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Abstract:Elliptic Curve Cryptography (ECC) is an attractive field of research since it requires a shorter key 

length compared to other public-key cryptosystems such as RSA. A shorter key reduces the required 

computations, power consumption, and storage. The major time-consuming operation in ECC is the point 

multiplication, 𝑘𝑃 . Therefore, a lot of research has been carried out to improve the efficiency of ECC 

implementations. Composite Elliptic Curve (EC) operations and recoding methods are two factors that affect 

the efficiency of EC scalar multiplication. Deciding which composite EC operation to be used in an ECC system 

helps to improve the computational efficiency. In addition, finding a method that accelerates the EC 

computations, which depends on a new recoding method and employing the most efficient composite operations, 

is considered a pressing need. In this a research, a survey of EC single scalar multiplication methods is 

introduced. Therefore, a comprehensive information related to EC multiplication methods will be provided in 

order to facilitate literature review for researchers who would like to conduct a research in this area of science. 

Keywords:Elliptic Curve Cryptography, recoding methods, EC multiplication 

 

I. Introduction 
Computer Security is an important field that covers services, mechanisms and processes that protect 

computer data from unauthorized access. In the field of computer security, cryptography plays a major role in 

securing data. Security objectives such as confidentiality, data integrity, data origin authentication, entity 

authentication and non-repudiation can be achieved by using cryptography (Stallings, 2013). The security of 

commonly used public-key algorithms relies on three number-theoretic problems that are considered to be hard 

problems: factorization, discrete logarithm and EC discrete logarithm problems.  

Elliptic curve cryptography (ECC), which was proposed independently by Koblitz and Miller (Darrel et 

al., 2003), is based on the Elliptic CurveDiscrete Logarithm Problem (ECDLP) (Darrel et al., 2003).The ECDLP 

has exponential time complexity, while the factorization and discrete logarithm problems can be solved in sub-

exponential time (Eisenträger et al., 2003). ECC is attractive since it has many criteria that should be considered 

when designing an encryption system such as performance and security (Darrel et al., 2003). 

 

Table I.1: Key size for ECC and RSA (Stallings, 2013) 
ECC key size RSA key size 

112 512 

160 1024 

224 2048 

256 3072 

 

ECC offers equal security as well as RSA with a smaller key size and lower processing power as it can 

be seen from Table (Stallings, 2013). Portable devices, such as personal digital assistants (PDAs), mobile 

phones and smart cards, are equipped with limited memory. Therefore, ECC is more suitable than conventional 

public key cryptosystems for these devices (Tsaur and Chou, 2005). Elliptic Curve operations are performed 

over a finite field. Thus, its efficiency affects the implementation or design of ECC algorithms. Three types of 

fields are commonly used in ECC: prime, binary and extension fields (Darrel et al., 2003).Prime fields are 

considered better than binary fields for software implementation, while binary fields are the best for hardware 

implementation (Stallings, 2013).  

The infrastructure of some public-key cryptosystems is the Abelian group. In Diffie-Hellman key 

exchange, which depends on the Discrete Logarithm Problem, the exponentiation is defined as repeated 

multiplication. The exponentiation is computed using the Square-and-Multiply method (Knuth, 1997). While, 

Double-and-Add method, which is the counterpart of the Square-and-Multiply method, depends on two basic 
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operations: addition and doubling (Darrel et al., 2003, Knuth, 1997).Equation (1) is used to define an Elliptic 

CurveE over a prime field p 

 𝐸(𝐹𝑞): 𝑦2𝑚𝑜𝑑𝑝 =  𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑𝑝 (1) 

 where a, b, x, y Fpand∆= −16(4𝑎3 + 27𝑏2)  

 

The EC operations, addition(𝐴) and doubling(𝐷), are considered the basic operations.The cost of EC 

addition in terms of field operations is  𝑖 + 2 𝑚 +  𝑠 , while the cost of EC doubling is  𝑖 + 2 𝑚 +  2 𝑠  
(where i stands for inversions, m for multiplication, and s for squaring).For the EC 𝐸(𝐹𝑝) , with 

characteristic(𝐹𝑝) > 3, let 𝑃1 = (𝑥1 , 𝑦1) and 𝑃2 =  𝑥2, 𝑦2  where 𝑃1 ≠ −𝑃2 , 𝑃1 , 𝑃2 , 𝑃3 ∈ 𝐸(𝐹𝑝). Let  represents 

the point at infinity, then: 

1. 𝑃1  + ∞ =  𝑃1  

2. 𝑃1  +  −𝑃1  = ∞, where –𝑃1  =  ( 𝑥1 , −𝑦1) 

3. 𝑃3 = 𝑃1 + 𝑃2 = (𝑥3 , 𝑦3) 

4. 𝑥3 = (𝜆2 − 𝑥1 − 𝑥2) mod𝑞 

5. 𝑦3 =  𝜆 𝑥1 − 𝑥3 − 𝑦1 mod𝑞 

6. 𝜆 =  
 
𝑦2−𝑦1

𝑥2−𝑥1
 𝑚𝑜𝑑𝑞𝑖𝑓𝑃1 ≠ 𝑃2

 
3𝑥1

2+𝑎

2𝑦1
 𝑚𝑜𝑑𝑞𝑖𝑓𝑃1 = 𝑃2

  

 

II. Point Representation 
There are several ways to represent the EC point. The Affine coordinate system is the traditional 

coordinate system that is used in the Cartesian plane. The point 𝑃  is represented in Affine coordinates as 

𝑃(𝑥1 , 𝑦1). On the other hand, the Projective coordinate system is used when the cost of inversion is high 

compared to the cost of multiplication, especially over prime fields (Darrel et al., 2003, Dimitrov et al., 2008). 

Therefore, the need for a multiplicative inverse in the EC operations is eliminated by using Projective 

coordinates. There are some variants of Projective coordinates such as standard Projective coordinates, Jacobian 

coordinates and Chudnovsky coordinates(Darrel et al., 2003).  

 

III. Point Multiplication 
The dominant operation in EC cryptography is point multiplication. Figure 1.showsthat there aretwo 

methods of point multiplication: single-scalar and multi-scalar multiplication. Computing𝑘𝑃, where 𝑘 ∈ 𝑍and 

𝑃 ∈ 𝐸(𝐹𝑝), is called single-scalar multiplication while computing 𝑘𝑃 +  𝑙𝑄 is called mutli-scalar multiplication. 

Both methods are used in the Elliptic Curve Digital Signature Algorithm (ECDSA).  

 

 
Figure 1. Types of elliptic curve point multiplication 

 



A Survey on Single Scalar Point Multiplication Algorithms for Elliptic Curves over Prime Fields 

DOI: 10.9790/0661-1802053147                                 www.iosrjournals.org                                             33 | Page 

There are three methods for computing EC point multiplication based on the knowledge of point P and 

exponent k. The first uses a generic algorithm when pointPand exponent kare variables. It can also be called the 

on-the-fly technique. The second method finds the shortest addition subtraction chain when the exponent is 

fixed. The third method uses precomputations whenever the point is fixed(Cohen and Frey, 2006). 

Table summarizes the three methods. 

 

Table 1.Types for ECpoint multiplication based on knowledge of the key and the exponent 
P k Method 

variable variable Generic algorithm (on-the-fly) 

variable fixed Finding the shortest addition subtraction chain 

fixed variable Precomputation 

 

A pre-computation may give a noticeable improvement to the multiplication methods in terms of speed 

if there is sufficient memory to store some precomputations. The recoding method that is used to represent the 

exponent k significantly reduces the computational costof the multiplication method used. Moreover, the 

common approach is trying to invent a new recoding method that has the minimal Hamming  Weight or the 

shortest addition chains and then invent a single or multi-scalar multiplication method that takes advantage from 

the proposed recoding method (Darrel et al., 2003, Cohen and Frey, 2006).The single scalar EC point 

multiplication is represented by 𝑘𝑃, where 𝑘 ∈ 𝑍 and 𝑃 ∈ 𝐸 𝐹𝑝 .This quantity can be computed on-the-fly or 

using precomputations if sufficient memory is available. The exponent k can be represented using radix 2 

positional number system as a summation of the form  

𝑘 =  𝑎𝑖2
𝑖

0≤𝑖<𝑛

=  𝑎𝑛−1 …𝑎3𝑎2𝑎1𝑎0 2 = 𝑎𝑛−12𝑛−1 + ⋯ + 𝑎222 + 𝑎121 + 𝑎020,   

𝑤𝑒𝑟𝑒𝑎 ∈ 𝐷2 =  0,1 𝑎𝑛𝑑𝑛 = log2 𝑘 

(2) 

 

If the digit set is extended to𝐷𝑤 =  0, ±1 ,it will be the signed binary representation of exponent k. 

