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Abstract:Intelligent agents such as robots can form ad hoc networks and replace human being in many 

dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer 

simulator to simulate robot kinetics,unsupervised learning using Kohonen networks, as well as group 

intelligence when an ad hoc network is formed.Each robot is modeled using an object with a simple set of 

attributes and methods that define its internal states and possible actions it may take under certain 

circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The 

simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under 

scenarios with different complexities. The simulation results show that a group of robots could demonstrate 

highly collaborative behavior on a complex terrain. This study could potentiallyprovide a software simulation 

platform for testing individual and group capability of robotsbefore the design process and manufacturing of 

robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot 

design and building. 
Keywords:Robot Simulation,Mobile Ad Hoc Networks, Swarm Intelligence, Unsupervised Learning, Self-

Organizing Maps, Kohonen Networks. 

 

I. Introduction 
Industries have benefited drastically from the robotic work force, such as assisted surgical robots in the 

medical industry and assembly line robots in car factories. Robots have taken over the duties of dangerous and 

tedious jobs from workers, resulting in greater manufacturing precision and higher productivity. The discipline 

of robotics involves researches in many related fields such as dynamics, engineering, machine learning, 

computer vision, human-computer interaction, and neural networks.  

A robot is composed of a set of hardware components, such as motors, controllers, sensors, processing 

units, as well as software components that control its motion and reactions. One important aspect is robot 

motion. Many kinds of robots have to walk or run on some surfaces to finish tasks. Effective design of robot 

hardware and software components is critical for robot motion. Due to the complexity of the problem, models 

are used to focus on major factors as the first-degree approximation. Minor aspects can be added and addressed 

gradually. A group of robots can collaborate and form an ad hoc network [1-3]. The network can use machine 

learning techniques, learn from the environment, and act as a unit. This kind of networks has many potential 

applications, such as a wide-ranged disaster relief site, a large battle field, and the sea bottom terrain 

exploration. Each robot is equipped with a GPS system besides a computer system, which is fairly powerful 

these days, even for the economic ones. Sensors that detect temperature, humidity, air qualify, level of debris, 

elevation, and trace of lives can be equipped depending on specific application requirements.  

There are many commercially available robots that can be adapted to suit many scenarios. For example, 

the Baxter robot from Rethink Robotics comes with the direct programming access via a standard ROS API 

interface [4]. It comes with a Linux development workstation with sample programs for researchers to learn and 

use.The Baxter is an affordable humanoid robot platform with two seven-axis arms, integrated cameras, sonar, 

torque sensors, and accelerometers. It is entirely safe to operate around humans without the need for safety 

cages or other guarding equipment. With its precision and power Baxtor offers, it can serve as a good candidate 

with a few minor modifications and additions.  

A software robot model starts with basic components using the hierarchical modeling method. While 

current robots have various types and shapes, this project focuses on human-like robots, which means, the model 

starts with basic components such as upper and lower arms, upper and lower legs, a head, and a torso. Fig. 1 

showsa simple computer graphics model of the robot. 
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Figure 1.Computer Graphics Model of Robot and Robot Motion 

 
The modeling process starts with the above described model and adds kinetic dependencies of robotic 

components so they can be simulated in a software environment. This will help the design and building the 

hardware portion of the robot and provide an efficient way to conduct simulation for robot motion and 

dependencies among components. A second-generation graphics model includes more controls and 

environmental factors such as terrains, textures, and lights. A virtual floor is added to serve as a ground for the 

robots and objects. An appropriate number of polygons are used for every 3D object to balance the efficiency 

and visual effect of the implementation program.User interaction and control features are designed and 

implemented so a robot designer can use the simulator to try different options before the physical building the 

robot parts. In addition, the software simulation classes may be reused or adapted by the robot as the built-in 

software components. 

The rest of paper is organized as follows. Section II discusses related neural networks implemented in 

the simulation; Section III explains the prototyping and modeling methods of robots and robot ad hoc networks; 

Section IV covers simulation design and implementation techniques; Sections V demonstrates simulation results 

with analysis; Section VI concludes the paper and discusses possible future work.  

 
II.  Related Neural Networks 

Neural network techniques and machine learning algorithms can be incorporatedinto robots to help 

them learn how to learn to walk properly and adapt to certain surfaces, as well as to acquire possible tasks and 

set priorities for them. Other aspects of artificial intelligence such as pattern recognition algorithmscan be added 

as well. This project serves as a starting point of a sophisticated simulation platform of robotic motion, learning, 

pattern recognition, and other robotic features that improve collaboration of robots as a team for high 

productivity in certain environments.  

Machine learning algorithms are the major artificial intelligence components that are simulated in this 

project. There are two major kinds of machine learning algorithms - supervised learning and unsupervised 

learning. Supervised learning algorithms define desired outputs or patterns, use training data to train neural 

networks, and apply the trained networks in the real-life scenario. However, in an unknown domain such as a 

disaster site or the sea bottom, the terrain and tasks are unknown so it is impractical to use supervised learning. 

