 0 0  

107 0 0 0 0 0 0 0 0  

108 0 0 0 0 0 0 0 0  

109 0 0 0 0 0 0 0 0  

110 0 0 0 0 0 0 0 0  
111 0 0 0 0 0 0 0 0  

112 1 1 1 0 1 1 1 1  

113 0 0 0 0 0 0 0 0  
114 1 1 0 0 0 0 0 1  

115 0 0 0 0 0 0 0 0  

116 1 0 1 1 1 1 0 0  
117 1 1 0 1 1 0 1 1  

118 0 0 0 0 1 0 0 0  

119 0 0 0 0 0 0 0 0  
120 0 0 0 0 0 0 0 0  

121 0 0 0 0 1 0 0 0  

122 0 0 0 0 0 0 0 0  
123 0 0 0 0 1 0 0 0  

124 0 0 0 0 0 1 0 0  

144 1 1 0 0 0 0 0 0  

145 0 0 0 0 0 0 0 0  

146 1 1 1 0 0 0 0 1  
147 0 0 0 0 0 0 0 0  

148 0 0 1 0 0 0 0 0  

149 1 0 0 0 0 0 0 0  
150 0 0 0 0 0 0 0 0  

151 1 1 1 1 1 1 1 0  

152 0 0 0 1 1 1 1 1  
153 0 0 0 0 0 0 0 0  

154 0 0 0 0 0 0 0 0  

155 0 0 0 0 0 0 0 0  

156 0 0 0 0 0 0 0 0  

157 0 0 0 0 0 0 0 0  

158 0 0 0 0 0 0 0 0  
159 0 0 0 0 0 0 0 0  

160 1 1 0 0 0 0 0 0  

161 0 1 0 0 0 1 0 1  
162 1 1 1 1 1 1 1 1  

163 0 0 0 0 0 0 0 0  

164 1 1 0 0 0 0 0 0  
165 1 1 1 0 0 0 1 0  

166 0 0 0 0 0 0 0 0  

167 0 0 0 0 0 0 0 0  
168 0 0 0 0 0 0 0 0  

169 1 1 0 1 1 1 1 0  

170 1 0 0 1 1 0 0 0  
171 0 0 0 0 0 0 0 0  

172 0 0 0 0 0 0 0 0  
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29 0 0 0 0 0 0 0 0  

30 1 1 0 1 1 0 1 1  

31 0 0 0 1 0 1 0 0  
32 1 1 0 0 1 1 0 1  

33 1 0 0 1 1 1 1 1  

34 1 0 0 0 0 0 0 1  
35 0 0 0 1 0 1 1 0  

36 1 0 0 1 1 1 1 1  

37 1 1 0 0 0 0 0 0  
38 1 1 1 0 0 0 0 1  

39 0 0 0 0 0 0 0 0  

40 0 0 0 0 0 0 0 0  
41 0 0 0 0 0 0 0 0  

42 0 0 0 0 0 0 0 0  
43 0 0 0 0 0 0 0 0  

44 0 0 0 0 0 0 0 0  

45 0 1 0 0 0 0 1 0  
46 0 0 0 0 0 0 0 0  

47 0 0 0 0 0 0 0 0  

 

77 0 0 0 0 0 0 0 0  

78 0 0 0 0 0 0 0 0  

79 0 0 0 0 0 0 0 0  
80 1 1 1 0 0 0 0 1  

81 1 1 0 0 0 0 0 0  

82 1 1 0 0 0 1 0 1  
83 0 0 0 0 0 0 0 0  

84 1 1 1 1 1 1 1 1  

85 1 1 1 0 0 0 0 0  
86 1 1 1 0 0 1 0 1  

87 0 0 0 0 0 0 0 0  

88 0 0 0 0 0 0 0 0  
89 0 0 0 0 0 0 0 0  

90 0 0 0 0 0 0 0 0  
91 0 0 0 0 0 0 0 0  

92 0 0 0 0 0 0 0 0  

93 0 0 0 0 0 0 0 0  
94 0 0 0 0 0 0 0 0  

95 0 0 0 0 0 0 0 0  

 

125 0 0 1 0 0 0 0 0  

126 0 0 0 0 0 0 1 0  

127 0 0 0 0 0 0 0 0  
128 1 1 0 1 1 0 1 1  

129 0 0 0 0 0 0 0 0  

130 1 1 1 0 0 0 0 1  
131 0 0 0 0 0 0 0 0  

132 1 1 1 0 0 0 0 1  

133 1 0 0 1 1 1 1 0  
134 1 1 1 1 1 0 0 1  

135 0 0 0 0 0 0 0 0  

136 0 0 0 0 0 0 0 0  
137 0 0 0 0 0 0 0 0  

138 0 0 0 0 0 0 0 0  
139 0 0 0 0 0 0 0 0  

140 0 0 0 0 0 0 0 0  

141 0 0 0 0 0 0 0 0  
142 0 0 0 0 0 0 0 0  

143 0 0 0 0 0 0 0 0  

 

173 0 0 0 0 0 0 0 0  

174 0 0 0 0 0 0 0 0  

175 0 0 0 0 0 0 0 0  
176 1 1 1 0 0 0 0 1  

177 0 0 0 0 0 0 0 1  

178 1 1 0 0 0 0 0 0  
179 0 0 0 0 1 1 0 0  

180 0 0 1 0 0 1 1 0  

181 1 0 0 0 0 0 0 0  
182 0 0 0 0 0 0 0 0  

183 0 0 0 0 0 0 0 0  

184 0 0 0 0 0 0 0 0  
185 0 0 0 0 1 0 0 0  

186 1 0 1 1 1 0 0 0  
187 1 1 1 1 1 1 0 0  

188 0 0 1 0 1 1 0 0  

189 0 0 0 0 0 0 0 0  
190 0 0 0 0 0 0 0 0  

191 0 0 0 0 0 0 0 0 

 

 

IV. Conclusion 
BPNs were trained to recognise different categories of sub-lines from sub-images. Results are mostly good. A lot 

of the poor results are due to confusion between similar line types, for example, between vertical-slash and slash lines, both 

of which would be approximately correct.  

Results presented are not as specific as, say, using the analytical approaches presented in [2] and [3] which specify 

the pixels lines found come from, and their angles to, say, the vertical, correct to the nearest whole degree. Results from the 

current paper specify which sub-image a sub-line comes, a sub-image being 8 x 8 pixels in size, and which category it 

belongs to, a category spanning about 10 degrees. This is okay for the purpose of further processing for robot navigation 

such as in [10] which relies on the position of lines found relative to a reference point such as a vanishing point, but does not 

need to know exactly how far the line is from the reference point, and also combines lines of similar angles into the same 

categories used in this paper (presented in table 1). The detection of the vanishing point used in [10] was presented in [11] 

and relies on more accurate estimates for positions and orientation of lines than the method presented would provide. Using 

the methods in the combination of [2] and [3] would yield such accuracies. Future work would include looking into 

estimation of the vanishing point without needed the go the route of time-consuming analytical methods such as the 

combination of [2] and [3], if the idea of avoiding using them for line detection is to make sense. 

Results have been used to try out other neural networks, and to apply other techniques to do further processing. 

One approach which uses the Hough transform to stitch together sub-lines found from sub-images as presented in this paper, 

along the lines of their categories, to get the full line they came from has been presented in [12]. Other further processing 

will be considered in the future. 
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