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Abstract: Kalman Filter is the most popular method for state estimation when the system is linear. State 

estimation is the typical issue in every part of engineering and science. But, for non linear systems, different 

extensions of Kalman Filter are used. Extended Kalman Filter is famous to discard the non linearity which uses 

First order Taylor series expansion. But for these estimation techniques, the tuning of process noise covariance 

and measurement noise covariance matrices is required. There are different optimization techniques used to 

tune the parameters of Extended Kalman Filter. In this paper, Particle Swarm Optimization has been proposed 

to tune the EKF parameters and then the simulations are implemented for permanent magnet synchronous 

motor. 
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I. Introduction 
For a Dynamic system, it is mandatory to estimate the state using a sequence of noisy measurements. 

Somewhat there is need of two models to analyze and make presumption about a dynamic system: First is, a 

system model, which express the evolution of the state with time and the second is the measurement model, 

which is related to the noisy measurements of the state [1].  There are various filters used to solve the issue of 

state estimation. These filters include the Kalman filter, Particle filter, Unscented Kalman Filter, Extended 

Kalman filter and also a Fokker-Planck equation based constant rate filter [2].  

Kalman Filter is used only when the system is linear, but almost all practical systems have non 

linearity. If the dynamic model is non linear, then the Extended Kalman filter is used to eliminate the non 

linearity [3]. Extended Kalman Filter is the extended form of Kalman Filter, which is based on linearization of 

first order Taylor series expansion. By using Gaussian random variable the state distribution has been 

approximated [4]. The other derivative of Kalman Filter, i.e. Unscented Kalman Filter (UKF) is also used when 

the system is non linear and it also gives better results than Extended Kalman Filter but it suffers from the 

problem of divergence. So, Extended Kalman filter is the famous state estimation technique because of its 

simplicity [5]. Extended Kalman Filter gives an approximation of the optimal estimate. But, it suffers from 

different problems like divergence, initialization and linearization error and covariance estimation [6]. 

Therefore, it is necessary to tune the filter parameters of the Extended Kalman Filter, i.e. process noise 

covariance (Q) and measurement noise (R) covariance matrices. 

Almost all the filters require the tuning process after the implementation. In Filter tuning process, the 

measurement noise and dynamic noise statistics are selected to get better performance [2].  There are different 

methods used to tune the measurement noise covariance (R) matrix and process noise covariance (Q) matrix. 

Earlier, an adaptive Kalman filtering approach is used to tune the measurement noise covariance matrix and 

process noise covariance matrix. Three different schemes of adaptation have been used by the Adaptive Kalman 

Filter. These include: measurement noise covariance matrix (R), process noise covariance matrix (Q) and the 

initial values of error covariance matrix (P) [7]. There are two adaptive methods used, i.e. multiple model 

adaptive estimation in which multiple Kalman filters runs parallel, and innovative adaptive estimation in which 

the Q and  R matrices are adapted by themselves [8]. But these methods have problem of lack of convergence, 

and large window requirement. 

  There are different optimization techniques used to tune the Q and R matrices of Extended Kalman 

Filter. In this paper Particle Swarm Optimization technique is used to tune the Extended Kalman Filter for non 

linear state estimation. Particle Swarm Optimization is a metamorphic technique which is influenced by the 

flocks of birds or schools of fishes [10]. Using fitness function the fitness of the particle is calculated.  

In Section 2, the Extended Kalman Filter is presented. Section 3 presents the particle swarm 

optimization Technique and section 4 describes the problem formulation and system design. Section 5 describes 

the methodology used. Section 6 shows the simulation results. At the end, conclusion is there.  

 

II. Extended Kalman Filter 
By considering the following equation, the non linear system model can be described as given in [9], 
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 ӽ𝑡 = 𝑓 ӽ𝑡−1 + 𝑤 𝑡−1 

 

ž𝑡 = 𝑕 ӽ𝑡 + 𝑣 𝑡  

 

(1) 

 

ӽ0 denotes initial state which is a random vector having mean 𝜇 0 = 𝐸[ӽ0] and covariance 𝑃 0 =
𝐸[(ӽ0 − 𝜇 0)(ӽ0 − 𝜇 0)𝑇]. 𝑣𝑡  represents the measurement noise and the random vector 𝑤 𝑡  taking the ambiguities 

in the model.  These both are uncorrelated with the initial state ӽ0. 