In this case robots have to explore the terrain, detect patterns and tasks, and come up with topographic maps by 

themselves. Unsupervised learning, in which the network learns without predefined patterns and forms their 

ownclassifications of features of the unknown domain. 

Quite a few unsupervised learning algorithms are fairly good candidates. One of them is based on 

competitive learning,in which the neurons compete for possible activation. The winning neuron activates; the 

neighboring neurons also adapts to some extents based on a statistical distribution, either a Gaussian or Poisson 

one. During the learning process, the neurons are forced to organize themselves according to environments and 

the network is thus called a Self-Organizing Map (SOM) [5-7]. In an ad hoc network, each neuron can be an 

intelligent agent such as a robot. 

The goal of an SOM in this study is to transform a high-dimensional data pattern into a two 

dimensional discrete map so it is easy to handle by the network. The transformation is performed in an orderly 

manner to obtain a topographic map. In this project, a specific kind of SOMscalled Kohonen Network is 

considered. Kohonen networks have a feed-forward structure with onetwo-dimensional discreet computational 

layer. Each neuron is connected to all the source nodes in the input layer. Fig.2 shows the structure of a typical 

Kohonen network. 
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Figure 2. Structure of a Typical Kohonen Network with a High-Dimensional Input Space and a Two-

Dimensional Output Space 

 

The goal of a Kohonen network is to map the high-dimensional terrain data to a low-dimensional 

spatially discrete topographic map. The Kohonen network algorithm defines a non-linear transformation and has 

the following procedures [8, 9]. 

1. Use vectors to represent weight components for neurons in the network. 

2. Initialize the vectors using random numbers in [0, 1]. 

3. Sample a random input vector from the input space. 

4. Find the output neuron which is closest to the sampled input vector. 

5. Update weights using a delta learning rule with a predefined learning rate. 

 

If the weights stop changing, the process converges and network is trained. 

If the predefined number of iterations passes, report non-convergence. 

Else repeat procedures 3 to 5.  

 

In the above algorithm a few components are critical. One of them is the evaluation method used in 

competition.An evaluation function has to be designed to rank the neurons in terms of the input vector and to 

find the winning neuron. Assume the vectors have n dimensions, an n-dimensional Euclidean distance between 

the input vector and the neuron weight vector can be used as the evaluation function as shown in (1). 

𝑓𝑗 𝐼  =  (𝐼𝑑 − 𝑤𝑗𝑑 )
2𝑛

𝑑=1     (1) 

 

𝐼 is the input vector. 𝑤𝑗𝑑 is the dth component of the jth neuron. A statistical distribution, usually the Gaussian 

distribution is used to select neighbor neurons to update. Therefore, the winning neuron and its neighbors update 

their weights to adapt to the input vector so they are forced to order themselves to adapt the input space. The 

learning rule is defined by (2). 

𝑤𝑗𝑑 = 𝑐 𝑡 𝑔 𝑡 (𝐼𝑑 − 𝑤𝑗𝑑 ) (2) 

 

𝑔 𝑡 is the normal distribution function centered at the winning neuron.c(t) is the learning rate function that is 

defined by (3) 

𝑐 𝑡 = 𝑐0𝑒
−

𝑡

𝑡𝑜      (3) 

 

𝑐0and𝑡0 are constants. 𝑐0is in the range of [0, 1] while 𝑡0 depends on the convergence time. For the convergence 

process, one of three scenarios could happen like other neural network training processes.  

1. The weights stop changing and the training process converges with a genuine representation of the input 

space. 

2. The weights stop changing but the trained network has defects that do not reflect certain or all features of 

the input space. 

3. The maximum number of iterations passes but convergence is not reached. The training fails. This case 

happens rarely in a Kohonen network with appropriate setups. 
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In the one-dimensional case, a topological ordering, which corresponds to a Directed Acyclic Graph 

(DAG), can be used to represent the order of tasks. The featured topographic map generated by a Kohonen 

network is topologically ordered in the two-dimensional plane; in which the spatial location of a neuron in the 

output space corresponds to a feature of the input space.The topological ordering of neurons is caused by the 

weight update equation (2) that forces the weights of the winning neuron and related neighbors to move toward 

the input vector. The weight updates result in the reordering of neurons according to input patterns. Therefore, 

the two-dimensional output pattern reflects the features of the high-dimensional input terrain or space but with a 

much simpler representation which is able to be utilized easily by the network. Both the input domain and the 

output network are usually not intuitively obvious to human being; however, neurons or robots are able to use 

the information to identify terrain features, find optimal routes, and prioritize tasks to be performed.  