Moreover asigned window representation of exponent k can be achieved if the digit set is extended to 𝐷𝑤 =
 0, ±1, ±3, ±5, … . 

 

2.1 On-the-Fly Elliptic Curve Multiplication 

Many algorithms have been proposed to compute  kP, where 𝑃 ∈ 𝐸(𝐹𝑝)(Darrel et al., 2003). These 

algorithms mainly depend on the recoding method of exponent k. The most popular method for performing EC 

point multiplication of the form kP is the Double-and-Add(Binary) method which uses the digit set 𝐷𝑤 =  0,1  
to represent exponent k. The efficiency of this method can be further improved using signed binary 

representations. Figure 2. presents the classification of the on-the-fly EC multiplication methods and some 

examples. The signed methods use the digit set 𝐷𝑤 =   0, ±1 .Also further improvements can be achieved if 

some precomputations are allowed such as in window recoding and multiplication techniques where the digit set 

Dw can include more values as 𝐷𝑤 =  0, ±1, ±3, …  .  
 

 
Figure 2. On-the-fly EC schemes 

 

Window methods are considered more efficient than non-window methods if sufficient memory is 

availableto store the precomputed points. In ECC, left-to-right recoding is the natural choice, because window 

methods can be used more efficiently. In addition, the multiplication method and recoding method can be 

merged; therefore, there is no need to store the recoded scalar k. The left-to-right methodsare more suitable for 

limited hardware devices(Okeya et al., 2004). 
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2.1.1 Unsigned Standard Binary Method 

The Classical technique that is used to compute kP is the standard binary method (or so-called Double-

and-Add method). This method has a linear complexity in terms of the size of the input (Doche and Imbert, 

2006) and can be deduced in both directions: left-to-right and right-to-left. Algorithm 1isthe left-to-right variant 

of binary method(Knuth, 1997, Darrel et al., 2003). The cost of the standard binary multiplication method as 

stated by Darrel et al. (2003), Dimitrov et al. (2008), and Morain and Olivos (1990) for 𝐸 𝐹𝑝 with𝑐𝑎𝑟 > 3, is 
𝑛

2
 𝐴  + 𝑛[𝐷] , where, 𝑛 = log2 𝑘 and 𝑊 𝑘 =

𝑛

2
. The cost of kP in terms of field operations using Affine 

coordinates is 𝑛 1.5[𝑖] + 3[𝑚] + 2.5[𝑠] . 
 

Algorithm 1: L-to-R standard binary point multiplication 

Input  : 𝑘2 , 𝑃𝐸(𝐹𝑞) 

Output  : 𝑘𝑃 
 

𝑄 ←  
For 𝑖( log2 𝑘 to 1)  

 
𝑄 ←  2𝑄
If (𝑘𝑖  =  1) then 𝑄 ← 𝑄 +  𝑃

    

Return (Q) 

 

2.1.2 Signed Binary Schemes 

The main idea behind using signed binary representation is to speed up the Classical multiplication 

method on computers(Booth, 1951). In fact, there are several signed representations of integer k in Radix-2. 

These representations are suitable for EC scalar multiplication, since the Hamming Weight of some signed 

binary representations is less than that for unsigned binary. Exponent kis represented in signed binary as 

𝑘 =  𝑎𝑖2
𝑖

0≤𝑖<𝑛 , where𝑎 ∈ 𝐷2 =  0, ±1 and𝑛 = log2 𝑘. 
The drawback of signed representations is its redundancy due to the use more than 3 digits to represent 

a binary number. For example, 23 has a unique binary representation while it has many signed representations 

such as: 11001 , 101 001 , 11 11 11. Deciding which representation is the shortest is an open problem (Okeya et 

al., 2004, Jedwab and Mitchell, 1989). On the other hand, an advantage of signed representations is in finding 

the additive inverse of an EC point. The inverse of a point P ≠ ∞ in ECs can be found simply by negation, i.e. 

the inverse of point P can be calculated for free (Muir and Stinson, 2006). Various techniques of signed binary 

multiplication methods that have been proposed will be explained in the following sections (Solinas, 1997, 

Okeya et al., 2004,Koyama and Tsuruoka, 1993). 
 

Non Adjacent Form (NAF) 
The NAF method was introduced by Reitwiesner in 1960 (Reitwiesner, 1960). Then a generalization of 

the NAF was introduced bySolinas (2000) which can be used to enhance the efficiency of EC computations. 

Left-to-right NAF recoding was firstly introduced by Joye and Sung-Ming (2000)(Kong and Li, 2005). Every 

integer k has a unique NAF representation𝑘 =  𝑎𝑖2
𝑖

0≤𝑖<𝑛 , where𝑎 ∈ 𝐷2 =  0, ±1 and𝑛 = log2 𝑘(Darrel et 

al., 2003). The Hamming Weightof 𝑘𝑁𝐴𝐹 =
2n  3n−4 − −1 n  6n−4 

9 n−1  2n − −1 n  
≈

1

3
 , where 𝑛 = 𝑙𝑜𝑔2 𝑘(Morain and Olivos, 

1990, Solinas, 2000).  

Even though obtaining the shortest addition sequence is a NP-complete problem, NAF representation 

has the fewest number of nonzero digits among other signed representations and it can be found in a linear 

complexity (Gordon, 1998, Solinas, 1997). The bit-length n of kNAF may be one bit longer than the bit-length of 

its binary expansion; 𝑙𝑜𝑔2 𝑘𝑁𝐴𝐹 ≤ 𝑙𝑜𝑔2 𝑘 + 1. The signed binary expansion NAF must have at least one zero 

after each nonzero digit. This is called sparseness or the non-adjacency property (Morain and Olivos, 1990, 

Solinas, 2000). Algorithm 2is one of the easiest and most elegant methods that are used to compute 𝑘𝑁𝐴𝐹  from 

the integer k (Solinas, 2000).  
Algorithm 2: NAFrecoding method 

Input  : 𝑘 =  𝑘𝑖2
𝑖 , 𝑘𝑖 ∈ {0,1}𝑛−1

𝑖=0
 

Output  : 𝑘𝑁𝐴𝐹 =  𝑘𝑗 2𝑗 , 𝑘𝑗 ∈ {0,1, −1}𝑖−1
𝑗=0  

𝑖 ←  0 
While𝑘 ≥  1 

 
  
 

  
 

If odd(𝑘) 

 
𝑘𝑖 ←  2 –  𝑘mod 4 

𝑘 ← 𝑘– 𝑘𝑖

 

Else 𝑘𝑖 ←  0

𝑘 ←
𝑘

2

𝑖 ← 𝑖 +  1

   

Return (𝑘𝑁𝐴𝐹) 
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Algorithm 3is the left-to-right variant of the NAF multiplication method.It requires 
𝑛

3
𝐴 + 𝑛𝐷 . 

Consequently, the computational cost of the addition-subtraction method is 12% less than that for the standard 

binary method (Solinas, 2000). 

 
Algorithm 3: L-to-R NAF point multiplication 

Input  : 𝑘𝑁𝐴𝐹 =  𝑘𝑖2
𝑖 , 𝑘𝑖 ∈ {0,1, −1}𝑛−1

𝑖=0 𝑃 ∈ 𝐸(𝐹𝑝) 

Output  : 𝑘𝑁𝐴𝐹𝑃 
 

𝑄 ← 𝑃 
For 𝑖(𝑛 − 2 downto 0) 

 

𝑄 ←  2𝑄𝑖
If (𝑘𝑖  =  1) 𝑄 ← 𝑄 +  𝑃

If (𝑘𝑖  =  −1) 𝑄 ← 𝑄–𝑃

   

Return (Q) 

 

Mutual Opposite Form (MOF) 
The Mutual Opposite Form (MOF) was proposed by Okeya et al. (2004). MOF is a bidirectional 

method.Any positive integer k with a bit-length n has a unique MOF representation, where log2 𝑘𝑀𝑂𝐹 ≤

log2 𝑘 + 1. The signs of any nonzero consecutive digits are opposite. The Hamming Weight, 𝑊 𝑘𝑀𝑂𝐹  =
𝑛

2
, is 

almost the same as binary representation (Okeya et al., 2004). In spite of the fact that the Hamming Weight of 

MOF is greater than that for NAF, the MOF recoding method is faster than both NAF and binary methods when 

the cost of recoding is measured together with the performance of the EC multiplication method 

(Balasubramaniam and Karthikeyan, 2007). The integer k is converted to MOF mathematically by the equation 

𝑘𝑀𝑂𝐹 = 2𝑘 ⊖ 𝑘, where ⊖ represents a bitwise subtraction.  Algorithm 4provides an explicit conversion from k2 

to kMOF. The previous algorithm, Algorithm 3,can be used to compute the point multiplication. 