 

 𝐸 𝑤 𝑡 = 0,  𝐸 𝑤 𝑡𝑤 𝑡
𝑇 = 𝑄𝑇 ,  𝐸 𝑤 𝑡𝑤 𝑗

𝑇 = 0 for 𝑡 ≠ 𝑗, ,  𝐸 𝑤 𝑡ӽ0
𝑇 = 0 for all 𝑡 

 

𝐸 𝑣 𝑡 = 0,  𝐸 𝑣 𝑡𝑣 𝑡
𝑇 = 𝑅𝑇,  𝐸 𝑣 𝑡𝑣 𝑗

𝑇 = 0 for 𝑡 ≠ 𝑗, ,  𝐸 𝑣 𝑡ӽ0
𝑇 = 0 for all 𝑡 

 

(2) 

 

𝑣 𝑡  and 𝑤 𝑡  both are also uncorrelated, 

𝐸 𝑤 𝑡𝑣 𝑗
𝑇 = 0 for all 𝑡 and  𝑗 

The victorial functions 𝑓 .   and 𝑕 .   are pretended to be 𝐶1 functions i.e. the functions and its first 

derivatives are continuous on the given domain. 

Following are the dimension and description of the variables: 

ӽ𝑡   𝑛 × 1 is the  state vector, 𝑤 𝑡   𝑛 × 1 is the process noise vector,  ž𝑡   𝑚 × 1 is the observation vector, 

𝑣 𝑡  𝑚 × 1 is the measurement noise vector, 𝑓 .    𝑛 × 1 is the process non linear vector function, 𝑕 .    𝑚 ×
1 observation non linear vector function, 𝑄𝑡   𝑛 × 𝑛 is the process noise covariance matrix,  𝑅𝑡   𝑚 × 𝑚 is the 

measurement noise covariance matrix. 

By expanding the 𝑓 ӽ𝑡  and 𝑕 ӽ𝑡  using Taylor series, the forecasting and prediction steps are 

approximated. 

Initialization step: 

ӽ0
𝑎 = 𝜇 0 with error covariance 𝑃 0 

Data Forecasting Step: 

 ӽ𝑡
𝑓
≈ 𝑓 ӽ𝑡−1

𝑎   
 

𝑃 𝑡
𝑓

= 𝐽𝑓 ӽ𝑡−1
𝑎  𝑃 𝑡−1 𝐽𝑡

𝑇(ӽ𝑡−1
𝑎 ) + 𝑄𝑡−1 

 

(3) 

 

 

Data Assimilation Step: 

 ӽ𝑡
𝑎 ≈ ӽ𝑡

𝑓
+ 𝐾𝑡  𝑧𝑡 − 𝑕 ӽ𝑡

𝑓
   

 

𝐾𝑡 = 𝑃 𝑡
𝑓
𝐽𝑕
𝑇 ӽ𝑡

𝑓
  𝐽𝑕 ӽ𝑡

𝑓
 𝑃 𝑡

𝑓
𝐽𝑕
𝑇 ӽ𝑡

𝑓
 + 𝑅𝑡 

−1
 

 

𝑃 𝑡 =  𝐼 − 𝐾𝑡𝐽𝑕 ӽ𝑡
𝑓
  + 𝑃 𝑡

𝑓
 

 

 

 

(4) 

 

Where, 𝐾𝑡  is the Kalman Gain, 𝐽𝑕  is the jacobian of 𝑕 .   and  𝐽𝑓  is the jacobian of 𝑓 .  . 

 

III. Particle Swarm Optimization 
It is a metamorphic optimization technique which is inspired by mutual nature of flocking of birds and 

schooling of fishes. In PSO, “particle” is somewhere in the search space and fitness value of all the particles 

should be calculated using the fitness function, and also velocity should be calculated, which direct the flying of 

the particles. By achieving the current optimum particles, the particles fly through the problem space [10]. 

