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Abstract: The paper presents an innovative approach to mathematical modeling of complex systems „human-

dynamical process”. The approach is based on the theory of measurement and utility theory and permits 

inclusion of human preferences in the objective function. The objective utility function is constructed by 

recurrent stochastic procedure which represents machine learning based on the human preferences. The 

approach is demonstrated by two case studies, portfolio allocation with Wiener process and portfolio allocation 

in the case of financial process with colored noise. The presented formulations could serve as foundation of 

development of decision support tools for design of management/control. This value-oriented modeling leads to 

the development of preferences-based decision support in machine learning environment and 

control/management value based design. 
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I. Introduction 

In the paper is demonstrated an innovative approach and mathematical modeling of complex systems 

„human-stochastic dynamical financial process” by the use of a preferences based utility objective function. 

That permit development of value driven control design in complex processes (and management systems) where 

the human choice is decisive for the final solution. Value-driven design is a systems engineering strategy which 

enables multidisciplinary design optimization. Value-driven design creates an environment that enables 

optimization by providing designers with an objective function which inputs the important attributes of the 

system being designed, and outputs a score. 

In parallel we compare two optimal stochastic control solutions based on this modeling, portfolio 

allocation with Wiener process and portfolio allocation in the case of financial process with colored noise. Many 

systems in the practice are well modeled with dynamic described by differential equation with continuous state 

vectors. Frequently such systems are in interaction with the environment in the conditions of probability 

uncertainty. Similarly, the process of optimal portfolio allocation is described by stochastic differential equation 

model of Black-Scholes [19]. This dynamical model is a standard, basic model in the financial economic. 

Prevalently such stochastic dynamical systems are discussed in the conditions of Wiener process [9, 19]. But in 

practice the stochastic processes generally are far away from the cases of Wiener process. From the stochastic 

control theory point of view this fact could be reflected in two different manners. The first case consists in 

changing the Black-Scholes model in manner that proceeds to pass from the Ito stochastic differential equation 

to the Skorokhod stochastic differential equation. This is made by adding an additional term in the stochastic 

model. Similar transformations of the stochastic models are possible when the real stochastic process is close to 

the Wiener process. But the expression „close to” is not mathematically precise and is quite vague.  

The second case is the case when we approach the discussed problems in the paper with the methods 

and means of the linear optimal control theory [13]. If there is a colored noise, the control theory proposes a 

specific mathematical approach which consists on modeling the noise with the help of a linear model with white 

noise as input. This is the approach chosen in this paper.  

We compare two solutions, portfolio allocation with Wiener process and portfolio allocation in the case 

of financial process with colored noise. The two optimal control processes are graphically shown and compared 

when using and modeling a real financial process: „GNP in 1982 Dollars, discount rate on 91-day treasury 

bills, yield on long term treasury bonds, 1954Q1-1987Q4; source: Business Conditions Digest”.  The optimal 

control law in the case of stochastic financial process with colored noise is described analytically and graphical 

results are shown. 

This investigation is innovative in two directions. The first is preferences based mathematical modeling 

of the complex system „human-stochastic dynamical financial process” [4, 8]. Such a „human-process” complex 

systems modeling is a rarity in the contemporary scientific investigations. The second is the investigation and 

determination of the optimal control law in the case of the Black-Scholes model and stochastic financial process 

with colored noise.  
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II. Objective Utility Function And Preferences 
People’s preferences contain uncertainty due to the cardinal type of the empirical expert information. 

This uncertainty is of subjective and probability nature. The difficulties that come from the mathematical 

approach are due to the probability, and subjective uncertainty of the DM expression and the cardinal character 

of the expressed human preferences. The machine learning evaluation method presented here rests upon the 

achievements of the theory of measurement (scaling), utility theory and, statistic programming. The so called 

normative (axiomatic) approach considers the conditions for existence of utility function. The mathematical 

description follows.  

Let X is the set of alternatives and P be a set of probability distributions over X.  A utility function u(.) 

will be any function for which the following is fulfilled: ( pq , (p,q)P
2
 )  (u(.)dpu(.)dq). 