 
Algorithm 4: Left-to-right MOF recoding 

Input  : 𝑘 =  𝑘𝑖2
𝑖 , 𝑘𝑖 ∈ {0,1}𝑛−1

𝑖=0  

Output  : 𝑘𝑀𝑂𝐹 =  𝑣𝑖2
𝑖 , 𝑣𝑖 ∈ {0,1, −1}𝑛

𝑖=0  

  

𝑣𝑛 ← 𝑘𝑛−1  

For 𝑖 𝑛 − 1 to 1  
 𝑣𝑖 = 𝑘𝑖−1– 𝑘𝑖

  
𝑣0  = –𝑘0 
 

Return (𝑘𝑀𝑂𝐹 ) 

 

Complementary Recoding Method (CR) 
The complementary recoding (CR) was proposed by Chang et al. (2003) to solve the problem of 

common-multiplicand multiplications. It is supposed that the advantages of complementary methods help 

increase the speed of large integer multiplications. The integer k, with a bit-length n, is represented in signed 

binary using the CR method as follows𝑘𝐶𝑅 =  𝑘𝑖2
𝑖𝑛

𝑖=0 , where𝑘𝑖 {0, ±1}.  Algorithm 5is used to compute kCR. 

 
Algorithm 5: Complementary recoding 

Input  : 𝑘 =  𝑘𝑖2
𝑖 , 𝑘𝑖 ∈ {0,1}𝑛−1

𝑖=0  

Output  : 𝑘𝐶𝑅 =  𝑤𝑖2
𝑖 , 𝑤𝑖 ∈  0,1, −1 𝑛

𝑖=0  

Remark : 𝑘  : one’s complement of k 

 

𝑣 ← 2𝑛  
𝑘𝑐 ← 𝑘  

𝑘𝐶𝑅 ← 𝑣 − 𝑘 − 1 
 

Return  𝑘𝐶𝑅  

 

The recoding methods, CR and MOF, are faster than NAF since they do not involve expensive 

operations such as division. They only use simple operations such as bitwise operations, additions and 

subtractions. Neither Chang et al. (2003) nor the authors Balasubramaniam and Karthikeyan (2007) measured 

the Hamming Weight of the recoded numbers by the CR method. Therefore, the average 𝑊(𝑘𝐶𝑅)is measured 

in(Almimi et al., 2015).  

Algorithm 6 is the CREC multiplication method (Balasubramaniam and Karthikeyan, 2007). Their 

method was compared with NAF, MOF and standard binary methods. They measured the performance of the 

previous EC methods including the recoding process. They showed that their method is the fastest. The recoding 
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method, MOF, does not require expensive operations such as multiplication, division and modulus as claimed 

by Balasubramaniam and Karthikeyan (2007).   

 
Algorithm 6:EC Point multiplication using complementary recoding 

Input  : 𝑘𝐶𝑅 =  𝑤𝑖2
𝑖 , 𝑤𝑖 ∈  0,1, −1 𝑛

𝑖=0 , 𝑃 ∈ 𝐸(𝐹𝑝) 

Output  : 𝑄 = 𝑘𝐶𝑅𝑃 
 

𝑄 ← ∞ 
For 𝑖(𝑛 − 1 to 0) 

 

𝑄 ← 2𝑄

If  𝑤𝑖 = 1 𝑄 ← 𝑄 +  𝑃

Else if  𝑤𝑖 = −1 𝑄 ← 𝑄–𝑃

  

Return (𝑄) 

 

2.2 Window-based Elliptic Curve Multiplication 

Elliptic curve operations can be improved by many techniques. Finding a new recoding method which 

transforms exponent k to k’ with less Hamming Weight is one of the techniques that may crucially increase the 

efficiency of an EC scheme.  These recoding methods are classified into window and non-window methods. 

Window methods are considered a generalization of non-window methods (Solinas, 2000, Koyama and 

Tsuruoka, 1993, Blake et al., 1999, Okeya et al., 2004, Möller, 2002 Seoul, Korea,, Schmidt-Samoa et al., 

2006).Window methods are used when extra memory is available to store some precomputed values (Darrel et 

al., 2003).It is also of interest to have a left-to-right recoding method since it enhances the efficiency of 

computing kP due to the fact that there is no need to store the recoded exponent k. 

Figure shows two recoding methods of the integer k: unsigned binary 

representation𝑘2 =  𝑘𝑖2
𝑖𝑛−1

0 , 𝑘𝑖 ∈ {0, 1}  and unsigned window representation𝑘𝑤 =  𝑘𝑖2
𝑤∗𝑖 , 𝑘𝑖 ∈ 𝐷𝑤 =𝑚−1

0

{0,1, … , 2𝑤−1}.The Hamming Weightof 𝑘𝑤 is 
𝑛

𝑤
, where𝑛 = log2 𝑘. The number of EC doublings relies on the 

length of the exponent, while the number of EC additions relies on 𝑊 𝑘 . Hence, processing w digits at a time 

will reduce the number of EC additions with extra memory needed to store the set Dw. If only odd values of set 

Dw are used and zero runs are skipped, then the number of additions will be reduced. Moreover, if signed values 

are also allowed, the number of precomputations can be reduced. Exponent k can be scanned left-to-right or 

right-to-left. The former method is preferable for window EC multiplication methods since it can be combined 

with EC multiplication methods without storing exponent k, i.e. left-to-right methods enable us to do recoding 

and multiplication simultaneously. 

 

km-1 … k1 k0 

kn-1                kw-1 … k1 k0 

Figure 3. Binary and window representation of an integer k 

 

Generally, there are two ways of applying window methods: the first one is a fixed window method 

like the m-ary method, which processes w digits at a time without skipping any digit. The second applies a more 

dynamic technique over the recoded exponent which is a sliding window method (Okeya et al., 2004). Zero runs 

are skipped while applying the second window technique; therefore only odd window values will be pre-

calculated and stored (Gordon, 1998).Moreover, using signed binary representation will reduce the number of 

precomputed elements. 

 Morain and Olivos (1990) firstly suggested applying the NAF to construct the addition-subtraction 

chain for point multiplication (Kong and Li, 2005). The window method, over non-sparse optimal signed binary 

representation, was firstly proposed by Koyama and Tsuruoka (1993). Miyaji et al. (1997) proposed the wNAF 

window method for fixed and random EC points. The sliding window method over NAF and wNAFwas also 

introduced by Solinas (1997). The fractional window method was presented by Möller (2002 Seoul, Korea,) to 

use the available memory in a more efficient way than the previous methods. Later on, other left-to-right 

window methods were proposed by Okeya et al. (2004), Avanzi (2005), Muir and Stinson (2005), and 

Khabbazian et al. (2005). The properties of the proposed methods were either proved in the previous papers or 

by other papers. For example, the minimality property of the fractional window method was proved by Möller 

(2004). Some properties of non-sparse optimal signed binary representation and its window method were 

analyzed by Kong and Li (2005). Muir and Stinson (2006) showed that wNAF has a minimal number of nonzero 

digits. 
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The m-ary method 

This method represents the basic technique that uses the fixed window slicing technique where the zero 

runs are not skipped. The integer k is represented as 𝑘𝑚−𝑎𝑟𝑦 =  𝑘𝑖𝑚
𝑖𝑛−1

𝑖=0 , 𝑚 = 2𝑤 , 𝑘𝑖 ≤ 2𝑤 − 1,  

𝑛 =  
 log 2 𝑘2

 

𝑤
 . Thus the exponent is divided into 

log 2 𝑘

𝑤
 windows, where 𝑤 ≥ 2 and each window valueis in the set 

{0,1, . . , 2w − 1}.Suppose that 𝑘 =  1001100001010110 2 and 𝑤 = 4 then kis divided into blocks of 4 bits as 

follows. 