There are always two states in which the particle is illustrated and that are denoted as  𝑦𝑖  as position 

and ύ𝑖  as velocity of the 𝑖𝑡𝑕  particle. In each iteration, the states of every 𝑖𝑡𝑕  particle are renewed using 

following equation, 

 

 ύ𝑖 ŧ + 𝑑ŧ = ẅ × ύ𝑖 ŧ + 𝑐1 × 𝑟1 ×  𝑝𝑏𝑒𝑠𝑡𝑖 ŧ − 𝑦𝑖 ŧ  + 𝑐2 × 𝑟2 𝑔𝑏𝑒𝑠𝑡 ŧ − 𝑦𝑖 ŧ   

 

𝑦𝑖 ŧ + 𝑑ŧ = 𝑦𝑖 ŧ + ύ𝑖 ŧ 𝑑ŧ  
 

 

(5) 

 

where, 𝑝𝑏𝑒𝑠𝑡𝑖   indicates the best position which is attained by 𝑖𝑡𝑕  till present, 𝑔𝑏𝑒𝑠𝑡 shows the best 

position which is attained by any particle untill present, 𝑐1 and 𝑐2 are acceleration vectors, 𝑟1 and 𝑟2 are random 

vectors consistently distributed between „0‟ and „1‟, ẅ represents the inertial weight. 
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IV. Problem Formulation and Experimental Design 
For the indirect measurement of rotor‟s speed and pole position, the permanent magnet synchronous 

motor is used [11]. To accurately evaluate the rotor speed and rotor position, EKF is implemented. The 

problems related to the estimation of rotor speed and positions via electromechanical devices are overcome 

using indirect measurement through voltages and currents of the phases. Permanent magnet is used to mount the 

rotor. The given equations defined the process model dynamics: 

 

 
ɕ 𝑎 =

−Я

𝐼
ɕ𝑎 +

ʂ𝛾

𝐼
sin 𝜃 +

(𝑣𝑎 + 𝑛1)

𝐼
 

ɕ 𝑏 =
−Я

𝐼
ɕ𝑏 −

ʂ𝛾

𝐼
cos 𝜃 +

(𝑣𝑏 + 𝑛2)

𝐼
 

ʂ𝑎 =
−3𝛾

2ℳ
ɕ𝑎 sin 𝜃 +

3𝛾

2ℳ
ɕ𝑏 cos 𝜃 −

𝐵ʂ

ℳ
+ 𝑛3 

𝜃 = ʂ  

 

 

 

 

 

 

(6) 

 

here, ɕ𝑎  and ɕ𝑏  are two phase currents, ʂ is rotor speed and 𝜃 is the position. Я is the per phase 

resistance and 𝐼 is the per phase inductance of the winding. 𝛾 is the flux constant, , 𝑣𝑎  and 𝑣𝑏denotes applied 

voltages across the winding, 𝐵 is the viscous damping. ℳ is the moment of inertia of the rotor. 𝑛1 and 𝑛2 are 

noise in the control voltages, 𝑛3is a load torque. For AWGN process, all noises are assumed to be zero mean 

band-limited. 

Extended Kalman Filter Model is simulated on MATLAB R2013 for input control voltages which is 

given by 𝑣𝑎 = sin ʂ𝑡and 𝑣𝑏 = cos ʂ𝑡, for which the output current ɕ𝑎  and ɕ𝑏  are calculated.  𝑢 =  ɕ𝑎ɕ𝑏ʂ 𝜃 𝑇 

represents the state vectors. 𝑧 =  ɕ𝑎ɕ𝑏  𝑇  represents the measurement matrix, 𝑟 = 𝑓(𝑟) is the process model 

and, 𝑧 = Ӊ𝑟  is the measurement model which are utilized. Ӊ is defined as [1 0 0 0; 0 1 0 0]. By executing 

Jacobian operator on 𝑓(𝑟), 𝐹 is computed by given equation 

 

 

𝐹 =
𝜕𝑓

𝜕𝑟

 
 
 
 
 
 −Я

𝐼 0 𝜆
𝐼 

𝜆ʂ
𝐼 

0 −Я
𝐼 

−𝜆
𝐼 

𝜆ʂ
𝐿 

−3𝜆
2𝐽 3𝜆

2𝐽 −𝐵
𝐽 

−3𝜆(ɕ𝑎 + ɕ𝑏)
2𝐽 

0 0 1 0  
 
 
 
 
 

 

 

 

 

 

 

(7) 

 

For very noisy environment, system is simulated and in phase current, the standard deviation of the 

control noise (𝜎𝑐0) is taken as 10, load torque noise (𝜎𝑇0) is 0.5 and measurement noise (𝜎𝑚0) taken as 500 for 

system simulation. The values of 𝑄 and 𝑅 are adjusted by varying the standard deviation of the measurement 

noise and process which are given as 

 

