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Abstract:  A curvilinear algorithm
 [1]

 model is presented here for training neural networks which are based on 

modifications of the memory less BFGS
 [2]

 method. The method supports curvilinear
 [3]

 search. A memory quasi-

Newton direction and a direction of negative curvature are described here. Additionally negative curvature
 [4]

 

direction is allowed by avoiding any storage and matrix factorization. The efficiency of the training process is 

achieved by simulation results. 

Index Terms: Neural networks, memory less BFGS, negative curvature direction, curvilinear search. 

 

I. Introduction 
According to the trading problem of neural networks, reducing the set of weights w to minimize the 

error function E(W) . It is the sum of square of errors in outputs. Traditionally gradient-based algorithm formula 

is             

Wk+1=wk + ηkpk 

Where k is defined as current iteration called as epoch. Wo belongs to Pk is a starting point. ηk is a 

stepsize 
[5]

(or learning rate) with ηk > 0 and pk is a descent search direction, i.e., gk
T
pk< 0. The gradient are  

easily obtained by means of back propagating  errors through the network layers. These suggestions were been 

proposed in literatures in order to define the search direction pk. The most elaborated directions are limited 

memory quasi-Newton
[6]

 direction which is defined by Hessian
[7]

 approximation using curvature from most 

recent iterations. Recently a method is proposed which exploits the Eigen structure of the memory less
[8]

 BFGS 

matrices without using matrix factorization and storage. Consequently, a direction of negative curvature can be 

computed analytically avoiding the storage of any matrix. So, the proposal for a curvilinear scheme of a memory 

less quasi-Newton method for training came into existence. The proposed algorithm utilizes a pair of directions; 

a memory less quasi-Newton direction and a direction of negative curvature, i.e., directions d such that dk' 

2E(w)d < 0, and it is based on the following iterative form wk+1 = wk + ηkpk, if Bk is positive definite; wk + 

ηk
2
pk + ηkdk, otherwise where pk is memory less quasi-Newton direction, dk is  direction of negative curvature 

and Bk is  memory less BFGS Hessian approximation. When Bk defines positive definite, proposed iterative 

scheme  standard line search procedure (see [3], [19]). In different case, the iterative scheme searches along the 

curvilinear path 

 wk+1 = wk + η2 kpk + ηkdk  

which first proposed by Mor´e and Sorensen
 [15]

. The proposed method preserves strong convergence
[9]

 

properties provided by quasi-Newton direction when dk is positive definite. Additionally, it exploits the 

nonconvexity
[10]

 of the error surface through the computation of the negative curvature direction without using 

any storage and matrix factorization. Euclidean norm and n the dimension of the error function.  

 

II. Properties of the memory less BFGS matrices 
The memory less BFGS algorithms are computed on L-BFGS philosophy using information from 

recent iteration. L-BFGS makes dk share  many features with other quasi-Newton algorithms, but it is very 

different in  the matrix-vector multiplication for finding the search direction. , where  is the current derivative 

and is the inverse of the Hessian matrix
[12]

. There is multiple published approaches using a history of updates to 

form the direction vector
[13]

. Here, we give a common approach, the so-called "two loop recursion.  

We'll take as given, the position at each iteration, and  the function being minimized, and all vectors are 

column vectors. We assume that the last stored updates of the form  and  we’ll define, and  that the ‘initial’ 

approximate of the inverse Hessian is according to our estimate when iteration begins with. Then we can 

compute the (uphill
[14]

) direction. 

The formulation is validated and we are using minimizing or maximizing. Note that if we are 

minimizing, the search direction will be negative of k (since k is "uphill"), and if we are maximizing,  it will be 
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negative rather than positive. This would typically do a backtracking line search in the search direction. 

Commonly, the inverse Hessian represented as a diagonal matrix, then it initially sets as  required only an 

element-by-element
[18]

 multiplication. 

These two loop update works only for inverse Hessian. Approaches to implementing L-BFGS using the 

direct approximation. This would typically do a backtracking line search in the search direction. Commonly, the 

inverse Hessian   represented as a diagonal matrix, then it initially sets as  required only an element-by-element 

multiplication. These two loop update works only for inverse Hessian. Approaches to implementing L-BFGS 

Hessian  have developed, as  other means of approximating the inverse Hessian.  

Wk+1 =     Wk  +  ηkPk     if Pk is positive definite, 

Otherwise  Wk+1  = Wk + ηk
2
Pk+ ηkdk.. 