 

k = 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 

 m3 m2 m1 m0 

 
Algorithm 7: m-arypoint multiplication 

Input  : w,𝑃 ∈ 𝐸(𝐹𝑝), 𝑘 =  𝑘𝑗 𝑚
𝑗𝑛−1

𝑗=0 , 𝑘𝑗 ∈  0,1, … , 𝑚 − 1 , 𝑚 = 2𝑤  

Output  : 𝑄 = [𝑘]𝑃 
 

Precomputation 

𝑃1 = 𝑃 

For𝑖 2 𝑡𝑜𝑛 − 1  
 𝑃𝑖 ← 𝑃𝑖−1 + 𝑃  (we have 𝑃𝑖  =  [𝑖]𝑃) 
 

𝑄 ← ∞ 

For𝑗(𝑛 − 1 to 0)  

 
𝑄 ←  𝑚 𝑄
𝑄 ← 𝑄 + 𝑃𝑘𝑗

  

Return (𝑄) 

 

Algorithm 7 is the window m-ary EC point multiplication method. The cost of precomputations is 𝑛 ⋅ 𝑤[𝐷] +
n[𝐴](Blake et al., 1999). 

 

Sliding Window Non Adjacent Form 

The sliding window technique can be implemented over signed and unsigned binary where the value of 

each window is odd. In this section, the sliding window techniqueis applied to NAF and called sliding window 

NAF(swNAF). It can be implemented in both directions (right-to-left or left-to-right). Algorithm 8 is the sliding 

window over NAF recoded keys. The zero runs are skipped so that each window value is odd(Darrel et al., 

2003).The number of precomputed points is  
2w − −1 w

3
 . It follows that the expected running time for the sliding 

window methods over kNAFincluding pre-computation cost is [𝐷] +  
2𝑤− −1 𝑤

3
− 1 [𝐴] +

𝑛

𝑤+𝑣 𝑤 
[𝐴] + 𝑛[𝐷] 

where 𝑣 𝑤 =
4

3
−

 −1 𝑤

3.2𝑤−2 , which represents the average length of zero runs between windows, and 𝑛 =

log2 𝑘(Darrel et al., 2003).Figure4.shows the process of a moving window over a NAF recoded number right-to-

left.  

 
Algorithm 8: NAF sliding window multiplication 

Input  : 𝑤, 𝑘, 𝑃 ∊ 𝐸(𝐹𝑞) 

Output  : 𝑘𝑃 
 

𝑘2 → 𝑘𝑁𝐴𝐹  using Algorithm 2 

Pre-compute the points 1𝑃, 3𝑃, … ,  
2𝑤− −1 𝑤

3
− 1 𝑃 

 

𝑄 ← ∞, 𝑖 ← 𝑙–  1  
While i ≥ 0 

 
 
 

 
 

If (𝑘𝑖 = 0) ∶  𝑡 ← 1, 𝑢 ← 0
Else: find the largest 𝑡 ≤ 𝑤 such that 𝑢 ← (𝑘𝑖 ,… , 𝑘𝑖−𝑡+1)is odd

𝑄 ← 2𝑡𝑄
If (𝑢 > 0)𝑄 ← 𝑄 + 𝑃𝑢

Else if (𝑢 < 0) 𝑄 ← 𝑄–𝑃−𝑢

𝑖 ← 𝑖– 𝑡

  

Return (Q) 
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 direction of processing 

1 0 1  0 1  0 0 1  0 0 1 0 1 0 1  0 

1 0 1  0 1  0 0 1  0 0 1 0 1 0 1  0 

1 0 1  0 1  0 0 1  0 0 1 0 1 0 1  0 

1 0 1  0 1  0 0 1  0 0 1 0 1 0 1  0 

Figure4. Sliding window technique over NAF 

 

Non-Sparse Signed Window Method 

This method is a window method proposed by Koyama and Tsuruoka (1993)over Non-Sparse Optimal 

Signed Binary representation (KTNS). The word optimal means that the Hamming Weight of the signed binary 

representation is the minimal one among other signed representations(Kong and Li, 2005). Moreover, the sparse 

output means that for any nonzero digit, its adjacent digit cannot be nonzero. It requires  2𝑤−1 − 1  

precomputed windows. They described their method for fixed points and unknown points. Their average length 

of zero runs in their representation was 1.42 compared to 1.29 for Morain and Olivos (1990). It was also 

mentioned byKong and Li (2005) that the average length of zero runs for KTNS recoding was 1.5.  

They mentioned that the optimal windows size depends on the bit-length of the EC key. For example, it 

is 5 for 511 bit-length. They proposed the transformation method, other than the “Morain and Olivos” and 

“Jedwab and Mitchell” methods (Morain and Olivos, 1990, Jedwab and Mitchell, 1989), which increases the 

average length of zero runs in the transformed key.The cost of EC multiplication of this method excluding the 

precomputations is  𝑛 − 𝑍’ [𝐷]  + (
𝑛

𝑤+𝑍’’
)[𝐴]where n is the length of kKTNS and 𝑍’’ is the average length of zero 

runs. The number of zeros on the left most side of the most significant window is denoted by 𝑍’.  

The properties of non-sparse optimal signed binary representationswere investigated by Kong and Li 

(2005). They also proposed a new Non-Sparse Signed Window Splitting Algorithm (KLNS). The experimental 

results of the NAF recoding method were better than the results for KLNS. At the end of their paper they 

concluded that the combination of wNAF and the fractional window method is more efficient than other 

methods such as binary, their proposed algorithm and KTNSmultiplication method. They had modified the 

number of precomputed windows for non-sparse signed window representation (KTNS method) from 2
w-1

−1 to 
5

6
∙ 2𝑤−1 − 1 +

 −1 𝑤

3
. The average zero-run length of their representation was 1.5 for 3 ≤ 𝑤 ≤ 8 . Their 

algorithm is a 2-pass algorithm, since the input is a NAF representation.The expected number of nonzero 

windows (Hamming Weight) is
𝑛

𝑧
, where 

𝑧 =  𝑤 +
4

3
+

 −1 𝑤

3.2𝑤−1 −  
1

2
 
𝑤−3

+  2 +  −1 𝑤 ∙  
1

2
 

𝑤

2
−

3

4
∙(1− −1 𝑤

 .  

 

Window Non Adjacent Form 

In window NAF (wNAF), exponent kis directly recoded to kwNAF rather than converting it to NAF and 

then applying the sliding window technique as in swNAF. The Hamming Weight of wNAFis
𝑛

𝑤+1
.It was proved 

by Muir and Stinson (2006)that wNAF has the least Hamming Weight of all the recoding methods. In addition, 

they proved that the number of digits of a window signed representation is at most greater than the length of 

binary representation by one digit.  

The wNAF of positive integer kis expressed as 𝑘 =  𝑘𝑖2
𝑖𝑛−1

𝑖=0  for w ≥ 2 where each nonzero digit is 

followed by at least 𝑤 − 1 consecutive zeros. 𝑘𝑛−1 ≠ 0, and ki is either zero or odd,  𝑘𝑖 < 2𝑤−1.Some basic 

facts about wNAF have been proved by Muir and Stinson (2006) such as: every integer can be represented by at 

most one wNAF,every integer has a wNAF, and  log2 𝑘 + 1 ≤  log2 𝑘𝑤𝑁𝐴𝐹  .

 

Figure shows some representations of 𝑘 =  1122334455 10  in wNAF. 
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Figure 5.wNAFexample 

 

Algorithm 9is used to recode k to its wNAF representation. The expression 𝑘𝑚𝑜𝑑𝑠2𝑤 denotes the 

integer u satisfying 𝑢 ≡ 𝑘(𝑚𝑜𝑑2𝑤 ) and −2𝑤−1 ≤ 𝑢 < 2𝑤−1 
Algorithm 9: wNAFrecoding 

Input  : 𝑘 ∈ 𝑍, 𝑤 ≥ 1 

Output  : 𝑘𝑤𝑁𝐴𝐹 = (𝑘𝑙−1 , 𝑘𝑖−2 , … , 𝑘1, 𝑘0) 
 

𝑖 ← 0  
While𝑘 ≥ 1 

 

If (𝑘is odd)𝑘𝑖 ← 𝑘𝑚𝑜𝑑𝑠2𝑤 : 𝑘 ← 𝑘 − 𝑘𝑖

Else𝑘𝑖 ← 0 
𝑘 ← 𝑘/2 ∶  𝑖 ← 𝑖 + 1

  

Return (𝑘𝑤𝑁𝐴𝐹 ) 

 

Algorithm 10represents the wNAF EC multiplication method. The average length of zero runs for 

wNAF is 2 while it is 1 for binary representation and 
4

3
+

 −1 𝑤+1

3.2𝑤−2  for NAF representation(Kong and Li, 2005). 