In keeping with Von Neumann and Morgenstern [6, 16] the interpretation of the above formula is that 

the integral of the utility function u(.) is a measure for comparison of the probability distributions p and q 

defined over X. The notation  expresses the preferences of DM over P including those over X (XP). The 

presumption of existence of a utility function u(.) leads to the “negatively transitive” ((pt) (tq)) 

(pq)) and “asymmetric” relation (). These properties lead to the existence of: asymmetry ((xy) 

((xy))), transitivity ((xy)  (yz ) (xz)) and transitivity of the “indifference” relation ().The transitivity 

of the relations () and () is violated most often in practice. The violation of the transitivity of the relation () 

could be interpreted as a lack of information, or as a DM's subjective mistake. The violation of the transitivity of 

the relation () is due to the natural "uncertainty" of the human’s preference and the qualitative nature of 

expressions of the subjective notions and evaluations [1, 3, 7, 17]. 

There is different utility evaluation methods, all of them based on the “lottery” approach (gambling 

approach). A "lottery" is called every discrete probability distribution over X. We mark as  x,y, the lottery: 

here  is the probability of the appearance of the alternative x and (1-) - the probability of the alternative y. 

The most used evaluation approach is the assessment: z x,y,, where (x,y,z)X
3
, (xzy) and [0,1] [5, 8]. 

Weak points of this approach are the violations of the transitivity of the relations and the so called “certainty 

effect” and “probability distortion” [3, 8]. Additionally, it is very difficult to determine the alternatives x (the 

best) and y (the worst) on condition that (xzy), where z is the analyzed alternative. The measurement scale of 

the utility function u(.) originates from the previous mathematical formulation of the relations () and (). It is 

accepted that (XP) and that the set of the probability distributions P is a convex set ((q,p)P
2
(q+(1-

)p)P, for ). The utility function u(.) over X is determined with the accuracy of an affine 

transformation (i.e. interval scale) [6, 16].  

We assume that the outcome set X is a two-attribute product set V×W, with generic element x=(v,w). 

The sets V and W are attribute sets where W designates the second attribute, the quantity of money in BGN’s  

and V designates the first attribute - the amount wπt, (wπtV, wW, πt[0,1] ) invested in a risky process. The 

aggregation of the two attributes in a multiattribute utility function needs investigation of the Utility 

independence in between the risky investment v (v=wπt) and the quantity of money (w) [8]. A implication of 

preference independence is that changing v does not affect rank-ordering in „lotteries” over W. Assume that the 

image of the function Ƒ(w)→ U(v, w ) is an interval for all v, where U(v,w) is two attribute utility function. Then 

w is utility independent if and only if:  

U(v, w ) = f (v)p(w) + g(v) for some functions  f , p, g and  f is positive.  

Let W be relevant over a range w
o
 to w

*
 and V over a range v

o
 to v

*
 and assume that U(v, w

*
)>U(v, w

o
) for all v 

and U(v
*
,w)>U(v

o
, w) for all w. We may rewrite this independency condition as: 

U(v, w ) = U(v, w
o
)+ [U(v, w

*
) -U(v, w

o
)] U(v

o
, w ).  

We know that the measuring scale is the interval scale. That fact permits more detailed functional description of 

the utility function: 

U(v, w ) = (a1+b1g(v)) + [(a2+b2f(v)) - (a3+b3g(v))]( (a4+b4p(w))). 

The functions g(v), f(v) and p(w) are normed between 0 and 1. The notations ai and bi are coefficients, where 

i=1 4. 

The single-attribute utility functions U(v, w
*
), U(v, w

o
) and U(v

o
, w) are evaluated by a stochastic 

recurrent algorithm and the objective utility function is shown in figure 1 [14, 15]. We underline that is 

supposed preferences associated with the quantity of BGN’s (set W) are utility independent from the level of 

risky investment π (set V). Starting from the properties of the preference relation () and indifference relation 

() and from the weak points of the “lottery approach” we propose the following stochastic approximation 

procedure for evaluation of the utility function. It is assumed that (XP), ((q,p)P2(q+(1-)p)P, for 

) and that the utility function u(.) exists. It is defined two sets: 

Au*={(x,y,z)/(u*(x)+(1-u*(y))>u*(z)}, 

Bu*={(x,y,z)/(u*(x)+(1-u*(y))>u*(z)}.  
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The approximation of the utility function is constructed by pattern recognition of the set Au*[14]. The 

assessment process is a machine-learning approach based on the DM’s preferences. The machine learning is a 

probabilistic pattern recognition procedure because (Au*Bu*) and the utility evaluation is a stochastic 

approximation with noise (uncertainty) elimination.   