 

These two methods uses both the first and second derivatives of the function. However, BFGS has 

proven that it has very good performance even for non-smooth optimizations. In  quasi-Newton methods, 

the Hessian of second derivatives
[15]

 are not evaluated directly. Instead, the Hessian matrix is approximation of 

using rank-one
[16]

 updates specified by gradient evaluations (or approximate gradient evaluations). Quasi-

Newton methods are generalizations of the known secant method
[17]

 to find the root of the first derivative for 

multidimensional problems. In the multi-dimensional problems, new secant equation does not specify a unique 

solution, and quasi-Newton methods differ in how they constrain the solution. So, the  BFGS method is known 

as the most popular members of the class which is known as  common use is L-BFGS
[20]

,  is a limited-memory 

version of BFGS which is particularly suited for problems with very large numbers of variables (e.g., >1000). 

The BFGS variant handles simple box constraints.This search direction Pk at stage k is given by  solution of the 

analogue of  Newton equation which  is an approximation of  Hessian matrix and  is updated iteratively at each 

stage, and  is gradient of the function is evaluated at Wk. A line search in this direction Pk  which is used to find 

the next point Wk+1. Instead of  the required  full Hessian matrix at the point wk+1 which is to  be computed 

as Wk+1, the approximation  Hessian stage k is updated by the addition of two matrices. 

Both Wk and Pk  are symmetric rank-one matrices but have different (matrix) bases. The symmetric 

rank made by one assumption. So these equivalents, Wk and Pk construct a new rank-two update matrix which 

robust against the scale problem. The quasi-Newton condition imposed on this updated. In the paper of 

conjugate we develop a limited memory conjugate gradient method which corrects the loss of orthogonality that 

will occur in ill-conditioned optimization problems. In our method, we check distance between current gradient 

and the space Pk spanned by the recent prior search directions. When distance becomes sufficiently small, then 

the  orthogonality property has been lost, and here  we optimize the objective function over Pk until achieving a 

gradient that is approximately orthogonal to Pk. This approximation orthogonality condition is eventually 

fulfilled by  first-order
[22]

 optimality conditions for local minimizer in the subspace. The algorithm continuously 

operate in this same way: We apply the conjugate gradient iteration until distance between current gradient and 

Pk becomes sufficiently small, and then we solve a subspace problem to obtain an iterate for which gradient is 

approximately orthogonal to Pk. Our limited memory algorithm has connections with both L-BFGS of Necedal 
[20]

 and Liu and Nocedal 
[16]

, and with reduced Hessian method of Gill and Leonard 
[10, 11]

. Unlike either of these 

limited memory approaches, we do not always use  memory to construct  new search direction. This memory is 

used to monitor orthogonality of the search directions; and when orthogonality is lost, memory is used to 

generate a new orthogonal search direction. Our rational for not using the memory to generate the current search 

when orthogonality
[21]

 holds is that conjugate. 

 

III. Algorithm 
From an initial guessing we approximate the Hessian matrix  the following steps are repeated as stages to the 

solution. 

1. Obtain a direction  by the solving.  

2. Perform   line search to find an acceptable step size  in the direction found in the first step, then update . 

3. If stepsize  found as negative then isolate 

4. Otherwise, it is treated as positive. 

5. stop 

 

Which denotes the objective function to be minimized. This can be checked by observing under the 

norm of gradient.  Practically,  which can be initialized with, so the first step will be equivalent to a gradient 

descent, but the further steps are more and more refined by, the approximation to the Hessian. This  first step of 

algorithm is carried out by using inverse of  the matrix, which can also be  obtained efficiently by applying 

the Sherman–Morrison formula to the algorithm, this will be computed efficiently without using temporary 

matrices, recognizing that it is symmetric, and is that  which is scalar, using an expansion . 

https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Backtracking_line_search
https://en.wikipedia.org/wiki/Derivative
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In the statistical estimation problems (such as maximum likelihood or the inference), credible 

intervals or confidence intervals for solution will be estimated from inverse of the final Hessian matrix. 

However, these quantities are technically defined by true Hessian matrix, and the BFGS approximation may not 

converge to the true Hessian matrix. 

 

IV. Conclusions 
The work, have proposed a new curvilinear method for training the neural networks which is based on 

the analysis of the eigen structure of the memory less BFGS matrices. This method preserves the strong 

convergence properties provided by the new quasi-Newton direction while at the same time it exploits the 

nonconvexity of the error surface through the negative curvature direction without using any storage and matrix 

factorization. Based on the fact that the algorithm uses only inner products and vector summations, this 

proposed method is suitable for training large scale neural networks. Our numerical experiments have shown 

that the method outperforms other popular training methods on famous benchmarks. 
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