The expected running time ofAlgorithm 10including the precomputations is  [𝐷] +  2𝑤−2 − 1 [𝐴] +

 
𝑛

𝑤+1
[𝐴] + 𝑛[𝐷] (Darrel et al., 2003). The number of precomputed points (windows) that should be stored is 

2w−2 , where the set of precmoputed points is 𝐵 = {±1𝑃, ±3𝑃, … ,  ±2𝑤−1 − 1 𝑃}. The recoding method is 

implemented right-to-left while the EC multiplication method is implemented in the reverse direction(Solinas, 

2000). Thus the recoded exponent should be stored which consumes memory in limited devices. 

 
Algorithm 10:wNAFpoint multiplication 

Input   : 𝑤, 𝑘𝑤𝑁𝐴𝐹 , 𝑃 ∈ 𝐸(𝐹𝑝) 

Ooutput : 𝑘𝑃 

 

Precompute the points 1𝑃, 3𝑃, … ,  2𝑤−1 − 1 𝑃 
 

𝑄 ← ∞ 

For𝑖(𝑙 − 1 to 0) 

 

𝑄 ← 2𝑄

𝑄 ←  
𝑄 ← 𝑄 + 𝑃𝑘𝑖

, 𝑘𝑖 > 0

𝑄 ← 𝑄 − 𝑃𝑘𝑖
, 𝑘𝑖 < 0 

 
  

Return (𝑄) 

 

In Algorithm 10, the window is moving left-to-right, skipping consecutive zero entries after a nonzero 

digit kiis processed (Darrel et al., 2003). It is also proved thatwNAF method is asymptotically better than 

swNAF for w>3(Blake et al., 1999).The optimal window w for k-bit integers varies from 3 to 6 for k-160 to k-

600 (Kong and Li, 2005). 

 

Fractional Window Method 

The fractional window method (FW), which is provided in Algorithm 11,is a right-to-left recoding 

method that was introduced and examined by (Möller, 2002 Seoul, Korea,, Möller, 2004). They tried to invest 

the available memory as much as possible by storing the maximum number of precomputed points in the 

available memory. For example, the wNAF method requires four points to be stored for w=4. If the available 

memory is sufficient to store up to six elements, then there will be memory waste.  

The digit set of the precomputed points for the FW method is 𝐵 = {±1, ±3, … , ±(2𝑤−1 + 𝑚)}, where m is an 

odd integer such that 1 ≤ 𝑚 ≤ 2𝑤−1 − 3 for 𝑤 ≥ 2. The average density of nonzero digits of the FW method is 
1

𝑤+1+
𝑚 +1

2𝑤−1

. The number of precomputed windows is 2𝑤−2 +
𝑚+1

2
for 𝑤 ≥ 3.For Algorithm 11,the size of the 

window is reduced since the original algorithm works for a window size of w + 1. Therefore, to unify all 

algorithms to use the same value of w in this study, the step  

𝑤 ← 𝑤 − 1is added to the algorithm. 

 
Algorithm 11: Fractional window recoding 

Input  : 𝑤, 𝑚: 1 ≤ 𝑚 ≤ 2𝑤 − 3, 𝑘 
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Output  : 𝑘𝑤𝐹𝑟𝑎𝑐 = 𝑏𝑖−1 , 𝑏𝑖−2 , … , 𝑏0 
 

𝑤 ← 𝑤 − 1 

𝑑 ← 𝐿𝑆𝐵𝑤+2 𝑘  

𝑐 ←  
𝑘

2𝑤+2
  

𝑖 ← 0 

While (𝑑 ≠ 0 ∨ 𝑐 ≠ 0) 

 
 
 
 
 
 

 
 
 
 
 
𝑏 ←  

0, even(𝑑)
𝑑, 0 < 𝑑 ≤ 2𝑤 + 𝑚

𝑑 − 2𝑤+1 , 2𝑤 + 𝑚 < 𝑑 < 3 ⋅ 2𝑤 − 𝑚
𝑑 − 2𝑤+2 , 3 ⋅ 2𝑤 − 𝑚 ≤ 𝑑 < 2𝑤+2

 

𝑏𝑖 ← 𝑏
𝑖 ← 𝑖 + 1
𝑑 ← 𝑑 − 𝑏

𝑑 ← 𝐿𝑆𝐵 𝑐 ⋅ 2𝑤+1 +
𝑑

2

𝑐 ←
𝑐

2

  

 

Return (𝑘𝑤𝐹𝑟𝑎𝑐 ) 

 

In order to apply the fractional window method, we first convert exponent k to its fractional window 

format using Algorithm 11, then apply Algorithm 12 to compute the EC multiplication kP. Their method is 

faster than window NAF by 2.3% with w=3 and m=1 compared to wNAFof 𝑤 = 3, assuming that β = 1, i.e. 

squarings and multiplications have the same execution time. If m is increased, then the number of precomputed 

elements will be increased to the maximum. On the other hand, the average density will be decreased by 
2𝑤−1−2

2𝑤−1 .This quantity is ≈ 1 whenever w increases, so the average density will be ≈
1

w+2
 which is less than 

1

w+1
 

for wNAF. They extended their work by examining left-to-right and right-to-left fractional window 

method(Möller, 2004). They proved that both representations have the minimal number of nonzero digits among 

other signed representations. 

 
Algorithm 12:Fractional window point multiplication 

Input  : 𝑤, 𝑘𝑤𝐹𝑟𝑎𝑐 , 𝑚, 𝑃 ∈ 𝐸 𝐹𝑝  

Output  : 𝑘𝑃 
 

Precompute the points 1𝑃, 3𝑃, … ,  2𝑤−1 + 𝑚 𝑃 

𝑄 ← ∞ 

For𝑖( 𝑙 − 1 𝑡𝑜 0 ) 

 

𝑄 ← 2𝑄

𝑄 ←  
𝑄 + 𝑃𝑘𝑖

, 𝑘𝑖 > 0

𝑄 − 𝑃𝑘𝑖
, 𝑘𝑖 < 0

 
  

 

Return (𝑄) 

 

Mutual Opposite Form Window Method 

A bidirectional recoding method, called MOF (mutual opposite form) was proposed by Okeya et al. 

(2004). Their recoding method is more complex than the wNAF method. Window MOF requires two 

conversions; the first conversion is from unsigned binary representation of exponent k to its MOF equivalent, 

then MOF is converted to its window MOF (wMOF) equivalent.  Each positive integer has a unique wMOF 

representation that has the same length or is longer by one bit.The Hamming Weight of wMOFis
𝑛

𝑤+1
. However, 

the minimality property was not proved(Muir and Stinson, 2005). Any nonzero consecutive digits are opposite 

as it can be seen from the example: 01001 010001 0011 0. Exponent k is converted to MOF by using the bitwise 

subtraction,𝑘𝑀𝑂𝐹 = 2𝑘 ⊖ 𝑘.In the recoding phase, only next 𝑤 + 1 bits are required in each step. 

 

Avanzi Method 

A left-to-right recoding method with the same weight as wNAF for 𝑤 > 2 had been proposed by 

Avanzi (2005) and Muir and Stinson (2005). The recoding methods have the minimality property as well as 

wNAF. The minimality property means that the representation has the minimal number of nonzero digits. They 

proved that their representation has the minimal weight and introduced a left-to-right representation with the 

same digit set as the methods of Cohen et al. (1998) and Solinas (1997). Their algorithm scans input left-to-right 

then outputs a recoded key with the same Hamming Weight as the wNAF. 

 

Khabbazian Method 
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An integer representation that has the same average weight as wNAF was introduced by Khabbazian et 

al. (2005). Their representation can be generated from left-to-right and is called KH. Hence, there is no need for 

the algorithm to store the recoded exponent whichin turns saves memory. They also introduced a threshold 

integerm, which is the number of points that will be stored in the pre-computation stage. They extended the digit 

set 𝐷𝑤 = {∓1, ∓3, … , ∓(2𝑤−1 − 1)} to include more windows 𝐷𝑤 = {∓1, ∓3, … , ∓(2𝑚 − 1)}. For example, if 

we have seven memory locations that can hold seven values, the other window methods will use four locations 

since the suitable window size will be four.Thus, three locations are wasted, whereas this method takes 

advantage of all available memory locations.Thus, this method utilizes the available memory in a more efficient 

way than the other window methods and as well as the FW method. Algorithm 13is used to produce the 

proposed representation. It is a two-pass algorithm; the exponent is converted first to a signed binary 

representation then to the window representation. 