 

III. Prototyping and Modeling 
3.1 Technical Aspects of Robot Prototyping and Modeling 

This project involves both design and implementation of the simulator. Efficiently designing the 

artificial intelligence system involves a comprehensive research on current resources and technologies. The 

working and efficient simulation engine is designed and implemented using C++ and the cross-platform 3D 

graphics library OpenGL, which is rich in user interactive features via the GLUT windowing library. The open 

source version of freeglut is used for implementation.  

The class Robot models common attributes and actions of robots in the network. Attributes include 

robot dimension, mobility, a linked list of arrays and a hash table as the storage mechanism, sensor types, and 

transmission range. Actions a robot can perform include transmitting message, processing received message, 

translating on the terrain, updating the shared neural network, and synchronizing with the network. The robot 

motion modeling starts with two fundamental motion types – translation and rotation. Translation moves a robot 

component by certain amounts along x, y, and z axes in a Cartesian coordinate system. Rotation rotates a 

component along an axis in space, which is calculated using Euler angles. Since each component is connected to 

other components, the freedom of motion can be limited. The robot network is modeled by an aggregation of 

robot instances.  

 

3.2 Mobile Ad Hoc Network Modeling 

In a mobile ad hoc network, each node in the network serves as a router that discovers routes, maintains 

routes, and forwards packets. During the past few years, mobile ad hoc networks have received intensive 

attention because of their widespread applications. Examples include indoor networking among handhelds and 

notebooks for a conference, and outdoor networking in a military operation as well as the temporary network set 

up for a rescue operation after a major disaster. The common characteristic among those applications is that a 

fixed network infrastructure is not readily available [2, 3]. The mobility of robots is modeled using the random 

walk model. Robots have speeds in the two orthogonal directions with random values, which are within certain 

ranges. A fairly good coverage of the terrain can be reached using the random walk model. If the network asks a 

robot to move due to the learning process, the robot will update its position according to the network 

requirement.  

 

IV. Simulation Design and Implementation 
4.1Design and Implementation of the Motion Model 

The hierarchical dependencies among the ten components of a robot are designed and implemented, in 

which torso is designed as the central component that controls other components. The translation and rotation of 

the head depends on the torso. The movement of left and right upper arms and legs depend on the torso; while 

the movement of the left and right lower arms and legs depend on the upper ones.  

As of the implementation and programming part, the following features are used. Firstly, a tree 

structure is used to model the hierarchical structure of the robot components. Secondly, OpenGL states are used 

to store the states of movement for each component. The push and pop matrix feature is used to implement the 

dependencies of movements. Programming is done in C++ with OpenGL. C++ is adopted since robots are 

modeled using a class and instantiated as instances of the class. 

 

4.2 Computer Graphics Technologies 

State of art technologies in computer graphics are incorporated in the project to offer more features and 

flexibilities in the design and implementation process. For example, programmable rendering pipelines are 

researched for flexibilities and efficiency for the project.The new computer graphics technologies such as the 

OpenGL Shading Language (GLSL) have the potential to make the simulator more flexible, efficient, and 

powerful. The project also researches on the possibilities to include them. The simulation program is tested for 

speed and efficiency under difference circumstances with various textures, lights, and material properties. The 
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number of polygons used in a scene is an important parameter which affects both the smoothness of the visual 

effect and the speed of the simulation.  

 

 
Figure 3.Graphics Modeling of Robots with Objects, Lights, Materials, and Textures 

 

4.3 Artificial Intelligence Components 

After the graphic component of the simulation is designed and implemented, the next generation of 

simulators are be designed and implemented to incorporate neural network and machine learning components. 

Firstly, a few fundamental artificial intelligence learning algorithms have been experimented such as game 

playing techniques using the state space framework, error-checking methods, and neural network methods such 

as Hopfield networks and Bidirectional Associative Networks (BAM). The Kohonen network is chosen in the 

final version of the simulator. 

 

V. Simulation Results 
5.1 Unsupervised Learning 

The simulation starts with a simple case in which the terrain is divided into 𝑛2 squares so shades form a 

pattern with red, green, and blue components, which is three-dimensional. Fig. 4 shows a deployment of 12 

robots on the terrain with 2,500 squares. This is a classical application of Kohonen networks. The robots can 

train themselves to converge to the correct two-dimensional color pattern within 2,000 iterations in 98% of all 

simulation runs. The percentage increases to 99.3% with 6,000 iterations.  