 

𝑄 =

 
 
 
 
  
𝜎𝑐

𝐼  
2

0 0 0

0  
𝜎𝑐

𝐼  
2

0 0

0 0 𝜎𝜏
2 0

0 0 0 0 
 
 
 
 

, 𝑅 =  
𝜎𝑚

2 0

0 𝜎𝑚
2  

 

 

 

 

(8) 

 

To improve the filter performance, there is a need to tune the 𝑄 and 𝑅 filter parameters. Therefore, the 

evolutionary techniques for optimization are used to tune the filter parameters. Thus, Particle Swarm 

Optimization technique is used to tune the filter parameters of the Extended Kalman filter. 

 

V. Methodology 
The Particle Swarm Optimization is proposed here to tune the filter parameters of the Extended 

Kalman Filter to improve the performance. For the values 𝜎𝑐  and 𝜎𝑚 , an opinion vector is formed and to 

minimize the given cost function, the filter is run 

 

 𝐽𝑐 =  𝜌   𝑒𝑟𝑟𝑜𝑟
2 + 𝜃    𝑒𝑟𝑟𝑜𝑟

2  

 

 

(9) 
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The above function gives a fitness value which is equal to the value of the cost function.  

The pseudo code for PSO based tuning of EKF is shown below: 

I. Initialize each particle 𝑢𝑖  for every dimension by distributing them randomly between (𝑈𝑚𝑖𝑛 , 𝑈𝑚𝑎𝑥 ). 

II. FOR it= 1 to 100. 

III. FOR i = 1 to 100. 

IV. Initializing the filter by appoint values Q and R which are find out by particles and then the EKF is 

run. 

V. Determine the  error value which corresponds to 𝑖𝑡𝑕  particle 

VI. IF error identifies at 𝑖𝑡𝑕  iteration < pbest at (𝑖 − 1)𝑡𝑕  iteration  

Update p-best by the particle 

 Store the fitness value as p-best_fitness 

 ELSE 

 Update p-best by previous p-best. 

VII. END 

VIII. Update g-best by the comparable p-best having minimum of p-best_fitness 

IX. Update particle velocity and position. 

X. IF maximum iteration condition or minimum error condition is attained 

XI. Break from loop 

XII. END 

 

XIII. Simulation Results 
By using hit and trail method, an approximate values of 𝜎𝑐  and 𝜎𝑚  are obtained so that the Kalman 

filter does not depend on the process and measurement model which results zero or infinite value of Kalman 

gain. A plot of the true and estimated values is shown in the Fig.1 for 𝜎𝑐0 = 𝜎𝑐  and 𝜎𝑚0 = 𝜎𝑚 . In the figure, it is 

shown that the estimated state does not match with the true state of the system.  

For PSO based Extended Kalman Filter tuning, the value of 𝜎𝑐  is uniformly distributed from 0.1 to 10 

and the value of 𝜎𝑚  is distributed from 500 to 10000. In this simulation, the number of particle vectors taken are 

100 and each particle should be allow to move in the search space and then updated in every iteration. The 

values of vector  ɕ1  ɕ2  is taken as [0.2 0.02] and the value of scalar 𝑛 is 0.9. 

 

 
Fig.1 Results for PSO based EKF tuning for these states; Current (ɕ𝑎), Current (ɕ𝑏),Speed, Position 

 

The values found by using PSO based EKF tuning are: 𝜎𝑐 = 4.6574, 𝜎𝑚 = 6140.6 and 𝑒 =0.0522. 

The mean square error value of particles is shown in figure 3 which is plotted for 100 iterations.  
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Fig.2 Error value for particles for PSO based EKF 

 

The standard deviation value of particle position is shown in figure 3 which is nearly 0.005. 

 
Fig.3 Standard deviation value for particles in PSO 

 

Figure 4 shows the convergence of particles which have their own velocity and which converge 

towards the global best position for food. From the figure 4, it is seen that the number of iterations taken by the 

particles to get converge are approximately 100. 
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Fig.4 convergence of particles 

 

IX. Conclusion 
In this paper tuning of Extended Kalman Filter parameters has been done using Particle Swarm 

Optimization. Particle Swarm Optimization provides better performance using tuning process model. Simple 

Extended Kalman Filter does not provide the satisfying results but after tuning it shows better results. 
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