 
Algorithm 13: Left-to-right Khabbazianrecoding 

Input  : 𝑚, 𝑘 =  𝑏𝑖2
𝑖

𝑖≤𝑖<𝑙 , 𝑏𝑖 ∈  0,1  
Output  : a sequence of pairs  𝑘𝑖 , 𝑒𝑖  𝑖=0

𝑑−1such that 0 ≤ 𝑒𝑖 ≤ 𝑙, 
  𝑘𝑖 ∈  ±1, ±3, … , ± 2𝑚 − 1  , 𝑎𝑛𝑑𝑘 =  𝑘𝑖2

𝑒𝑖
0≤𝑖<𝑑  

 

Suppose that𝑏𝑙 = 𝑏−1 = 0 and let𝑏𝑖
′ = 𝑏𝑖−1 − 𝑏𝑖𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑙,so we have 

𝑏𝑖
′ ∈  0,1, −1 and 𝑏𝑙

′ , 𝑏𝑙−1
′ , … , 𝑏0

′  =  𝑏𝑙−1 , 𝑏𝑙−2 , … , 𝑏0 2 

𝑖 ← 𝑙, 𝑗 ← 0 

While𝑖 ≥ 0 

 
 
 

 
 If(𝑏𝑖

′ = 0) 𝑖 ← 𝑖 − 1

Else
Let𝑡  min int such that  𝑏𝑖

′ ,𝑏𝑖−1
′ , … , 𝑏𝑡

′  2  is an odd int less than 2𝑚

𝑘𝑗 ←  𝑏𝑖
′ , 𝑏𝑖−1

′ , … , 𝑏𝑡
′  2 , 𝑒𝑗 ← 𝑡, 𝑖 ← 𝑡 − 1, 𝑗 ← 𝑗 + 1

  

 

Return { 𝑘0 ,𝑒0 ,  𝑘1 ,𝑒1 , … ,  𝑘𝑑−1 , 𝑒𝑑−1 } 

 

Muir Method 

A new representation that has the same digit set as the wNAF for 𝑤 > 2 was proposed by Muir and 

Stinson (2005).The algorithmcan be deduced in both directions.In this thesis, this method will be referred to as 

the MU method.Muir and Stinson also proved the minimality property for wNAF(Avanzi, 2005, Muir and 

Stinson, 2006).In addition, they showed that any Dw representation of an integer, with the minimality property, 

is at most one bit longer than its binary representation(Muir and Stinson, 2006). One of the major drawbacks of 

this method is in determining the closest element to k in the first step inside the while loop of the algorithm. The 

authors explained a long procedure to do this. But in the third section of their paper they explained another 

procedure for deducing the key, which depends on a lookup table.  

 
Algorithm 14: Left-to-right Muir recoding 

Input   : 𝑤 ≥ 2, 𝑘 

Output  :𝑘′ = 𝑏𝑙 , 𝑏𝑙−1 , … , 𝑏0 , 𝑏𝑖 ∈ 𝐷𝑤 =  0, ±1, ±3, … , 2𝑤−1 − 1  
Remark : 𝐶𝑤 =  𝑑 ⋅ 2𝑖 : 𝑑 ∈ 𝐷𝑤 {0 , 𝑖 ≥ 0} 
 

𝑘′ ← 𝜖 𝜖denotes empty string  
While𝑘 ≠ 0 

 

𝑐 ← an element𝑖𝑛𝐶𝑤 closest to𝑘

append digits to𝑘′according to the value of𝑐
𝑘 ← 𝑘 − 𝑐

  

 

Return (𝑘′) 

 

 

2.2.1 ZOT Method  

Two positional numbering systems; redundant big-digit numbering system BDNS and non-redundant 

ZOT-binary numbering system were proposed by (Jahani, 2009). The hamming weight of ZOT-binary 

numbering system is 21.8% which is 
𝑚

4.6
  compared to 

𝑚

2
 for binary and 

𝑚

3
 for NAF(Jahani, 2009).Any positive 

binary integer kcan be converted to ZOT-binary representationright-to-left or left-to-right. The length of an 

integer k is greater than or equal to the length of its ZOT-binary representation; i.e. log2 𝑘𝑍𝑂𝑇 ≤ log2 𝑘2.  

The ZOT-binary numbering systemhad been slightly modifiedbyAlmimi et al. (2015)so that it can be used in 

elliptic curve multiplication.Given 𝑘2 =  𝑘𝑛−1, 𝑘𝑙−2, … , 𝑘1, 𝑘0 2 , 𝑘𝑍𝑂𝑇 =  𝑏 𝑚−1, 𝑏 𝑚−2, … , 𝑏 1, 𝑏 0 is called the 

ZOT form of the integer k, where 𝑏 𝑖 = (𝑡𝑖 , 𝑔𝑖), 𝑔𝑖  is the bit-length of the big-digit, and the type of big-digit 

𝑡𝑖 ∈  0,1,2 . The big-digits, big-zero (Zn), big-one (On) and big-two (Tn) are denoted by 0,1, and 2 consequently, 

and n represents the bit-length of each big-digit. Algorithm 15is the pseudo code for the previous procedure. 
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Algorithm 15ZOT recoding method 

𝐼𝑛𝑝𝑢𝑡𝑘 =  𝑘𝑖2
𝑖 , 𝑘𝑖 ∈ {0,1}

𝑛−1

𝑖=0

 

𝑂𝑢𝑡𝑝𝑢𝑡𝑘𝑍𝑂𝑇 =  𝑏 𝑚−1 , 𝑏 𝑚−2 , … , 𝑏 1, 𝑏 0  

𝑒 = 0  
𝑤𝑖𝑙𝑒𝑖 < 𝑛 

𝑖𝑓𝑡𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑘𝑖 , … , 𝑘𝑗  =  𝑏𝑖𝑔𝑂𝑛𝑒, 𝑤𝑒𝑟𝑒𝑗 ≥ 𝑖 

𝑘𝑍𝑂𝑇 𝑒 . 𝑡 = 1  
𝑒𝑙𝑠𝑒𝑖𝑓𝑡𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑏𝑖𝑔𝑇𝑤𝑜 

𝑘𝑍𝑂𝑇 𝑒 . 𝑡 = 2  
𝑒𝑙𝑠𝑒𝑖𝑓𝑡𝑒𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑏𝑖𝑔𝑍𝑒𝑟𝑜 

𝑘𝑍𝑂𝑇 𝑒 . 𝑡 = 0  
𝑘𝑍𝑂𝑇 𝑒 . 𝑔 = 𝑘𝑍𝑂𝑇  𝑒 − 1 . 𝑔 

𝑘𝑍𝑂𝑇 𝑒 . 𝑙 = 𝑗 − 𝑖 + 1 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑒, 𝑖  

𝑟𝑒𝑡𝑢𝑟𝑛𝑘𝑍𝑂𝑇  

 

Single scalar multiplication using ZOT recoding method (ZOTEC) 

Algorithm 16isbasic version of the single scalar multiplication method that is based on ZOT recoding 

methodto calculate the quantity kZOTP, where 𝑃 ∈ 𝐸(𝐹𝑝)(Almimi et al., 2015). 