 
Fig.1 Utility:1≈1000000BGN’s 

 

The following presents the evaluation: DM compares the "lottery" x,y, with the simple alternative 

z, zX  ("better-, f(x,y,z,=1”, "worse-, f(x,y,z,=(-1)” or "can’t answer or equivalent-  , f(x,y,z,=0”. 

The discrete function f(. denotes the qualitative DM’s answer expressed as preference. This determine a 

learning point ((x,y,z,), f(x,y,z,)). The following recurrent stochastic algorithm constructs the utility 

polynomial approximation based on the learning points: 
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The notations are (based on Au*): 

 t=(x,y,z,), i(t)=i(x,y,z,) =i(x)+(1-i(y)-i(z), where (i(x)) is a family of polynomials. 

The line above the scalar product ))(,( tncv   means: ( 1v ), if (v>1), ( 1v ) if (v< -1), and vv   if (-

1<v<1). The coefficients ci
n
 take part in the polynomial representation: 
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The mathematical procedure describes the following assessment process. The learning points are set 

with a pseudo random sequence. The expert relates intuitively the “lottery” (x,y,z,)) to the set Au*with 

probability D1(x,y,z,) or to the set Bu* with probability D2(x,y,z,). The probabilities D1(x,y,z,) and 

D2(x,y,z,) are mathematical expectations of f(.) over Au* and Bu* respectively: 

(D1(x,y,z,)=M(f/x,y,z,) if (M(f/x,y,z,>0), (D2(x,y,z,)=(-)M(f/x,y,z,) if (M(f/x,y,z,<0). 

Let D'(x,y,z,) is the random value: D'(x,y,z,)=D1(x,y,z,) if (M(f/x,y,z,>0); D'(x,y,z,)=(-D2(x,y,z,)) if 

(M(f/x,y,z,<0); D'(x,y,z,)=0 if (M(f/x,y,z,=0). We approximate D'(x,y,z,) by G(x,y,z,)=(g(x)+(-

g(y)-g(z)). The coefficients ci
n
 take part in the approximation of the function G(x,y,z,) G

n
(x,y,z,)=(c

n
,Ψ(t)).  

 

The function G
n
(x,y,z,) is positive over Au* and negative over Bu* depending on the degree of 

approximation of D'(x,y,z,). The function gn(x) is the approximation of the utility function u(.). The proof of 

the convergence is based on the extremal approach of the potential function method [14].  

The utility U(v,w) and the single attribute utility functions g(v), f(v) and p(w)) are normed between 0 and 1 and 

are measured in the interval scale [6, 14, 16]. These facts permit determination of coefficients ai and bi by a very 

easy procedure. The coefficients in the utility formula are determined by comparisons of lotteries of the 

following type [14]: 

.)U(x

)-(1  )U(x

  )U(x

3

2

1
































 



Value Based Decision Control: Preferences Portfolio Allocation, Winer and Color Noise Cases 

DOI: 10.9790/0661-1901035360                                          www.iosrjournals.org                                    56 | Page 

But now x1, x2 and x3 are fixed and is fulfilled  x1 x3 x2 [8, 14]. The questions to the decision maker 

are like lotteries in which we vary only the values by α[0,1]. Two of them x1 and x2 are with fixed values 

(utilities) and the aim is to determine the third value U(x3). The stochastic procedure is of the type of Robins-

Monro but the convergence is much quicker. The procedure is the following [14]. Lets α is a uniformly 

distributed random value in [0, 1]. We define the following random vector  = (
1
, 

2
, 

3
), where: 

a) If     (   )     =(  1 =1,  2 = 0,  3 = 0); 

b) If   (  )    = ( 1 =0,  2 = 0,  3 = 1) ;  

c) If indiscernibility (   )     = (  1 =0,  2 = 1,  3 = 0 ) . 

Let  
n
 is a learning sequence of independent random values with equal to  distribution. The stochastic recurrent 

procedure is the following: 
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The notation PrP has the meaning of projection over the set: 

P ={(1, 2,  3) / 1≥0, 2≥0, 3 ≥0,  1 + 2 + 3 = 1}.  