 

 
Figure 4. Detection of Terrain Surface and Formation of a Topological Map Shared in the Ad Hoc Network 



Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks 

DOI: 10.9790/0661-18050494101                                        www.iosrjournals.org                                  99 | Page 

However, when the terrain surface becomes more complicated, the non-convergence rate for the same 

number of iterations increases steeply. Firstly, the borders among squares on the terrain are blurred using the 

linear-interpolation approach. Secondly, three cones that represent tasks on the terrains are added. Fig. 5 shows 

this scenario. It turns out that in over 60% of all cases, the process cannot converge in 10,000 iterations. To 

address the issue, the number of robots is considered to be the bottleneck for the performance. We consider 

increasing the number of robots to form a bigger group, or a swarm, in which individuals collaborate and 

produce particle swarm intelligence. This team intelligent behavior is to be demonstrated in the next subsection 

with simulation results. 
 

 
Figure 5. Terrain with Same Resolution but Blurred Border Feature and Task Objects on Terrain 

 

5.2 Group Intelligent Behaviors 

Fig. 6 shows the simulation result with 90 robots on a terrain divided into 10,000 squares with blurred 

borders using the linear-interpolation approach. Three red task cones, which have higher task priority, and two 

blue spheres, which represent tasks with lower priority, are added to the terrain to challenge the intelligent agent 

group. In 3,000 iterations the robots are able to form a topographic map that approximately reflects the task 

distribution on the terrain with more robots surrounding the tasks with the higher priority. The result on a 

complex terrain is not perfect in most simulation runs. However, most results are fairly good in a statistical 

sense. Therefore, in real-life application scenarios, a team of robots with an appropriate number for the 

corresponding terrain and tasks could be deployed so they could form an effective ad hoc network, learn from 

the terrain and tasks by themselves, and carry out the necessary tasks according to their priorities.  
 

 
Figure 6. Improved Collective Behavior Demonstrated by Larger Group of Robots 



Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks 

DOI: 10.9790/0661-18050494101                                        www.iosrjournals.org                                  100 | Page 

A systematic study has been conducted to study the relationship between the complexity of terrain with 

prioritized tasks and the convergence rate within a reasonable time frame or number of iterations. Because in 

reality, robots do not have an infinite amount of time to learn without supervision, although doing so almost 

guarantees a successful training. Therefore, a tradeoff must be made between the team learning time and the 

number of robots, which is linearly proportional to the cost to build the network. Fig. 7 shows the simulation 

scenario with 100,000 blurred squares and more task objects on the terrain. The result shows that a group of 120 

robots is able to achieve a similar convergence ratio to the scenario shown in Fig. 6.  

 

 
Figure 7. Linear Relationship between Terrain Complexity and Number of Robots 

 

Relationship between the convergence rate and the number of robots was studied. Fig. 8 shows a 

typical curve between these two variables. The terrain resolution is 10,000 and the time threshold is 2,000 

iterations for Fig. 8, which shows the convergence rate as a function of the number of intelligent agents in the 

network. The convergence rate increases rapidly when the number of intelligent agents is small and reaches a 

plateau when the number goes beyond a certain limit. For the scenario shown in the above figure, the magic 

number is around 120. Simulation results under other terrain resolutions reveal a similar trend. Therefore, a 

simulation can be conducted to decide on an appropriate number of intelligent agents to be deployed, which can 

maximize the productivity and minimize the total cost. 

Fig. 9 indicates that the time it takes to adapt to a terrain is approximately proportional to the 

complexity of the terrain, which is defined by the number different shaded spots that represent terrain features. 

In the scenario shown in Fig. 9, the number of robots is 120. 

 

 
Figure 8.Relationship between Kohonen Network Training Convergence Rate and Number of Intelligent 

Agents 
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Figure 9. Relationship between Simulation Time Frame and Terrain Complexity 

 

5.3 Simulation Efficiency 

Based on a systematic series of tests, it is found out that the single most important factor that affects the 

speed and efficiency of the simulation is the number of polygons that needs to be rendered in each scene, 

especially for a dynamic scenario, under which it is not viable to maintain a large amount of static pixel data in 

the frame buffer. The whole scene needs to be rendered for every frame during the animation process, which 

costs most of the system resources such as CPU cycles, memory, and GPU cycles as well as the consumption of 

the onboard memory. A focus is given to the learning process, which results in less than perfect visual effects. 

 

VI. Conclusion and Future Work 
A robot motion and learning simulation program is designed and implemented to research on the 

modeling of robot and robot group behavior using unsupervised machine learning techniques. Computer 

graphics features such as hierarchical modeling,lights, material, texture mapping, the programmable graphics 

pipeline features, as well as artificial intelligence components are considered and incorporated in the simulator. 

The simulation results reveal the relationship among terrain complexity, the machine learning time frame, and 

the number of robots that form the ad hoc network. Possible future work includes finding better methods to run 

the artificial intelligence components in order to reduce the CPU, memory, and GPU usage, and implementing 

the simulation program under the new GPU technologies to speed up the simulation. Newer computer graphics 

technologies and more artificial intelligence features can be incorporated in the system in a future version as 

well. The simulation system can also evolve into a platform for robot design and testing under other platforms.  
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