 
Algorithm 16: Scalar multiplication using ZOT recoding (ZOTEC) 

𝐼𝑛𝑝𝑢𝑡:      𝐺, 𝑘𝑍𝑂𝑇 =  𝑏 𝑚−1 , 𝑏 𝑚−2 , … , 𝑏 1 , 𝑏 0  

𝑂𝑢𝑡𝑝𝑢𝑡:   𝑄 =  𝑘𝑍𝑂𝑇𝐺 

𝑄 =  ∞ 
𝐹𝑜𝑟𝑖(𝑚 − 1 𝑡𝑜 0) 

𝐼𝑓𝑡𝑖 ≠ 𝑧𝑒𝑟𝑜𝑡𝑒𝑛 

𝑄 =  𝑄 + 𝑏 𝑖(𝐺) 
𝐸𝑙𝑠𝑒 

𝑄 =  2𝑔𝑖(𝑄) 
𝑟𝑒𝑡𝑢𝑟𝑛𝑄 

 

Window method of ZOT 

Usually, a radix-2 representation of k is called window representation if 𝑤 ≥  2 and the window values 

are in the digit set 𝐷𝑤 = {∓1, ∓3, … , ∓2𝑤 − 1}. A new window-based single scalar multiplication method over 

prime fields and using affine coordinates is proposed(Mimi et al., 2013).Let 𝑘2 =  𝑎𝑖2
𝑖 , 𝑎𝑖 ∈ {0,1}𝑛−1

𝑖=0  be the 

binary representation of an integer k. Then 𝑘𝑤 =  𝑏𝑖2
𝑖𝑙

𝑖=0 , 𝑏𝑖 ∈ {0} ∪ 𝐷𝑤 , 𝐷𝑤 = {∓1, ∓3, … , ∓ 2𝑤−1 − 1 }, is 

the window NAF representation of k. 
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Algorithm 17: Window Big-Digit Recoding 

Input: 𝑘2 =  𝑎𝑖2
𝑖 , 𝑎𝑖 ∈ {0,1}𝑛−1

𝑖=0  

Output: 𝑘𝑤𝐵𝐷 =  𝑏 𝑖 , 𝑏 𝑖 =  𝑡𝑖 , 𝑙𝑖 , 𝑡𝑖 ∈  0,1,2 , 𝑙𝑖 ≤ 𝑤𝑓𝑜𝑟𝑡𝑖 ≠ 0  𝑚−1
𝑖=0  

Remark: 𝜖 denotes empty string 
 

𝑒 ← 0  
while (𝑖 < 𝑛) 

 
 
 
 
 
 
 

 
 
 
 
 
 
𝑖 ← 𝑗

find the largest j ≤ w such that𝑂 ←  𝑎𝑖 , … , 𝑎𝑖+𝑗   , 𝑎𝑢 = 1, ∀𝑖 ≤ 𝑢 ≤ 𝑖 + 𝑗

𝑖𝑓 𝑂 ≠ 𝜖 𝑘𝑤𝐵𝐷  𝑒 . 𝑡 = 1

find the largest j ≤ w such that𝑇 ←  𝑎𝑖 , … , 𝑎𝑖+𝑗   , 𝑎𝑢 ∗ 𝑎𝑢+1 = 0, ∀𝑖 ≤ 𝑢 < 𝑖 + 𝑗

𝑖𝑓 𝑇 ≠ 𝜖 𝑘𝑤𝐵𝐷  𝑒 . 𝑡 = 2  

find the largest j such that𝑍 ←  𝑎𝑖 , … , 𝑎𝑖+𝑗   , 𝑎𝑢 = 0, ∀𝑖 ≤ 𝑢 ≤ 𝑖 + 𝑗

𝑖𝑓 𝑍 ≠ 𝜖 

 

𝑘𝐵𝐷 𝑒 . 𝑡 ← 0

𝑘𝐵𝐷 𝑒 . 𝑙 ← 𝑗 + 1

𝑘𝑤𝐵𝐷  𝑒 . 𝑙 ← 𝑘𝑤𝐵𝐷  𝑒 . 𝑙 + 𝑘𝑤𝐵𝐷  𝑒 − 1 . 𝑙

 

Increment 𝑒, 𝑖 

  

 

Return 𝑘𝑤𝐵𝐷  

Algorithm 17is used to convert a key into its wBDrepresentation𝑘𝑤𝐵𝐷 =  𝑏 𝑖 , 𝑏 𝑖 =  𝑡𝑖 , 𝑙𝑖 , 𝑡𝑖 ∈0≤𝑖<𝑚

 0,1,2 , 𝑙𝑖 ≤ 𝑤 for𝑡𝑖 ≠ 0 , 𝑙𝑖 ∈ 𝑁+. The length of big-zero is equal to the big-zero digit length in addition to the 

previous big-digit length. This consideration helps in improving the window method and repeating doublings. 

𝑂𝑙 ⟻   1 1 …  1        
𝑙

  

𝑇𝑙 ⟻   1 0 1 0 …  1            
𝑙

  

𝑍𝑙 ⟻   0 0 …  0        
𝑙

  

 

 

1 
𝑂1

0000   
𝑍4

101 
𝑇3

000 
𝑍3

11111   
𝑂5               

𝑂1𝑍7𝑇3𝑍8𝑂5

 

Figure 6. Big-digits Processing and Recognition 

 

The conversion from binary to window BD representation is described in Figure . A contiguous 

sequence of nonzero digits is converted to either big-one or big-two, while the contiguous sequence of zero 

digits is converted to big-zero. The hamming weight of ZOT-binary number system is 
𝑛

4.6
  compared to 

𝑛

2
 for 

binary , 
𝑛

3
 for NAF and 

𝑛

𝑤+1
 for wNAF (Jahani, 2009), where n is the bit-length of k. The wBD multiplication 

method is provided in Algorithm 18. 

 
Algorithm 18: Window BD Single Scalar EC  Point Multiplication 

Input: 𝐺 ∈ 𝐸 𝐹𝑝 , 𝑤 ≥ 2, 𝑘𝑤𝐵𝐷 =  𝑏 𝑖 ,𝑏 𝑖 =  𝑡𝑖 , 𝑙𝑖 , 𝑡𝑖 ∈  0,1,2 0≤𝑖<𝑛 , 𝑙𝑖 ≤ 𝑤 

Output: 𝑄 =  𝑘𝑤𝐵𝐷𝐺 
 

Precompute the points: 

𝐷𝑤 =  𝑥: 𝑥 = 2𝑖 − 1, 1 ≤ 𝑖 ≤ 𝑤 ∪ {𝑦: 𝑦 =
1

3
 2𝑖+1 − 1 , 3 ≤ 𝑜𝑑𝑑(𝑖) ≤ 𝑤} 

 

𝑄 ← ∞ 
𝐹𝑜𝑟𝑖(𝑛 − 1 𝑡𝑜 0) 

𝑄 ←  
𝑄 + 𝑏 𝑖(𝐺), 𝑡𝑖 ≠ 0

2𝑔𝑖(𝑄), 𝑡𝑖 = 0
  

 

Return (𝑄) 

 

The average length of zero runs in binary, ZOT-binary, NAF, or wNAFrecoded keys is computed using 

the formula with a key length of 𝑛 = log2 𝑘: 

𝑍′ 𝑘 =
1

𝐶
 1 −  𝑘𝑖  ,   𝐶 =  𝑧 𝑖 ,

𝑛−1

𝑖=1

𝑛−1

𝑖=0

 

𝑧 𝑖 =  
1, 𝑏𝑖 ≠ 0 , 𝑏𝑖−1 = 0
0, 𝑏𝑖 = 0

  

Processing direction 
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. 

Whereas average length of zero runs for BD recoded keys is computed using the following formula: 

𝑍′ 𝑘 =
 𝑙𝑖𝑧(𝑖)𝑛−1

𝑖=0

 𝑧(𝑖)𝑛−1
𝑖=0

, 𝑧 𝑖 =  
1, 𝑡𝑖 = 0
0, 𝑡𝑖 ≠ 0

  

The set of precomputed windows is 𝐷𝑤 =  𝑥: 𝑥 = 2𝑖 − 1, 1 ≤ 𝑖 ≤ 𝑤 ∪ {𝑦: 𝑦 =
1

3
 2𝑖+1 − 1 , 3 ≤

odd(𝑖) ≤ 𝑤}. Whereas the number of precomputed points are  𝑤 +  
𝑤−1

2
  . Since the BD is a bidirectional 

recoding method, the memory required to store the recoded exponent is w whenever left-to-right method used. 

The cost of wBD multiplication method is computed using the formula n 𝐷 +
𝑛

𝑤 𝑘𝑤𝐵𝐷  
 𝐴 , 𝑛 = log2 𝑘. Finally, 

only one pass is required to transform the exponent k from its binary format to its wBD formant. 

Table 2.lists window methods and the required memory for storing the exponent k in addition to the recoding 

direction and the number of passes required by an algorithm to convert the exponent k to its new format. 

Bidirectional methods in addition to left-to-right methods require less memory to store the recoded exponent 

than right-to-left methods. Number of passes means that the conversion requires two sub-conversions for the 

recoding process. For example if method A converts k to singed k’ next it converts singed k’ to window singed 

k’’ then this method requires two passes. As it can be seen from the table, the conversion of the exponent k from 

its binary representation to its wBD representation requires one pass which is considered one of the advantages 

of wBD method. Moreover, it is a bidirectional method which also does not store the whole recoded key and can 

be computed in any direction depending on the available amount of memory. 