The searched value is determined in the end as the following:  

U(x3)= U(x2)+( 1 + 2/2)( U(x1) - U(x2)). 

The proposed procedure and its modifications are machine learning. The DM is comparatively fast in learning to 

operate with the procedure: session with 128 questions (learning points) takes approximately 30 minutes and 

requires only qualitative answers “yes”, “no” or “equivalent ”.The learning points ((x,y,z,), f(x,y,z,)) are set 

with a Sobol’s pseudo random sequence [14]. 

 

III. Value Driven Modelling Based On Measurement Of Human  Preferences 
The Computational Economics area in Operations Research recognizes that current developments in 

computational methodology are of essential importance to new research into the application of economic 

principles to the solution of practical policy problems. The author presents two value driven policy problem 

solutions that are based on measurement of human preferences [4, 8, 14]. The first of them concerns the 

construction of optimal portfolio utility allocation in the case of Wiener process. The second application 

presents the construction of optimal portfolio utility allocation in the case of colored noise. These problems are 

discussed repeatedly in the scientific literature [2, 12, 13, 19].  

Generally the construction of the objective utility function is out of discussion. In this investigation is 

considered construction of a polynomial objective function, which is based on evaluations of decision maker’s 

preferences as is shown in figure 1. This model includes the human decisive opinion as a utility function. The 

utility function together with the Black-Scholes differential model comes to an integral mathematical description 

of the complex problem „human- portfolio policy determination”. The portfolio optimal control is in agreement 

with the DM’s preferences.  

 

IV. Optimal Portfolio Allocation, Wiener Process 
Consider a non-risky asset S0 and a risky one S. The Black-Scholes dynamic model represents a stochastic 

differential equation determined by: 
   .and00 dWdtSdSrdtSdS tttt    

In the formula r, μ and σ are constants (r=0.03, μ=0.05 and σ=0.3) and W is one dimensional Brownian motion. 

By Xt we denote the wealth, the state space vector of the controlled process. The investment policy is defined by 

a progressively adapted process π={πt, t[0,T]} where πt represents the risky amount (Xtπt, πt[0,1]) invested at 

any moment t. The invested amount is (wπt, πt[0,1], wW) in agreement with the notations of the previous 

paragraph. The remaining wealth (Xt - πt Xt) is non-risky investment. The time period T is 30 weeks. The self-

financing satisfies the following stochastic differential equation [15, 19]: 

tttttt

t

t

ttt

t

t

ttt dWXdtXrrX
S

dS
XXdt

S

dS
XdX    ))(()(

0

0  

The amount
,, xt

X is the solution of the stochastic differential equation with initial wealth (x) at time t. It is 

obvious that 

T
dtXtt

0

2)(E


  , where E denote mathematical expectation. The main objective of the 

investor (DM) is maximization of the expected DM’s utility U(.) at the final moment T:  
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The DM’s objective utility function is shown on the figure 1. The control input is πt and determines the 

partition amount (Xtπt) invested in the risky process at any moment t. The optimal control could be determined 

step by step from the Hamilton-Jacobi-Bellman partial differential equation in agreement with the dynamical 

programming principle [18, 19]: 

.0)],(
2

1
),())([(sup),(

2

2

222

]1,0[


















Xt
X

xXt
X

B
XrrXXt

t

BB




 

We underline that the coefficients in the stochastic differential equation are continuous, the objective 

function U(.) is continuous and that the optimal control is continuous by parts. This determines that there is a 

smooth by parts solution of the HJB partial differential equation [9, 19]. Following the presentations in [9] and 

passing through generalized solution of the Black-Scholes stochastic differential equation we found polynomial 

approximations of the Hamilton-Jacobi-Bellman (HJB) function B(t, X) and of the control manifold π(t,X) [10, 

18]. We show them in figures 2 and 3.   

 
Fig.2. HJB function                                                  Fig.3. Optimal control manifold 

 

       
Fig.4.   Scale in BGN’s                                             Fig.5. Utility: 1≈1000000 BGN’s 

 

The stochastic process is started in 30 different initial points; from 1000 BGN’s to 30000 BGN’s and 

the optimal control solutions could be seen in figure 4 [15].  We underline that in figure 4 is shown the optimal 

solution whit final wealth XT evaluated in BGN’s. The black seesaw line under the objective utility function in 

figure 5 is a sample of stochastic optimal control process flow. 