Table 2. Window Methods Summary 
Method Year Reference Required memory Recoding direction n-Pass 

m-ary 1939 (Blake et al., 1999) 𝑂(𝑤) BI 1 

swNAF NA (Darrel et al., 2003) 𝑂(𝑛) RTL 1 

KTNS 1993 (Koyama and Tsuruoka, 1993) 𝑂(𝑛) RTL 2 

wNAF 1997 (Solinas, 1997) 𝑂(𝑛) RTL 1 

wMOF 2004 (Okeya et al., 2004) 𝑂(𝑤) BI 2 

FW 2002 (Möller, 2002 Seoul, Korea,), (Möller, 2004) 𝑂(𝑛) RTL 1 

KLNS 2005 (Kong and Li, 2005) 𝑂(𝑛) RTL 2 

KH 2005 (Khabbazian et al., 2005) 𝑂(𝑤) LTR 2 

MU 2005 (Muir and Stinson, 2005) 𝑂(𝑤) LTR 1 

wBD 2012 (Mimi et al., 2013) 𝑂(𝑤) BI 1 

 

The mathematical representation of kwBD in addition to other window methods is depictedin 

Table 3. 

 

Table 3. Mathematical Key Representation for Some Window Methods 
Method Representation 

m-ary 

𝑘𝑚𝑎𝑟𝑦 =  𝑘𝑖𝑚
𝑖

𝑙−1

𝑖=0

, 𝑚 = 2𝑤 , 𝑘𝑖 < 2𝑤 , 𝑙 =  
 log2 𝑘 

𝑤
  

swNAF 

𝑘𝑠𝑤𝑁𝐴𝐹 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖 𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  < 2𝑤−1 , 𝑘𝑙−1 ≠ 0,  log2 𝑘 ≤ 𝑙 ≤  log2 𝑘 + 1 

KTNS 

𝑘𝐾𝑇𝑁𝑆 =  𝑘𝑖2
𝑖

𝑙

𝑖=0

, 𝑘𝑖 𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  ≤ 2𝑤 − 3, 𝑙 ≤  log2 𝑘 + 1 

wNAF 

𝑘𝑤𝑁𝐴𝐹 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  < 2𝑤−1 , 𝑘𝑙−1 ≠ 0, 𝑙 ≤  log2 𝑘 + 1 

wMOF 

𝑘𝑤𝑀𝑂𝐹 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  < 2𝑤−1 , 𝑙 ≤  log2 𝑘 + 1 

FW 

𝑘𝐹𝑊 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  ≤ 2𝑤 − 3, 𝑙 ≤  log2 𝑘 + 1 

KLNS 

𝑘𝐾𝐿𝑁𝑆 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  ≤
5

6
∙ 2𝑤 −

1

3
, 𝑙 ≤  log2 𝑘 + 1 

KH 

𝑘𝐾𝐻 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  ≤  2𝑚 − 1 , 𝑙 ≤  log2 𝑘 + 1, 

where𝑚 ≤ 𝐶, and C is the maximum number of points that can be stored 
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MU 

𝑘𝑀𝑈 =  𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝑠𝑜𝑑𝑑,  𝑘𝑖  < 2𝑤−1 , 𝑙 ≤  log2 𝑘 + 1 

wBD 

𝑘𝑤𝐵𝐷 =  𝑏 𝑖 , 𝑏 𝑖 =  𝑡𝑖 , 𝑙𝑖 , 𝑡𝑖 ∈  0,1,2 , 𝑙𝑖 ≤ 𝑤 for𝑡𝑖 ≠ 0

𝑖<𝑚

𝑖=0

, 𝑙𝑖 ∈ 𝑁+. 

 

IV. Discussion 
In the current chapter, the basic concepts of ECC are introduced. ECC is based on finite field 

arithmetic. Therefore, an introduction about finite field arithmetic is given. Basic and composite EC operations 

are explained. Affine coordinates, which are used in this study, are also explained in addition to other point 

representation systems. Single EC multiplication methods are classified into on-the-fly and pre-computation 

methods. Some of the on-the-fly single scalar EC multiplication methods have been introduced in the previous 

sections. Signed methods are more efficient than the Classical unsigned binary method. If memory is not 

limited, precomputationscan be done to speed up the EC methods. In the following sections, window-based 

methods that employ pre-computation in their techniqueswill be explored. 

Window-based methods were introduced in the previous sections. These techniques require memory to 

store the precomputed points (windows). These methods can be classified according to two criteria: flexibility of 

memory usage and direction. Left-to-right recoding is preferred since it can be merged with the EC 

multiplication method. Thus it is considered a memory efficient method since it requires only w digits to be 

known when applying the multiplication technique. The memory flexible methods are those which can limit 

their number of precomputed points according to the available memory such as FW and KH. 

 

Table IV.lists window methods and the required memory for storing exponent k in addition to the recoding 

direction and the number of passes required by an algorithm to convert exponent kinto its new format. 

Bidirectional methods in addition to left-to-right methods require less memory to store the recoded exponent 

than right-to-left methods. The number of passes means that the conversion requires two sub-conversions for the 

recoding process. For example, if method A converts k to signed k’ then converts signed k’ to window signed k’’ 

then this method requires two passes.  

 

Table IV. Summary of the window schemes 
Method Year Reference Required Memory Recoding Direction n-Pass 

m-ary 1939 (Blake et al., 1999) 𝑂(𝑤) BI 1 

swNAF NA (Darrel et al., 2003) 𝑂(𝑛) RTL 1 

KTNS 1993 (Koyama and Tsuruoka, 1993) 𝑂(𝑛) RTL 2 

wNAF 1997 (Solinas, 1997) 𝑂(𝑛) RTL 1 

wMOF 2004 (Okeya et al., 2004) 𝑂(𝑤) BI 2 

FW 2002 (Möller, 2002 Seoul, Korea,), (Möller, 2004) 𝑂(𝑛) RTL 1 

KLNS 2005 (Kong and Li, 2005) 𝑂(𝑛) RTL 2 

KH 2005 (Khabbazian et al., 2005) 𝑂(𝑤) LTR 2 

MU 2005 (Muir and Stinson, 2005) 𝑂(𝑤) LTR 1 

 

The ZOT-number system is a new number system proposed by Jahani and Samsudin (2013). It was 

introduced since the proposed methods rely on the Big-Digit recoding method which was originally based on the 

ZOT-number system. 

During this research, it is also found that 𝛼that was considered byEisenträger et al. (2003) was too 

small since they did not rely on Montgomery enhancement. Thus their improvement will be reduced if more 

reliable values for the previous ratio are considered. Although the field complexity of the Dahmen method is 

better than that for the Classical method for computing the points 3P, 5P and 7P, its time complexity is worse 

than that of theClassical method. Thus, the Dahmen method is not suitable for on-the-fly computation. It is only 

suitable when  precomputations are allowed according to the available memory. On the other hand, Ciet 

methods for computing 2𝑃 + 𝑄, 3𝑃 + 𝑄 are the best known methods.  

For the computation of direct doublings, the Sakai method will be used as the most efficient method to 

be implemented and merged with the proposed methods. The break-even point of the Sakai method is 

represented by 
3.6d+1.8

d−1
. The Hamming Weight of the complementary recoding method is not determined in the 

literature. Thus, it is experimentally found in this study. It was said by Chang et al. (2003) that if W k =
log 2 k

2
 

then the possible value of the complementary recoded key will be W kCR  =
log 2 k

4
. It is found that their 

assumption is not correct.  
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Let x =  an−1an−2 … a1a0 2 , where ai = 1 ∀ 0 ≤ i < 𝑛.Morain and Olivos (1990) observed that they 

could save one addition in EC computation of the form xP. It is easy to see that the exponent is represented as 

follows: x = 2n − 1.  Thus the exponent is replaced by  y − 1 , where y = 2n . Thus the quantity xP is 

calculated as follows: xP = yP– P. The cost of computing xP using the Classical method is  n − 1 [D]  +  (n −
1)[A]. On the other hand, the cost will be (n[D] + [A]) if the previous enhancement is employed. The relation 

between both costs is expressed by the inequality n D + [A] <  n − 1 ([D] + [A]). It is proved that a = 4 is the 

minimum length of nonzero sequence of bits that can take advantage of this enhancement. Therefore, the 

Morain method is suitable whenever the nonzero sequence has a length of 4 bits or more if basic EC operations 

are used. 
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