 

V. Colored Noise And Optimal Portfolio Utility Allocation 
The Wiener process is an abstraction, some time far away from the reality. The white noise assumption 

is too strong. In this paragraph the optimal portfolio control allocation in the case of a finacial process with non-

white colored noise will be investigated. Data from a real process are used, available in internet: „GNP in 1982 

Dollars, discount rate on 91-day treasury bills, yield on long term treasury bonds, 1954Q1-1987Q4; source: 

Business Conditions Digest”. The noise of the real financial process (figure 6) is far away from white noise as 

could be seen by the correlation function in figure 7. The approximation of the real correlation function is shown 

in also in figure 7.  

 

            
Fig.6. Experimental data                                              Fig.7. Correlation functions 
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The problem of colored noise modeling and optimal filtering in linear control theory is repeatedly 

discussed in the scientific forums and has practical significance [11]. The noise in the real financial process 

could be approximated by colored noise as is shown in figure 7. This admission leads to modifications in the 

Black-Scholes model. The stochastic differential equation is appended to a three dimensional differential 

equation and becomes:    

t

t

ttttt

dWdtNNdN

dWdtNdN
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It is obvious that the noise N appears autonomously in the second and the third row and that this is a description 

of a linear system. The wealth Xt appears only with its first derivative in the Hamilton-Jacobi-Bellman (HJB) 

partial differential equation [18, 19].  
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The main objective of the DM is maximization of the expected DM’s utility U(X) at the final moment T:  
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The formula above has the meaning of mathematical expectation of U(X) at the final moment where U(.) is the 

objective utility function. The optimal control law could be determined from the following mathematical 

expression: 
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This formula show that the determination of the optimal control law needs the determination of the 

partial derivative on X of the Belman’s function B(t, X, N1, N2). These observations permit a decomposition of 

the HJB partial differential equation to a partial differential equation of the first degree with variables Xt and t 

and to an autonomous HJB partial differential equation with variables N1 and N2. We will look for a solution of 

the HJB partial differential equation of the form B1(t, X)B2(t, N1, N2), where B2(t, N1,N2,) is a positive smooth 

function, solution of the following partial differential equation: 
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The function B1(T, X) is chosen to be equal to the DM’s utility function U(X) in the final moment T. This 

function is solution of the partial differential equation: 
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This decomposition permits determination of the partial derivative on X of the Belman’s function B(t, X, N1, 

N2) as follows: 
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In the formula πt, t[0,T] is the optimal control policy and E(N1(t))  is the mathematical expectation of the 

colored noise at moment t. We remind that the color noise is generated by the linear system with Gauss white 

noise as input. Now is clear that the two partial derivatives have the same sign and the formula of the optimal 

control law becomes: 

)),((]))([(sup 1

]1,0[

Xt
X

U
signNXXrrX tttttt









 . 

The stochastic process is started in 30 different initial points; from 1000 BGN’s to 30000 BGN’s. The 

solutions could be seen in figure 8. In the next figure 9 are shown the same solutions but with classical control 

law in the case of Wiener process. We underline that in figure 8 and figure 9 are shown the optimal solutions, 

the wealth evaluated as utilities U(X). We remember that the solutions shown in figure 4 are in the scale of 

BGN’s. It is seen that the solution that renders an account of the colored noise gives much better results.   
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Fig.8. Utility: 1≈1000000 BGN’s                                   Fig.9. Utility: 1≈1000000 BGN’s 

 

     
Fig.10.    Colored noise sample                                Fig.11. Correlation function 

 

The noise in the numerical modeling is approximated by colored noise as output of a linear system with 

Gauss white noise input [11]. A sample of the colored noise and its correlation function are shown in figure 10 

and figure 11. The linear system is constructed based on the approximation of the correlation function shown in 

figure 7. 

 

VI. Conclusions 
The Computational Economics recognizes that current developments in computational methodology 

are of essential importance. Advances in numerical methods now permit a genuine analysis of important and 

difficult economic problems without compromises. In the paper a system engineering value driven approach 

within the problem of determination of the optimal portfolio allocation modeled with Black-Scholes dynamic is 

demonstrated. It provides two optimal control solutions; the first solution is in the condition of a Wiener process 

and the second solution discusses the approach with inclusion of a colored noise in the stochastic financial 

process. It is important to emphasize that the optimal portfolio controls are specified based on the individual 

consumers’ preferences. 

In the paper is discussed an approach that allows practitioners to take advantage of individual 

application of the achievements of decision making theory in various fields of human activities. The analytical 

presentations of the expert’s preferences as value or utility function allow the inclusion of the decision maker 

mathematically in the model "Human-process”. The suggested approach can be regarded as a realization of the 

prescriptive decision making. The utility function is an abstraction presented in the limits of the normative 

approach, the axiomatic systems of Von Neumann. The mathematical expectation measured in the interval scale 

on the base of the DM’s preferences over lotteries is an approximation of the Von Neumann’s utility function. 

  

References 
[1]. Allais, M.: Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’école américaine, 

Econometrica 21, 503-546 (1953). 

[2]. Charness, G. and U. Gneezy:  Portfolio choice and risk attitudes: An experiment, Economic Inquiry, 48, 133–146, (2010). 

[3]. Cohen, M., Jaffray, J.Y.: Certainty Effects versus Probability Distortion: An Experimental Analysis of Decision Making Under 
Risk. Journal of Experimental Psychology: Human Perceptions and Performance 14(4), 554-560 (1988). 

[4]. Collopy, P., Hollingsworth, P.: Value-driven design. AIAA Paper 2009-7099, American Institute of Aeronautics and Astronautics, 

Reston, VA (2009).  
[5]. Farquhar, P.: Utility Assessment Methods. Management Science 30, 1283-1300 (1984). 

[6]. Fishburn, P.: Utility theory for decision-making. Wiley, New York, (1970). 

[7]. Kahneman, D,Tversky, A.: Prospect theory: An analysis of decision under risk. Econometrica 47, 263-291 (1979). 
[8]. Keeney, R., Raiffa, H.: Decision with multiple objectives: Preferences and value trade-offs, Cambridge University Press, 

Cambridge & New York (1999).  

[9]. Krylov N. V.: Controlled Diffusion Processes, Springer-Verlag, New York (1980). 
[10]. Kushner H., Dupuis P. G.: Numerical Methods for Stochastic Control Problems in Continuous Time (Applications of Mathematics: 

Stochastic Modelling and and Applied Probability), Springer-Verlag, New York, (2001). 



Value Based Decision Control: Preferences Portfolio Allocation, Winer and Color Noise Cases 

DOI: 10.9790/0661-1901035360                                          www.iosrjournals.org                                    60 | Page 

[11]. Kwakernaak H., Sivan R.: Linear optimal control systems, Wiley, (1972).  

[12]. Mania M., Tevzadze R.: Backward Stochastic Partial Differential Equations Related to Utility Maximization and Hedging, Journal 

of mathematical sciences,Vol.153, N3, 2008. 
[13]. Pang T.: Sotochastic Portfolio Optimization with Log Utility, International Journal of Theoretical and Applied Finance, Vol. 09, 

No. 06, 2006. 

[14]. Pavlov, Y., Andreev, R.: Decision Control, Management, and Support in Adaptive and Complex Systems: Quantitative Models, IGI 
Global, Hershey, PA (2013) 

[15]. Pavlov, Y.: Rational Portfolio investment based on Consumer’s Preferences: Black-Scholes Model and Stochastic Control, Journal 

of Communication and Computer, 12, (2015) 
[16]. Pfanzagl, J.: Theory of Measurement, Physical-Verlag, Wurzburg-Wien (1971) 

[17]. Shmeidler,D.: Subjective probability and expected utility without additivity, Econometrica 57(3), 571-587 (1989) 

[18]. Smears, I.: Hamilton-Jacobi-Bellman Equations Analysis and Numerical Analysis, PhD Theses, Durham University, UK (2010), 
http://maths.dur.ac.uk/Ug/projects/highlights/PR4/ Smears_HJB_report.pdf . 

[19]. Touzi, N., Tourin, A.: Optimal Stochastic Control, Stochastic Target Problems and Backward SDEs, Fields Institute Monographs 

29, Springer- Business & Economics (2012) 
 

http://maths.dur.ac.uk/Ug/projects/highlights/PR4/%20Smears_HJB_report.pdf

